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Online Prediction

I Repeated game:

Decision method plays at ∈ A
World reveals `t ∈ L

I Cumulative loss: L̂n =
n∑

t=1

`t (at ).

I Aim to minimize regret, that is, perform well compared to
the best (in retrospect) from some class:

regret =
n∑

t=1

`t (at )︸ ︷︷ ︸
L̂n

−min
a∈A

n∑
t=1

`t (a)︸ ︷︷ ︸
L∗n

.

I Data can be adversarially chosen.



Online Prediction

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at )−min
a∈A

n∑
t=1

`t (a)

)
.



Online Prediction: Motivations

1. Adversarial model is often appropriate, e.g., in
I Computer security.
I Computational finance.

2. Adversarial model assumes little:
It is often straightforward to convert a strategy for an
adversarial environment to a method for a probabilistic
environment.

3. Studying the adversarial model can reveal the deterministic
core of a statistical problem: there are strong similarities
between the performance guarantees in the two cases.

4. There are significant overlaps in the design of methods for
the two problems:

I Regularization plays a central role.
I Many online prediction strategies have a natural

interpretation as a Bayesian method.



Computer Security: Spam Detection



Computer Security: Spam Email Detection

I Here, the action at might be a classification rule, and `t is
the indicator for a particular email being incorrectly
classified (e.g., spam allowed through).

I The sender can determine if an email is delivered (or
detected as spam), and try to modify it.

I An adversarial model allows an arbitrary sequence.
I We cannot hope for good classification accuracy in an

absolute sense; regret is relative to a comparison class.
I Minimizing regret ensures that the spam detection

accuracy is close to the best performance in retrospect on
the particular email sequence.



Computer Security: Spam Email Detection

I Suppose we consider features of email messages from
some set X (e.g., information about the header, about
words in the message, about attachments).

I The decision method’s action at is a mapping from X to
[0,1] (think of the value as an estimated probability that the
message is spam).

I At each round, the adversary chooses a feature vector
xt ∈ X and a label yt ∈ {0,1}, and the loss is defined as

`t (at ) = (yt − at (xt ))2 .

I The regret is then the excess squared error, over the best
achievable on the data sequence:

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) =
n∑

t=1

(yt−at (xt ))2−min
a∈A

n∑
t=1

(yt−a(xt ))2.



Computational Finance: Portfolio Optimization



Computational Finance: Portfolio Optimization

I Aim to choose a portfolio (distribution over financial
instruments) to maximize utility.

I Other market players can profit from making our decisions
bad ones. For example, if our trades have a market impact,
someone can front-run (trade ahead of us).

I Here, the action at is a distribution on instruments, and `t
might be the negative logarithm of the portfolio’s increase,
at · rt , where rt is the vector of relative price increases.

I We might compare our performance to the best stock
(distribution is a delta function), or a set of indices
(distribution corresponds to Dow Jones Industrial Average,
etc), or the set of all distributions.



Computational Finance: Portfolio Optimization

I The decision method’s action at is a distribution on the m
instruments, at ∈ ∆m = {a ∈ [0,1]m :

∑
i ai = 1}.

I At each round, the adversary chooses a vector of returns
rt ∈ Rm

+; the i th component is the ratio of the price of
instrument i at time t to its price at the previous time, and
the loss is defined as

`t (at ) = − log (at · rt ) .

I The regret is then the log of the ratio of the maximum value
the portfolio would have at the end (for the best mixture
choice) to the final portfolio value:

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) = max
a∈A

n∑
t=1

log(a ·rt )−
n∑

t=1

log(at ·rt ).



Online Prediction: Motivations

2. Online algorithms are also effective in probabilistic settings.

I Easy to convert an online algorithm to a batch algorithm.
I Easy to show that good online performance implies good

i.i.d. performance, for example.



Online Prediction: Motivations

3. Understanding statistical prediction methods.

I Many statistical methods, based on probabilistic
assumptions, can be effective in an adversarial setting.

I Analyzing their performance in adversarial settings
provides perspective on their robustness.

I We would like violations of the probabilistic assumptions to
have a limited impact.



Key Points

I Online Prediction:
I repeated game.
I aim to minimize regret.
I Data can be adversarially chosen.

I Motivations:
I Often appropriate (security, finance).
I Algorithms also effective in probabilistic settings.
I Can provide insight into statistical prediction methods.



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I An easy start.

I Online, adversarial versus batch, probabilistic.
I Similar bounds.

I Optimal regret: dual game.
I Rademacher averages for probabilistic.
I Sequential Rademacher averages for adversarial.

I Online convex optimization.
I Regularization methods.



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Online, adversarial versus batch, probabilistic.
I Optimal regret.
I Online convex optimization.



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Convex (versus linear) losses
I Bayesian interpretation

5. Probabilistic prediction with a finite class.



Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow. We
have access to a set of m experts, who each make a forecast of
0 or 1. Can we ensure that we predict almost as well as the
best expert?
Here, A = {1, . . . ,m}. There are m experts, and each has a
forecast sequence f i

1, f
i
2, . . . from {0,1}. At round t , the

adversary chooses an outcome yt ∈ {0,1}, and sets

`t (i) = 1[f i
t 6= yt ] =

{
1 if f i

t 6= yt ,
0 otherwise.



Online Prediction

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at )−min
a∈A

n∑
t=1

`t (a)

)
.

L̂n =
n∑

t=1

`t (at ), L∗n = min
a∈A

n∑
t=1

`t (a).



Prediction with Expert Advice

An easier game: suppose that the adversary is constrained to
choose the sequence yt so that some expert incurs no loss
(L∗n = 0), that is, there is an i∗ ∈ {1, . . . ,m} such that for all t ,
yt = f i∗

t .
How should we predict?



Prediction with Expert Advice: Halving

I Define the set of experts who have been correct so far:

Ct = {i : `1(i) = · · · = `t−1(i) = 0} .

I Choose at any element of{
i : f i

t = majority
(
{f j

t : j ∈ Ct}
)}

.

Theorem
This strategy has regret no more than log2 m.



Prediction with Expert Advice: Halving

Theorem
The halving strategy has regret no more than log2 m.

Proof.
If it makes a mistake (that is, `t (at ) = 1), then the minority of
{f j

t : j ∈ Ct} is correct, so at least half of the experts are
eliminated:

|Ct+1| ≤
|Ct |
2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases).
Thus,

L̂n =
n∑

t=1

`t (at )

≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.



Prediction with Expert Advice

The proof follows a pattern we shall see again:
find some measure of progress (here, |Ct |) that

I changes monotonically when excess loss is incurred (here,
it halves),

I is somehow constrained (here, it cannot fall below 1,
because there is an expert who predicts perfectly).

What if there is no perfect expert?



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Convex (versus linear) losses
I Bayesian interpretation

5. Probabilistic prediction with a finite class.



Prediction with Expert Advice: Mixed Strategies

I We have m experts.
I Allow a mixed strategy, that is, at chosen from the simplex

∆m—the set of distributions on {1, . . . ,m},

∆m =

{
a ∈ [0,1]m :

m∑
i=1

ai = 1

}
.

