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DISCUSSION OF: TREELETS—AN ADAPTIVE MULTI-SCALE
BASIS FOR SPARSE UNORDERED DATA

BY PETER J. BICKEL1 AND YA’ACOV RITOV2

University of California and The Hebrew University of Jerusalem

We divide our comments on this very interesting paper into two parts following
its own structure:

1. The use of treelets in connection with the correlation matrix of X = (X1, . . . ,

Xp)T for which we have n i.i.d. copies, or as the authors refer to it, “unsuper-
vised learning.”

2. The use of treelets as a step in best fitting the linear regression of X1 on
(X2, . . . ,Xp)T.

1. Unsupervised learning. The authors’ emphasis is on the method as a use-
ful way of representing data analogous to a wavelet representation where X = X(t)

with t genuinely identified with a point on the line and observation at p time points,
but where the time points have been permuted.

As such, this can be viewed as a clustering method which, from their examples,
gives very reasonable answers. However, to make more general theoretical state-
ments and to permit comparison to other methods, they necessarily introduce the
model

X =
K∑

j=i

Ujvj + σZj ,(1)

where U = (U1, . . . ,UK)T is an unobservable vector, the vj are fixed unknown
vectors, and Z ∼ Np(0, Jp), where Jp is the identity, Np is the p dimensional
Gaussian distribution, and U,Z are independent.

At this point, we are a bit troubled by the authors’ analysis. We believe a key
point, that is only stressed implicitly by the authors, is that the population tree
structure, as defined, is only a function of the population covariance matrix. This
is clear at Step 1, and follows since the Jacobi transformations depend only on the
covariance and variances of the coordinates involved. This raises a problematic is-
sue. If U, and hence X, has a Gaussian distribution, then the structure as postulated
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in (1) is not identifiable, as in known in factor analysis. Consider, for instance, Ex-
ample 2. If we redefine U∗

j = Uj , j = 1,2, v∗
3 = c1v1 + c2v2, and U∗

3 = 0, we are
at the same covariance matrix as in (19) with only two nonoverlapping blocks.

The treelets transform evidently gives a decomposition attuned to the authors’
beliefs of a block diagonal population structure with high intrablock correlation.
But the theoretical burden of exhibiting classes of covariance matrices, other than
ones whose eigenvectors are not only orthogonal but have disjoint support, and for
which some version of sparse PCA cannot be utilized just as well, remains.

This is an insurmountable problem for any population parameter which is a
function only of the covariance matrix.

A second difficulty, special to the treelets parameter T (�), is that it is not de-
fined uniquely for � for which the maximal off diagonal correlation is not uniquely
assumed. This is reflected in the authors’ discussion in Section 3.1 of the possible
instability of the empirical tree. In this context, we don’t understand their statement
that inferring T (�) is not the goal. If not, what is?

This issue makes comparison to the other methods difficult. As they state any
of the several methods for sparse PCA, for example, d’Aspremont et al. (2007),
Johnstone and Lu (2008), would yield the same answer as theirs for their Exam-
ple 1.

But is there a way of proceeding which teases out explicitly structures such as
in (19) without limiting oneself to the covariance matrix? Suppose that we can
write U = Be, where e = (e1, . . . , eK)T is a vector of independent not necessarily
identically distributed variables, such that at most one of them is Gaussian. That
is, we assume the factor loading themselves are obtained structurally. Then we can
write for i = 1, . . . , n, j = 1, . . . , p, Xij = ∑K

l=1 cjleil +σZij , where C = [Cjl] is
a p×K matrix, the Zij are i.i.d. N(0,1), and ei = (ei1, . . . , eiK)T are independent
as above. Here, C = V B , where V = (v1, . . . , vk). We conjecture that if p,n → ∞
with K fixed, and the columns of C are sparse, we can recover C up to a scale
multiple of each row, and a permutation of the columns. Work on this conjecture
is in progress.

2. Supervised learning. Can we select variables based on the X, the predictor
variables, themselves? The tempting answer is yes (e.g., using PCA). The theoret-
ical answer is no (Y can be a function of each component). The practical answer
is at most a cautious yes; cf. Cook (2007) for a recent discussion. However, one
should be careful to justify working with the predictions without the Y , since cur-
rent regression methods permit one to handle models with almost exponentially
many variables.

The LASSO type of estimator can handle sparse models. However, sparsity is
an elusive property, since the LASSO can deal with sparsity in a given basis, while
a sparse representation may exist only in some other basis. Treelets are proposed
as a method which enriches the description of the model, and gives the user an
over-rich collection of vectors which span the Euclidean space. Hopefully the tree
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cluster features are rich enough so the model can be approximated by the linear
span of relatively few, say, no more than o(n/ logn) terms.

The suggested algorithm deals with complexity by serial optimization in a fash-
ion similar to standard model selection methods (e.g., forward selection), boosting,
etc. It is not clear to us why the authors select the variables from one level and not
from their union, since again modern methods can deal with any polynomial num-
ber of regressors.

To asses performance of the algorithm, we considered a simple version of the
authors’ supervised errors-in-variables model, but in an asymptotic setting. Sup-
pose we observe n i.i.d. replicates from the distribution of (Y,X1, . . . ,Xp), where
p = pn and

Y = γZ + ε,

Xi = cpZ + ηi, i = 1, . . . , p,

where ε,Z ∼ N(0,1), ηi ∼ N(0, σ 2
i ), all independent. This is a classical error in

variables model, where the Xi are independent observations on Zi and the best
predictor is given by

ŷ(X) = γ cp

1 + c2
p

∑p
i=1 σ−2

i

p∑

i=1

σ−2
i Xi.

Consider first cp = p−1/2, with all σi = 1, γ �= 0 and, in particular, c2
p ×

∑p
i=1 σ−2

i = 1. In this case all variables are interesting, and have the same weight
for prediction. However, the covariance matrix of X has all diagonal terms greater
than 1, and all off diagonal terms are p−1. This model is not sparse—for instance,
in the sense of El Karoui (2008), and is also inaccessible to regularized covariance
estimation. The Treelet Algorithm will not be able to find this term. This model is
significantly different from the null, and a consistent predictor exists given known
parameter values. However, no standard general purpose algorithm will be able to
deal with this model. A small set of simulations show that, in fact, there is a range
of values of cp for which PCA works better than treelets. However, for larger val-
ues of cp , treelets work surprisingly well.

The restriction to a basis of a relatively small collection of transform variables
is a limitation. In Bickel, Ritov and Tsybakov (2008) a general methodology was
suggested for construction of a rich collection of basis functions. Formally, we con-
sider the following hierarchical model selection method. For a set of functions F
with cardinality |F | ≥ K , let MSK be some procedure to select K functions out
of F . We denote by MSK(F ) the selected subset of F , |MSK(F )| = K , K = nγ

for some γ < ∞. Define f ⊕ g to be the operator combining two base variables,
for instance, multiplication. The procedure is defined as follows:

(i) Set F0 = {X1, . . . ,Xp}.
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(ii) For m = 1,2, . . ., let

Fm = Fm−1 ∪ {f ⊕ g :f,g ∈ MSK(Fm−1)}.
(iii) Continue until convergence is declared. The output of the algorithm is the

set of functions MSK(Fm) for some m.

Bickel, Ritov and Tsybakov consider f ⊕g = fg, since they consider models with
interaction. The treelets construction is similar to this one, with each step yielding
two new functions, which result from PCA applied to a pair of variables. There is
one essential difference between our approach and the treelets algorithm. We also
keep at each step the complexity of the over-determined collection in check, but
let the complexity increase with the increase with levels.
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