STAT 150 HOMEWORK #3

SPRING 2024

Due Friday, Feb 9th, at 11:59 PM on Gradescope.

Note that there are *Exercises* and *Problems* in the textbook. Make sure you read the homework carefully to find the assigned question.

- 1. Pinsky and Karlin, Problem 3.8.2
- 2. Pinsky and Karlin, Problem 3.9.5
- 3. Pinsky and Karlin, Problem 3.9.8
- 4. Pinsky and Karlin, Problem 3.9.10
- 5. Let $(X_n)_{n=0}^{\infty}$ be a branching process with common distribution ξ having mean $\mu > 1$. Assume that $X_0 = 1$. Let $\phi_{\xi}(s) = \mathbb{E}[s^{\xi}]$ be the generating function of ξ . Recall that the extinction probability u_{∞} satisfies $u_{\infty} < 1$ in this case.
 - (a) Explain why $\phi'_{\xi}(u_{\infty}) < 1$.
 - (b) Let $u_n = \mathbb{P}(X_n = 0)$. Use part (a) to show that there exists $\rho < 1$ such that for all sufficiently large n,

 $u_{\infty} - u_{n+1} \le \rho(u_{\infty} - u_n).$

Hint: what is the formal definition of the derivative?

(c) Show that there exist $b > 0, c < \infty$ such that for all n,

 $\mathbb{P}(\text{ extinction } | X_n \neq 0) \leq c e^{-bn}.$

(As an exercise that you do not need to turn in, think of how you might interpret this inequality practically).