I We can think of the strategy as choosing an element of
{1, . . . ,m} randomly, according to a distribution at . Or we
can think of it as playing an element at of ∆m, and
incurring the expected loss,

`t (at ) =
m∑

i=1

ai
t`t (ei),

where `t (ei) ∈ [0,1] is the loss incurred by expert i .
(ei denotes the vector with a single 1 in the i th coordinate,
and the rest zeros.)



Prediction with Expert Advice: Exponential Weights

I Maintain a set of (unnormalized) weights over experts:

w i
1 = 1,

w i
t+1 = w i

t exp (−η`t (ei)) .

I Here, η > 0 is a parameter of the algorithm.
I Choose at as the normalized vector,

at =
1∑m

i=1 w i
t
wt .



Prediction with Expert Advice: Exponential Weights

Theorem
The exponential weights strategy with parameter

η =

√
8 ln m

n

has regret satisfying

L̂n − L∗n ≤
√

n ln m
2

.



Exponential Weights: Proof Idea

We use a measure of progress:

Wt =
m∑

i=1

w i
t .

1. Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t (ei)

)
.

2. Wn grows no faster than

exp

(
−η

n∑
t=1

`t (at )

)
.



Exponential Weights: Proof 1

ln
Wn+1

W1
= ln

(
m∑

i=1

w i
n+1

)
− ln m

= ln

(
m∑

i=1

exp

(
−η
∑

t

`t (ei)

))
− ln m

≥ ln

(
max

i
exp

(
−η
∑

t

`t (ei)

))
− ln m

= −ηmin
i

(∑
t

`t (ei)

)
− ln m

= −ηL∗n − ln m.



Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤ −η

∑
i `t (ei)w i

t∑
i w i

t
+
η2

8

= −η`t (at ) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a,b] and λ ∈ R,

ln
(

EeλX
)
≤ λEX +

λ2(b − a)2

8
.



Aside: Proof of Hoeffding’s inequality

Define

A(λ) = log
(

EeλX
)

= log
(∫

eλx dP(x)

)
,

where X ∼ P. Then A is the log normalization of the
exponential family random variable Xλ with reference measure
P and sufficient statistic x . Since P has bounded support,
A(λ) <∞ for all λ, and we know that

A′(λ) = E(Xλ),

A′′(λ) = Var(Xλ).

Since P has support in [a,b], Var(Xλ) ≤ (b − a)2/4. Then a
Taylor expansion about λ = 0 (where Xλ has the same
distribution as X ) gives

A(λ) ≤ λEX +
λ2

8
(b − a)2.



Exponential Weights: Proof

−ηL∗n − ln m ≤ ln
Wn+1

W1
≤ −ηL̂n +

nη2

8
.

Thus,

L̂n − L∗n ≤
ln m
η

+
ηn
8
.

Choosing the optimal η gives the result:

Theorem
The exponential weights strategy with parameter

η =
√

8 ln m/n has regret no more than
√

n ln m
2 .



Key Points

For a finite set of actions (experts):
I If one action is perfect (i.e., has zero loss), the halving

algorithm gives per round regret of

ln m
n
.

I Exponential weights gives per round regret of

O

(√
ln m

n

)
.



Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?

2. Do we need to know n to set η?



Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?
Replace Hoeffding:

ln EeλX ≤ λEX +
λ2

8
,

with:
ln EeλX ≤ (eλ − 1)EX .

(for X ∈ [0,1]: linear upper bound on eλX ).



Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤
(
e−η − 1

)
`t (at ).

Thus
L̂n ≤

η

1− e−η
L∗n +

ln m
1− e−η

.

For example, if L∗n = 0 and η is large, we obtain a regret bound
of roughly ln m again. And η large is like the halving algorithm
(it puts equal weight on all experts that have zero loss so far).



Prediction with Expert Advice: Refinements

2. Do we need to know n to set η?

I We used the optimal setting η =
√

8 ln m/n. But can this
regret bound be achieved uniformly across time?

I Yes; using a time-varying ηt =
√

8 ln m/t gives the same
rate (worse constants).

I It is also possible to set η as a function of L∗t , the best
cumulative loss so far, to give the improved bound for small
losses uniformly across time (worse constants).



Prediction with Expert Advice: Refinements

3. We could work with arbitrary convex losses on ∆m:
We defined loss as linear in a:

`t (a) =
∑

i

ai`t (ei).

We could replace this with any bounded convex function on
∆m. The only change in the proof is an equality becomes an
inequality:

−η
∑

i `t (ei)w i
t∑

i w i
t
≤ −η`t (at ).



Prediction with Expert Advice: Refinements

But note that the exponential weights strategy only competes
with the corners of the simplex:

Theorem
For convex functions `t : ∆m → [0,1], the exponential weights
strategy, with η =

√
8 ln m/n, satisfies

n∑
t=1

`t (at ) ≤ min
i

n∑
t=1

`t (ei) +

√
n ln m

2
.



Bayesian Interpretation

We can interpret the exponential weights strategy as
Bayesian prediction:

1. Exponential weights is equivalent to a Bayesian update
with outcome vector y and model

p(y |j) = h(y) exp(−ηy j).

2. An easy regret bound for Bayesian prediction shows that
its regret, wrt this scaled log loss:

`Bayes(p, y) = −1
η

log EJ∼p exp(−ηyJ),

is no more than (1/η) log m.
3. This convex loss matches the linear loss at the corners of

the simplex, and (from Hoeffding) differs from the linear
loss by no more than η/8.

4. This implies the earlier regret bound for exponential
weights.



Bayesian Update

parameter space: Θ

outcome space: Y
Assume joint: p(θ, y) = π(θ)︸︷︷︸

prior

p(y |θ)︸ ︷︷ ︸
likelihood

predictive distribution: p̂t+1(y) = p(y |y1, . . . , yt )

=

∫
p(y |θ) p(θ|y1, . . . , yt )︸ ︷︷ ︸

pt+1(θ)

dθ

update pt on Θ: p1(θ) = π(θ)

pt+1(θ) =
pt (θ)p(yt |θ)∫

pt (θ′)p(yt |θ′)dθ′

cumulative log loss: −
n∑

t=1

log p̂t (yt ).



Bayesian Interpretation

Suppose that the likelihood is

p(y |j) = h(y) exp(−ηyj),

for j = 1, . . . ,m and y ∈ Rm. Then the Bayes update is:

pt+1(j) =
1
Z

pt (j) exp(−ηy j
t ),

(where Z is normalization).
If y j

t is the loss of expert j , this is the exponential weights
algorithm.



Performance of Bayesian Prediction

For the log loss, Bayesian prediction competes with any θ,
provided that the prior probability of performance better than θ
is not too small.

Theorem
For any π, any sequence y1, . . . , yn, and any θ ∈ Θ,

L̂n ≤ Ln(θ)− ln
(
π({θ′ : Ln(θ′) ≤ Ln(θ)})

)
.



