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Random sampling nearly always incurs some form of bias. Transforms
to compensate for bias are often connected to Stein’s method, and have
found applications to normal approximation, waiting-time paradoxes, tight-
ness, Skorohod embedding, concentration of measure, infinite divisibility, and
many other far-flung ideas.

In 1997, Goldstein and Reinert introduced the zero bias transform for
centered distributions. Given (the law of) a centered random variable X
of variance σ2, its zero bias X∗ is (the law) determined by the functional
equation

E[Xf(X)] = σ2 E[f ′(X∗)] for all Lip1 functions f.

The map X 7→ X∗ has good smoothing/regularity properties, and interacts
well with independent sums: if X1, . . . , Xn are i.i.d. then

(X1 +X2 + · · ·+Xn)
∗ d
=X∗

1 +X2 + · · ·+Xn.

This provides for elegant and sharp proofs of Berry–Esseen theorems. More
recently, in joint work with U. Schmock, they found an unexpected connec-
tion to infinite divisibility: a centered L2 random variable X is infinitely
divisible if and only if

X∗ d
=X + UY

where X,U, Y are independent and U is uniform on [0, 1]. The proof is prob-
abilistic and connects the above property directly to the Kévy–Khintchine
formula: the law of Y is the associated Lévy–Khintchine measure.

I will explain these ideas in this talk, as well as parallels Goldstein and I
have discovered in free probability, where the classical notion of independence
is replaced by free independence modeled on freeness in group theory. We
introduce another transform, the free zero biasX◦, satisfying the functional
equation

E[Xf(X)] = σ2 E[∂f(X◦)] for all Lip1 functions f

where ∂f is the free difference quotient, a noncommutative derivative arising
from functional calculus and perturbation theory of eigenvalues. I will de-
scribe our results providing precise (but intriguingly different) analogs of the



properties and applications of the classical zero bias, concluding with a new
and more probabilistic approach to free infinite divisibility. In particular, we
prove that every probability measure is a free Lévy–Khintchine measure.