Performance of Bayesian Prediction: Proof

First,

p̂1(y1) · · · p̂n(yn)︸ ︷︷ ︸
exp(−L̂n)

= p(y1)p(y2|y1) · · · p(yn|y1, . . . , yn−1)

= p(y1, . . . , yn)

=

∫
Θ

p(y1|θ) · · · p(yn|θ)︸ ︷︷ ︸
exp(−Ln(θ))

dπ(θ),

hence

exp(−L̂n) ≥
∫

S
exp(−Ln(θ))dπ(θ)

≥ exp(−Ln(θ0))

∫
S

dπ(θ),

where S = {θ ∈ Θ : Ln(θ) ≤ Ln(θ0)}. Thus

L̂n ≤ Ln(θ0)− ln(π(S)).



Performance of Bayesian Prediction

For the log loss, Bayesian prediction competes with any θ,
provided that the prior probability of performance better than θ
is not too small.

Theorem
For any π, any sequence y1, . . . , yn, and any θ ∈ Θ,

L̂n ≤ Ln(θ)− ln
(
π({θ′ : Ln(θ′) ≤ Ln(θ)})

)
.

So if π(i) = 1/m, the exponential weights strategy’s log loss is
within log(m) of optimal.
But what is the log loss here?



Bayesian Interpretation

For a posterior pt on {1, . . . ,m}, the predicted probability is

p̂t (y) = EJ∼pt p(y |J) = c(y)EJ∼pt exp(−ηyJ),

So setting the loss as the negative log of the predicted
probability is equivalent to defining the loss of a posterior pt
with outcome yt as η`Bayes with

`Bayes(pt , yt ) = −1
η

log
(

EJ∼pt exp(−ηyJ
t )
)

(ignoring additive constants).
Compare to the linear loss,

`(pt , yt ) = EJ∼pt y
J
t .

These are equal at the corners of the simplex:

`Bayes(δj , y) = `(δj , y) = y j .



Bayesian Interpretation

The theorem shows that, with this loss and any prior,

L̂Bayes,n ≤ min
j

(
`(ej , yt )−

logπ(j)
η

)
.

But this is not the linear loss:

`Bayes(pt , yt ) = −1
η

log
(

EJ∼pt exp(−ηyJ
t )
)

versus `(pt , yt ) = EJ∼pt y
J
t .

They coincide at the corners, pt = ej , and `Bayes is convex.
What is the gap in Jensen’s inequality?



Bayesian Interpretation

`Bayes(pt , yt ) = −1
η

log
(

EJ∼pt exp(−ηyJ
t )
)

`(pt , yt ) = EJ∼pt y
J
t .

Hoeffding’s inequality for X ∈ [a,b]:

−A(−η) = − log (E exp(−ηX )) ≥ ηEX − η2

8
(b − a)2,

implies

L̂n ≤ L̂Bayes,n +
ηn
8
≤ min

j

(
`(ej , yt )−

π(j)
η

)
+
ηn
8

= min
j
`(ej , yt ) +

log m
η

+
ηn
8
,

as before.



Bayesian Interpretation

We can interpret the exponential weights strategy as
Bayesian prediction:

1. Exponential weights is equivalent to a Bayesian update
with model

p(y |j) = h(y) exp(−ηy j).

2. Easy regret bound for Bayesian prediction shows that its
regret wrt the scaled log loss

`Bayes(p, y) = −1
η

log EJ∼p exp(−ηyJ)

is no more than (1/η) log m.
3. This convex loss matches the linear loss at the corners of

the simplex, and (from Hoeffding) differs from the linear
loss by no more than η/8.

4. This implies the earlier regret bound for exponential
weights.



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Convex (versus linear) losses
I Bayesian interpretation

5. Probabilistic prediction with a finite class.



Probabilistic Prediction Setting

Let’s consider a probabilistic formulation of a prediction
problem.

I There is a sample of size n drawn i.i.d. from an unknown
probability distribution P on X × Y:
(X1,Y1), . . . , (Xn,Yn).

I Some method chooses f̂ : X → Y.
I It suffers regret

E`(f̂ (X ),Y )−min
f∈F

E`(f (X ),Y ).

I Here, F is a class of functions from X to Y.



Probabilistic Setting: Zero Loss

Theorem
If some f ∗ ∈ F has E`(f ∗(X ),Y ) = 0, then choosing

f̂ ∈ Cn =
{

f ∈ F : Ê`(f (X ),Y ) = 0
}

leads to regret that is

O
(

log |F |
n

)
.



Probabilistic Setting: Zero Loss

Proof.

Pr(E`(f̂ ) ≥ ε) ≤ Pr(∃f ∈ F : Ê`(f ) = 0, E`(f ) ≥ ε)
≤ |F |(1− ε)n

≤ |F |e−nε.

Integrating the tail bound Pr(E`(f̂ )n ≥ ln |F |+ x) ≤ e−x gives
E`(f̂ ) ≤ c ln |F |/n.



Probabilistic Setting

Theorem
Choosing f̂ to minimize the empirical risk, Ê`(f (X ),Y ), leads to
regret that is

O

(√
log |F |

n

)
.



Probabilistic Setting

Proof.
By the triangle inequality and the definition of f̂ ,
E`f̂ −minf∈F E`f ≤ 2E supf∈F

∣∣∣Ê`f − E`f
∣∣∣.

E sup
f∈F

∣∣∣∣∣1n
n∑

t=1

(`(Yt , f (Xt ))− P`(Y , f (X )))

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣P′1n
n∑

t=1

(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt
(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ ,
where (X ′t ,Y

′
t ) are independent, with same distribution as

(X ,Y ), and εt are independent Rademacher (uniform ±1)
random variables.



Aside: Rademacher Averages of a Finite Class

Theorem: For V ⊆ Rn, E maxv∈V

n∑
i=1

εivi ≤
√

2 ln |V |max
v∈V
‖v‖.

Proof idea: Hoeffding’s inequality.

exp

(
λE max

v

∑
i

εivi

)
≤ E exp

(
λmax

v

∑
i

εivi

)

≤
∑

v

E exp

(
λ
∑

i

εivi

)
=
∑

v

∏
i

E exp(λεivi)

≤
∑

v

∏
i

exp(λ2v2
i /2)

≤ |V |exp
(
λ2 max

v
‖v‖2/2

)
.



Probabilistic Setting

E`f̂ −min
f∈F

E`f ≤ 4E sup
f∈F

∣∣∣∣∣1n ∑
t

εt`f (Xt ,Yt )

∣∣∣∣∣
≤ 4 max

Xi ,Yi ,f

√∑
t

`f (Xi ,Yi)2

√
2 log |F |

n

≤ 4

√
2 log |F |

n
.



Probabilistic Setting: Key Points

For a finite function class
I If one function has zero loss, choosing f̂ to minimize the

empirical risk, Ê`(f (X ),Y ), gives per round regret of

ln |F |
n

.

I In any case, f̂ has per round regret of

O

(√
ln |F |

n

)
.

The same as the adversarial setting.



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions.
5. Probabilistic prediction with a finite class.

I Online, adversarial versus batch, probabilistic.
I Optimal regret.
I Online convex optimization.



Online to Batch Conversion

I Suppose we have an online strategy that, given
observations `1, . . . , `t−1, produces at = A(`1, . . . , `t−1).

I Can we convert this to a method that is suitable for a
probabilistic setting? That is, if the `t are chosen i.i.d., can
we use A’s choices at to come up with an â ∈ A so that

E`1(â)−min
a∈A

E`1 (a)

is small?
I Consider the following simple randomized method:

1. Pick T uniformly from {0, . . . ,n}.
2. Let â = A(`T +1, . . . , `n).



Online to Batch Conversion

Theorem
If A has a regret bound of Cn+1 for sequences of length n + 1,
then for any stationary process generating the `1, . . . , `n+1, this
method satisfies

E`n+1(â)−min
a∈A

E`n (a) ≤ Cn+1

n + 1
.

(Notice that the expectation averages also over the
randomness of the method.)



Online to Batch Conversion

Proof.

E`n+1(â) = E`n+1(A(`T +1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n+1(A(`t+1, . . . , `n))

= E
1

n + 1

n∑
t=0

`n−t+1(A(`1, . . . , `n−t ))

= E
1

n + 1

n+1∑
t=1

`t (A(`1, . . . , `t−1))

≤ E
1

n + 1

(
min

a

n+1∑
t=1

`t (a) + Cn+1

)

≤ min
a

E`t (a) +
Cn+1

n + 1
.



Online to Batch Conversion

I The theorem is for the expectation over the randomness of
the method.

I For a high probability result, we could
1. Choose â = 1

n

∑n
t=1 at , provided A is convex and the `t are

all convex.
2. Choose

â = arg min
at

(
1

n − t

n∑
s=t+1

`s(at ) + c

√
log(n/δ)

n − t

)
.

In both cases, the analysis involves concentration of
martingales.



Online to Batch Conversion

Key Point:
I An online strategy with regret bound Cn can be converted

to a batch method.
The regret per trial in the probabilistic setting is bounded
by the regret per trial in the adversarial setting.



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Online, adversarial versus batch, probabilistic.
I Optimal regret.

1. Dual game.
2. Rademacher averages and sequential Rademacher

averages.
3. Linear games.

I Online convex optimization.



Optimal Regret

Joint work with Jake Abernethy, Alekh Agarwal, Sasha Rakhlin, Karthik Sridharan and Ambuj Tewari.

We have:
I a set of actions A,
I a set of loss functions L.

At time t ,
I Player chooses an action at from A.
I Adversary chooses `t : A → R from L.
I Player incurs loss `t (at ).

Regret is the value of the game:

Vn(A,L) = inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)
.



Optimal Regret: Dual Game

Theorem
If A is compact and all `t are convex, continuous functions, then

Vn(A,L) = sup
P

E

(
n∑

t=1

inf
at∈A

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)
,

where the supremum is over joint distributions P over
sequences `1, . . . , `n in Ln.

I As we’ll see, this follows from a minimax theorem.
I Dual game: adversary plays first by choosing P.
I Value of the game is the difference between minimal

conditional expected loss and minimal empirical loss.
I If P were i.i.d., this would be the difference between the

minimal expected loss and the minimal empirical loss.



Optimal Regret: Extensions

I We could replace Ln by a set of sequences of loss
functions:

`1 ∈ L1, `2 ∈ L2(`1), `3 ∈ L3(`1, `2), . . . , `n ∈ Ln(`1, `2, . . . , `n−1).

That is, the constraints on the adversary’s choice `t could
depend on previous choices `1, . . . , `t−1.

I We can ensure convexity of the `t by allowing mixed
strategies: replace A by the set of probability distributions
P on A and replace `(a) by Ea∼P`(a).



Dual Game: Proof Idea

Theorem (Sion, 1957)
If A is compact and for every b ∈ B, f (·,b) is a convex-like,1

lower semi-continuous function, and for every a ∈ A, f (a, ·) is
concave-like, then

inf
a∈A

sup
b∈B

f (a,b) = sup
b∈B

inf
a∈A

f (a,b).

We’ll define B as the set of probability distributions on L and
f (a,b) = c + E[`(a) + φ(`)], and we’ll assume that A is compact
and each ` ∈ L is convex and continuous.

1Convex-like [Fan, 1953]:

∀a1, a2 ∈ A, α ∈ [0, 1], ∃a ∈ A, α`(a1) + (1− α)`(a2) ≤ `(a).



Dual Game: Proof Idea

Vn(A,L) = inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an

sup
Pn

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)
,

because allowing mixed strategies does not help the adversary.



Dual Game: Proof Idea

Vn(A,L) = inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an

sup
Pn

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an−1

sup
`n−1

sup
Pn

inf
an

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)
,

by Sion’s generalization of von Neumann’s minimax theorem.



Dual Game: Proof Idea

Vn(A,L) = inf
a1

sup
`1

· · · inf
an

sup
`n

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an

sup
Pn

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an−1

sup
`n−1

sup
Pn

inf
an

E

(
n∑

t=1

`t (at )− inf
a∈A

n∑
t=1

`t (a)

)

= inf
a1

sup
`1

· · · inf
an−1

sup
Pn−1

E

(
n−1∑
t=1

`t (at ) +

sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t (a)

))
,

splitting the sum and allowing the adversary a mixed strategy at
round n − 1.



Dual Game: Proof Idea

Vn(A,L) = inf
a1

sup
`1

· · · inf
an−1

sup
Pn−1

E

(
n−1∑
t=1

`t (at ) +

sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t (a)

))

= inf
a1

sup
`1

· · · sup
Pn−1

inf
an−1

E

(
n−1∑
t=1

`t (at ) +

sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t (a)

))
,

applying Sion’s minimax theorem again.



Dual Game: Proof Idea

Vn(A,L) = inf
a1

sup
`1

· · · sup
Pn−1

inf
an−1

E

(
n−1∑
t=1

`t (at ) +

sup
Pn

(
inf
an

E [`n(an)|`1, . . . , `n−1]− inf
a∈A

n∑
t=1

`t (a)

))

= inf
a1

sup
`1

· · · sup
Pn−2

inf
an−2

(
E

n−2∑
t=1

`t (at ) +

sup
Pn

n−1

E

(
n∑

t=n−1

inf
at

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

))
...

= sup
P

E

(
n∑

t=1

inf
at

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)
.



Optimal Regret

I Dual game.
I Rademacher averages and sequential Rademacher

averages.
I Linear games.



Prediction in Probabilistic Settings

I i.i.d. (X ,Y ), (X1,Y1), . . . , (Xn,Yn) ∼ P from X × Y.
I Use data (X1,Y1), . . . , (Xn,Yn) to choose fn : X → A with

small risk,
R(fn) = P`(Y , fn(X )),

ideally not much larger than the minimum risk over some
comparison class F :

excess risk = R(fn)− inf
f∈F

R(f ).



Tools for the analysis of probabilistic problems

For fn = arg minf∈F
∑n

t=1 `(Yt , f (Xt )),

R(fn)− inf
f∈F

P`(Y , f (X )) ≤ 2 sup
f∈F

∣∣∣∣∣1n
n∑

t=1

`(Yt , f (Xt ))− P`(Y , f (X ))

∣∣∣∣∣ .
So supremum of empirical process, indexed by F , gives upper
bound on excess risk.



Tools for the analysis of probabilistic problems

Typically, this supremum is concentrated about

P sup
f∈F

∣∣∣∣∣1n
n∑

t=1

(`(Yt , f (Xt ))− P`(Y , f (X )))

∣∣∣∣∣
= P sup

f∈F

∣∣∣∣∣P′1n
n∑

t=1

(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt
(
`(Yt , f (Xt ))− `(Y ′t , f (X ′t ))

)∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ ,
where (X ′t ,Y

′
t ) are independent, with same distribution as

(X ,Y ), and εt are independent Rademacher (uniform ±1)
random variables.



Tools for the analysis of probabilistic problems

That is, for fn = arg minf∈F
∑n

t=1 `(Yt , f (Xt )), with high
probability,

R(fn)− inf
f∈F

P`(Y , f (X )) ≤ cE sup
f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ ,
where εt are independent Rademacher (uniform ±1) random
variables.

I Rademacher averages capture complexity of
{(x , y) 7→ `(y , f (x)) : f ∈ F}: they measure how well
functions align with a random (ε1, . . . , εn).

I Rademacher averages are a key tool in analysis of many
statistical methods: related to covering numbers (Dudley)
and combinatorial dimensions (Vapnik-Chervonenkis,
Pollard), for example.

I A related result applies in the online setting...



Optimal Regret and Sequential Rademacher Averages

Theorem

Vn(A,L) ≤ 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a∈A

n∑
t=1

εt`t (a),

where ε1, . . . , εn are independent Rademacher (uniform
±1-valued) random variables.

I Compare to the bound involving Rademacher averages in
the probabilistic setting:

excess risk ≤ cE sup
f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ .
I In the adversarial case, the choice of `t is deterministic,

and can depend on ε1, . . . , εt−1.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) = sup
P

E

(
n∑

t=1

inf
at∈A

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)

≤ sup
P

E

(
n∑

t=1

E [`t (â)|`1, . . . , `t−1]−
n∑

t=1

`t (â)

)
,

where â minimizes
∑

t `t (a).



Sequential Rademacher Averages: Proof Idea

Vn(A,L) = sup
P

E

(
n∑

t=1

inf
at∈A

E [`t (at )|`1, . . . , `t−1]− inf
a∈A

n∑
t=1

`t (a)

)

≤ sup
P

E

(
n∑

t=1

E [`t (â)|`1, . . . , `t−1]−
n∑

t=1

`t (â)

)

≤ sup
P

Esup
a∈A

n∑
t=1

(E [`t (a)|`1, . . . , `t−1]− `t (a)) .



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
P

E sup
a∈A

n∑
t=1

(E [`t (a)|`1, . . . , `t−1]− `t (a))

= sup
P

E sup
a∈A

n∑
t=1

(
E
[
`′t (a)|`1, . . . , `n

]
− `t (a)

)
,

where `′t is a tangent sequence: conditionally independent of `t
given `1, . . . , `t−1, with the same conditional distribution.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
P

E sup
a∈A

n∑
t=1

(E [`t (a)|`1, . . . , `t−1]− `t (a))

= sup
P

E sup
a∈A

n∑
t=1

(
E
[
`′t (a)|`1, . . . , `n

]
− `t (a)

)
≤ sup

P
E sup

a∈A

n∑
t=1

(
`′t (a)− `t (a)

)
,

moving the supremum inside the expectation.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
P

E sup
a∈A

n∑
t=1

(
`′t (a)− `t (a)

)
= sup

P
E sup

a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+ εn

(
`′n(a)− `n(a)

))
,

for εn ∈ {−1,1}, since `′n has the same conditional distribution,
given `1, . . . , `n−1, as `n.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
P

E sup
a∈A

n∑
t=1

(
`′t (a)− `t (a)

)
= sup

P
E sup

a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+ εn

(
`′n(a)− `n(a)

))

= sup
P

E`1,...,`n−1E`n,`′nEεn sup
a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+

εn
(
`′n(a)− `n(a)

))
≤ sup

P
E`1,...,`n−1sup

`n,`′n

Eεn sup
a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+

εn
(
`′n(a)− `n(a)

))
.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
P

E`1,...,`n−1E`n,`′nEεn sup
a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+

εn
(
`′n(a)− `n(a)

))
≤ sup

P
E`1,...,`n−1 sup

`n,`′n

Eεn sup
a∈A

(
n−1∑
t=1

(
`′t (a)− `t (a)

)
+

εn
(
`′n(a)− `n(a)

))
...

≤ sup
`1,`
′
1

Eε1 · · · sup
`n,`′n

Eεn sup
a∈A

(
n∑

t=1

εt
(
`′t (a)− `t (a)

))
.



Sequential Rademacher Averages: Proof Idea

Vn(A,L) ≤ sup
`1,`
′
1

Eε1 · · · sup
`n,`′n

Eεn sup
a∈A

(
n∑

t=1

εt
(
`′t (a)−`t (a)

))

= 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a∈A

(
n∑

t=1

εt`t (a)

)
,

since the two sums are identical (εt and −εt have the same
distribution).



Optimal Regret and Sequential Rademacher Averages

Theorem

Vn(A,L) ≤ 2 sup
`1

Eε1 · · · sup
`n

Eεn sup
a∈A

n∑
t=1

εt`t (a),

where ε1, . . . , εn are independent Rademacher (uniform
±1-valued) random variables.

I Compare to bound involving Rademacher averages in the
probabilistic setting:

excess risk ≤ cE sup
f∈F

∣∣∣∣∣1n
n∑

t=1

εt`(Yt , f (Xt ))

∣∣∣∣∣ .
I In the adversarial case, the choice of `t is deterministic,

and can depend on ε1, . . . , εt−1:
sequential Rademacher averages.



Sequential Rademacher Averages: Example

Consider step functions on R:

fa : x 7→ 1[x ≥ a]

`a(y , x) = 1[fa(x) 6= y ]

L = {a 7→ 1[fa(x) 6= y ] : x ∈ R, y ∈ {0,1}} .

Fix a distribution on R× {±1}, and consider the Rademacher
averages,

E sup
a∈R

n∑
t=1

εt`a(Yt ,Xt ).



Rademacher Averages: Example

For step functions on R, Rademacher averages are:

E sup
a∈R

n∑
t=1

εt`a(Yt ,Xt )

= E sup
a∈R

n∑
t=1

εt`a(1,Xt )

≤ sup
xt

E sup
a∈R

n∑
t=1

εt1[xt < a]

= E max
0≤i≤n+1

i∑
t=1

εt

= O(
√

n).



Sequential Rademacher Averages: Example

Consider the sequential Rademacher averages:

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t (a)

= sup
x1

Eε1 · · · sup
xn

Eεn sup
a

n∑
t=1

εt1[xt < a].

I If εt = 1, we’d like to choose a such that xt < a.
I If εt = −1, we’d like to choose a such that xt ≥ a.



Sequential Rademacher Averages: Example

Sequential Rademacher averages are

sup
x1

Eε1 · · · sup
xn

Eεn sup
a

n∑
t=1

εt1[xt < a].

We can choose x1 = 0 and, for t = 1, . . . ,n,

xt =
t−1∑
i=1

2−iεi = xt−1 + 2−(t−1)εt−1.

Then if we set
a = xn + 2−nεn,

we have

εt1[xt < a] =

{
1 if εt = 1,
0 otherwise,

which is maximal.



Sequential Rademacher Averages: Example

So the sequential Rademacher averages are

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t (a) = E
n∑

t=1

1[εt = 1] =
n
2
.

Compare with the Rademacher averages:

E sup
a∈R

n∑
t=1

εt`a(Yt ,Xt ) = O(
√

n).



Optimal Regret

I Dual game.
I Rademacher averages and sequential Rademacher

averages.
I Linear games.



Optimal Regret: Linear Games

Loss is `(a) = 〈c,a〉.
Examples:

I Online linear optimization: L is a set of bounded linear
functions on the bounded set A ⊂ Rd .

I Prediction with expert advice: A = ∆m, L = [0,1]m.



Optimal Regret: Linear Games

Theorem
For the linear loss class {`(a) = 〈c,a〉 : c ∈ C}, the regret
satisfies

Vn(A,L) ≤ 2 sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn,a〉 ,

whereMC∪−C is the set of martingales with differences in
C ∪ −C.
If C is symmetric (−C = C), then

Vn(A,L) ≥ sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn,a〉 .



Linear Games: Proof Idea

The sequential Rademacher averages can be written

sup
`1

Eε1 · · · sup
`n

Eεn sup
a

n∑
t=1

εt`t (a)

= sup
c1

Eε1 · · · sup
cn

Eεn sup
a

〈
n∑

t=1

εtct ,a

〉
≤ sup
{Zt}∈MC∪−C

E sup
a
〈Zn,a〉 ,

whereMC∪−C is the set of martingales with differences in
C ∪ −C.



Linear Games: Proof Idea

For the lower bound, consider the duality result:

Vn(A,L) = sup
P

E

(
n∑

t=1

inf
at∈A

E [〈ct ,at〉|c1, . . . , ct−1]− inf
a∈A

n∑
t=1

〈ct ,a〉

)
,

where the supremum is over joint distributions of sequences
c1, . . . , cn. If we restrict P to the setMC∪−C of martingales with
differences in C = C ∪ −C, the first term is zero and we have

Vn(A,L) ≥ sup
{Zt}∈MC∪−C

E− inf
a∈A
〈Zn,a〉

= sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn,a〉.



Linear Games: Convex Duality

[Sham Kakade, Karthik Sridharan and Ambuj Tewari, 2009]

Theorem
For the linear loss class {`(a) = 〈c,a〉 : c ∈ C}, the regret
satisfies

Vn(A,L) ≤ 2 sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn,a〉 .

The linear criterion brings to mind a dual norm.
Suppose we have a norm ‖ · ‖ defined on C. Then we can view
A as a subset of the dual space of linear functions on C, with
the dual norm

‖a‖∗ = sup {〈c,a〉 : c ∈ C, ‖c‖ ≤ 1} .



Linear Games: Convex Duality

We will measure the size of L using supc∈C ‖c‖.
We will measure the size of A using supa∈AR(a), for a strongly
convex R.
We’ll call a function R : A → R σ-strongly convex wrt ‖ · ‖∗ if for
all a,b ∈ A and α ∈ [0,1],

R(αa + (1− α)b) ≤ αR(a) + (1− α)R(b)− σ

2
α(1− α)‖a− b‖2∗.



Linear Games: Convex Duality

The Legendre dual of R is

R∗(c) = sup
a∈A

(〈c,a〉 − R(a)) .

If infc∈C R(c) = 0, then R∗(0) = 0.
If R is σ-strongly convex, then R∗ is differentiable and σ-smooth
wrt ‖ · ‖, that is, for all c,d ∈ C,

R∗(c + d) ≤ R∗(c) + 〈∇R∗(c),d〉+
1

2σ
‖d‖2.



Linear Games: Convex Duality

Theorem
For the linear loss class {`(a) = 〈c,a〉 : c ∈ C}, if R : A → R is
σ-strongly convex, satisfies infc∈C R(c) = 0, and

sup
c∈C
‖c‖ = 1, sup

a∈A
R(a) = A2,

then the regret satisfies

Vn(A,L) ≤ 2 sup
{Zt}∈MC∪−C

E sup
a∈A
〈Zn,a〉

≤ 2A

√
2n
σ
.



Linear Games: Proof Idea

The definition of the Legendre dual of R is

R∗(c) = sup
a∈A

(〈c,a〉 − R(a)) .

From the definition, for any λ > 0,

E sup
a∈A
〈a,Zn〉 ≤ E sup

a∈A

1
λ

(R(a) + R∗(λZn))

≤ A2

λ
+

ER∗(λZn)

λ
.



Linear Games: Proof Idea

Consider the evolution of R∗(λZt ). Because R∗ is σ-smooth,

E [R∗(λZt )|Z1, . . . ,Zt−1]

≤ R∗(λZt−1) + E [〈∇R∗(λZt−1),Zt − Zt−1〉 |Z1, . . . ,Zt−1] +

1
2σ

E
[
λ2‖Zt − Zt−1‖2|Z1, . . . , ,Zt−1

]
≤ R∗(λZt−1) +

λ2

2σ
.

Thus, R∗(λZn) ≤ nλ2/(2σ).



Linear Games: Proof Idea

E sup
a∈A
〈a,Zn〉 ≤

A2

λ
+

ER∗(λZn)

λ

≤ A2

λ
+

nλ
2σ

= 2A
√

n2σ

for λ =
√

2A2σ/n.



Linear Games: Convex Duality

Theorem
For the linear loss class {`(a) = 〈c,a〉 : c ∈ C}, if R : A → R is
σ-strongly convex, satisfies infc∈C R(c) = 0, and

sup
c∈C
‖c‖ = 1, sup

a∈A
R(a) = A2,

then the regret satisfies

Vn(A,L) ≤ 2A

√
2n
σ
.



Linear Games: Examples

The p- and q- norms (with 1/p + 1/q = 1) on C = Bp(1) and
A = Bq(A):

‖c‖ = ‖c‖p,
‖a‖∗ = ‖a‖q,

R(a) =
1
2
‖a‖2q ≤ A2,

σ = 2(q − 1).

Here, Vn(A,L) ≤ A
√

(p − 1)n.



Linear Games: Examples

The∞- and 1-norms on C = [−1,1]d and A = ∆d :

‖c‖ = ‖c‖∞,
‖a‖∗ = ‖a‖1,

R(a) = log d +
∑

i

ai log ai ≤ log d ,

σ = 1.

Here, Vn(A,L) ≤
√

2n log d .
(The bounds in these examples are tight within small constant
factors.)



Optimal Regret: Lower Bounds

[Sasha Rakhlin, Karthik Sridharan and Ambuj Tewari, 2010]

I For the case of prediction with absolute loss:

`t (at ) = |yt − at (xt )|,

there are (almost) corresponding lower bounds:

c1Rn(A)

log3/2 n
≤ Vn ≤ c2Rn(A),

where

Rn(A) = sup
x1

Eε1 · · · sup
xn

Eεn sup
a∈A

n∑
t=1

εta(xt ).



Optimal Regret: Structural Results

Rn(A) = sup
x1

Eε1 · · · sup
xn

Eεn sup
a∈A

n∑
t=1

εta(xt ).

It is straightforward to verify that the following properties extend
to these sequential Rademacher averages:

I A ⊆ B implies Rn(A) ≤ Rn(B).
I Rn(co(A)) = Rn(A).
I Rn(cA) = |c|Rn(A).
I Rn(φ(A)) ≤ ‖φ‖LipRn(A).
I Rn(A+ b) = Rn(A).



Optimal Regret: Key Points

I Dual game: Adversary chooses a joint distribution to
maximize the difference between the minimal conditional
expected loss and the minimal empirical loss.

I Upper bound in terms of sequential Rademacher averages.
I Linear games: bound on a martingale using a strongly

convex function.



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Online, adversarial versus batch, probabilistic.
I Optimal regret.
I Online convex optimization.

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization
5. Regret bounds
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Online Convex Optimization

I A = convex subset of Rd .
I L = set of convex real functions on A.

For example,
I `t (a) = (xt · a− yt )

2.
I `t (a) = |xt · a− yt |.
I `t (a) = − log (exp(a′T (yt )− A(a))), for A(a) the log

normalization of this exponential family, with sufficient
statistic T (y).



Online Convex Optimization: Example

Choosing at to minimize past losses,
at = arg mina∈A

∑t−1
s=1 `s(a), can fail.

(‘fictitious play,’ ‘follow the leader’)
I Suppose A = [−1,1], L = {a 7→ v · a : |v | ≤ 1}.
I Consider the following sequence of losses:

a1 = 0, `1(a) =
1
2

a,

a2 = −1, `2(a) = −a,
a3 = 1, `3(a) = a,
a4 = −1, `4(a) = −a,
a5 = 1, `5(a) = a,

...
...

I a∗ = 0 shows L∗n ≤ 0, but L̂n = n − 1.



Online Convex Optimization: Example

I Choosing at to minimize past losses can fail.
I The strategy must avoid overfitting, just as in probabilistic

settings.
I Similar approaches (regularization; Bayesian inference)

are applicable in the online setting.
I First approach: gradient steps.

Stay close to previous decisions, but move in a direction of
improvement.



Online Convex Optimization: Gradient Method

a1 ∈ A,
at+1 = ΠA (at − η∇`t (at )) ,

where ΠA is the Euclidean projection on A,

ΠA(x) = arg min
a∈A
‖x − a‖.

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.



Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = {a ∈ Rd : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}.
D = 2, G ≤ 1.
Regret is no more than 2

√
n.

(And O(
√

n) is optimal.)



Online Convex Optimization: Gradient Method

Theorem
For G = maxt ‖∇`t (at )‖ and D = diam(A), the gradient
strategy with η = D/(G

√
n) has regret satisfying

L̂n − L∗n ≤ GD
√

n.

Example
A = ∆m, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.
D = 2, G ≤

√
m.

Regret is no more than 2
√

mn.
Since competing with the whole simplex is equivalent to
competing with the vertices (experts) for linear losses, this is
worse than exponential weights (

√
m versus log m).



Online Convex Optimization: Gradient Method

Proof.

Define ãt+1 = at − η∇`t (at ),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress ‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇`t (at )‖2 − 2η∇t (at ) · (at − a).

By convexity,

n∑
t=1

(`t (at )− `t (a)) ≤
n∑

t=1

∇`t (at ) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2

2η
+
η

2

n∑
t=1

‖∇`t (at )‖2
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Online Convex Optimization: A Regularization Viewpoint

I Suppose `t is linear: `t (a) = gt · a.
I Suppose A = Rd .
I Then minimizing the regularized criterion

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) +
1
2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇`t (at ).



Online Convex Optimization: Regularization

Regularized minimization
Consider the family of strategies of the form:

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.



Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

I R keeps the sequence of ats stable: it diminishes `t ’s
influence.

I We can view the choice of at+1 as trading off two
competing forces: making `t (at+1) small, and keeping at+1
close to at .

I This is a perspective that motivated many algorithms in the
literature. We’ll investigate why regularized minimization
can be viewed this way.



Properties of Regularization Methods

In the unconstrained case (A = Rd ), regularized minimization is
equivalent to minimizing the latest loss and the distance to the
previous decision. The appropriate notion of distance is the
Bregman divergence DΦt−1 :
Define

Φ0 = R,
Φt = Φt−1 + η`t ,

so that

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
= arg min

a∈A
Φt (a).



Bregman Divergence

Definition
For a strictly convex, differentiable Φ : Rd → R, the Bregman
divergence wrt Φ is defined, for a,b ∈ Rd , as

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a,b) is the difference between Φ(a) and the value at a of
the linear approximation of Φ about b.



Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ Rd , the squared euclidean norm, Φ(a) = 1

2‖a‖
2, has

DΦ(a,b) =
1
2
‖a‖2 −

(
1
2
‖b‖2 + b · (a− b)

)
=

1
2
‖a− b‖2,

the squared euclidean norm.



Bregman Divergence

DΦ(a,b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

Example
For a ∈ [0,∞)d , the unnormalized negative entropy,
Φ(a) =

∑d
i=1 ai (ln ai − 1), has

DΦ(a,b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(
ai ln

ai

bi
+ bi − ai

)
,

the unnormalized KL divergence.
Thus, for a ∈ ∆d , Φ(a) =

∑
i ai ln ai has

Dφ(a,b) =
∑

i

ai ln
ai

bi
.



Bregman Divergence

When the domain of Φ is A ⊂ Rd , in addition to differentiability
and strict convexity, we make two more assumptions:

I The interior of A is convex,
I For a sequence approaching the boundary of A,
‖∇Φ(an)‖ → ∞.

We say that such a Φ is a Legendre function.



Bregman Divergence

Properties:
1. DΦ ≥ 0, DΦ(a,a) = 0.
2. DA+B = DA + DB.
3. Bregman projection, ΠΦ

A(b) = arg mina∈ADΦ(a,b) is
uniquely defined for closed, convex A.

4. Generalized Pythagorus: for closed, convex A,
a∗ = ΠΦ

A(b), and a ∈ A,

DΦ(a,b) ≥ DΦ(a,a∗) + DΦ(a∗,b).

5. ∇aDΦ(a,b) = ∇Φ(a)−∇Φ(b).
6. For ` linear, DΦ+` = DΦ.
7. For Φ∗ the Legendre dual of Φ,

∇Φ∗ = (∇Φ)−1 ,

DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).



Legendre Dual

For a Legendre function Φ : A → R, the Legendre dual is

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

I Φ∗ is Legendre.
I dom(Φ∗) = ∇Φ(int dom Φ).
I ∇Φ∗ = (∇Φ)−1.
I DΦ(a,b) = DΦ∗(∇φ(b),∇φ(a)).
I Φ∗∗ = Φ.



Legendre Dual

Example
For Φ = 1

2‖ · ‖
2
p, the Legendre dual is Φ∗ = 1

2‖ · ‖
2
q, where

1/p + 1/q = 1.

Example
For Φ(a) =

∑d
i=1 eai ,

∇Φ(a) = (ea1 , . . . ,ead )′,

so
(∇Φ)−1 (u) = ∇Φ∗(u) = (ln u1, . . . , ln ud )′,

and Φ∗(u) =
∑

i ui(ln ui − 1).
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Properties of Regularization Methods

In the unconstrained case (A = Rd ), regularized minimization is
equivalent to minimizing the latest loss and the distance
(Bregman divergence) to the previous decision.

Theorem
Define ã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(
η`t (a) + DΦt−1(a, ãt )

)
.

Then

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

`s(a) + R(a)

)
.



Properties of Regularization Methods

Proof.
By the definition of Φt ,

η`t (a) + DΦt−1(a, ãt ) = Φt (a)− Φt−1(a) + DΦt−1(a, ãt ).

The derivative wrt a is

∇Φt (a)−∇Φt−1(a) +∇aDΦt−1(a, ãt )

= ∇Φt (a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt )

Setting to zero shows that

∇Φt (ãt+1) = ∇Φt−1(ãt ) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizes Φt .



Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained
minimization, followed by Bregman projection:

Theorem
For

at+1 = arg min
a∈A

Φt (a),

ãt+1 = arg min
a∈Rd

Φt (a),

we have

at+1 = ΠΦt
A (ãt+1).



Properties of Regularization Methods

Proof.
Let a′t+1 denote ΠΦt

A (ãt+1). First, by definition of at+1,

Φt (at+1) ≤ Φt (a′t+1).

Conversely,

DΦt (a
′
t+1, ãt+1) ≤ DΦt (at+1, ãt+1).

But ∇Φt (ãt+1) = 0, so

DΦt (a, ãt+1) = Φt (a)− Φt (ãt+1).

Thus, Φt (a′t+1) ≤ Φt (at+1).



Properties of Regularization Methods

Example
For linear `t , regularized minimization is equivalent to
minimizing the last loss plus the Bregman divergence wrt R to
the previous decision:

arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)

= ΠR
A

(
arg min

a∈Rd
(η`t (a) + DR(a, ãt ))

)
,

because adding a linear function to Φ does not change DΦ.
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Properties of Regularization Methods: Linear Loss

We can replace `t by ∇`t (at ), and this leads to an upper bound
on regret.

Theorem
Any strategy for online linear optimization, with regret satisfying

n∑
t=1

gt · at −min
a∈A

n∑
t=1

gt · a ≤ Cn(g1, . . . ,gn)

can be used to construct a strategy for online convex
optimization, with regret

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) ≤ Cn(∇`1(a1), . . . ,∇`n(an)).

Proof.
Convexity implies `t (at )− `t (a) ≤ ∇`t (at ) · (at − a).



Properties of Regularization Methods: Linear Loss

Key Point:
We can replace `t by ∇`t (at ), and this leads to an upper bound
on regret.
Thus, we can work with linear `t .



Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as
mirror descent—taking a gradient step in a dual space:

Theorem
The decisions

ãt+1 = arg min
a∈Rd

(
η

t∑
s=1

gs · a + R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt )− ηgt ) .

This corresponds to first mapping from ãt through ∇R, then
taking a step in the direction −gt , then mapping back through
(∇R)−1 = ∇R∗ to ãt+1.



Regularization Methods: Mirror Descent

Proof.
For the unconstrained minimization, we have

∇R(ãt+1) = −η
t∑

s=1

gs,

∇R(ãt ) = −η
t−1∑
s=1

gs,

so ∇R(ãt+1) = ∇R(ãt )− ηgt , which can be written

ãt+1 = ∇R−1 (∇R(ãt )− ηgt ) .
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Online Convex Optimization: Regularization

Regularized minimization

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
.

The regularizer R : Rd → R is strictly convex and differentiable.



Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret against any
a ∈ A of

n∑
t=1

`t (at )−
n∑

t=1

`t (a) =
DR(a,a1)− DΦn (a,an+1)

η
+

1
η

n∑
t=1

DΦt (at ,at+1),

and thus

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

So the sizes of the steps DΦt (at ,at+1) determine the regret
bound.



Regularization Methods: Regret

Theorem
For A = Rd , regularized minimization suffers regret

L̂n ≤ inf
a∈Rd

(
n∑

t=1

`t (a) +
DR(a,a1)

η

)
+

1
η

n∑
t=1

DΦt (at ,at+1).

Notice that we can write

DΦt (at ,at+1) = DΦ∗t
(∇Φt (at+1),∇Φt (at ))

= DΦ∗t
(0,∇Φt−1(at ) + η∇`t (at ))

= DΦ∗t
(0, η∇`t (at )).

So it is the size of the gradient steps, DΦ∗t
(0, η∇`t (at )), that

determines the regret.



Regularization Methods: Regret Bounds

Example
Suppose R = 1

2‖ · ‖
2. Then we have

L̂n ≤ L∗n +
‖a∗ − a1‖2

2η
+
η

2

n∑
t=1

‖gt‖2.

And if ‖gt‖ ≤ G and ‖a∗ − a1‖ ≤ D, choosing η appropriately
gives L̂n − L∗n ≤ DG

√
n.
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Regularization Methods: Regret Bounds

Seeing the future gives small regret:

Theorem
For regularized minimization, that is,

at+1 = arg min
a∈A

(
η

t∑
s=1

`s(a) + R(a)

)
,

for all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).



Regularization Methods: Regret Bounds

Proof.
Since at+1 minimizes Φt ,

η

t∑
s=1

`s(a) + R(a) ≥ η
t∑

s=1

`s(at+1) + R(at+1)

= η`t (at+1) + η

t−1∑
s=1

`s(at+1) + R(at+1)

≥ η`t (at+1) + η

t−1∑
s=1

`s(at ) + R(at )

...

≥ η
t∑

s=1

`s(as+1) + R(a1).



Regularization Methods: Regret Bounds

Theorem
For all a ∈ A,

n∑
t=1

`t (at+1)−
n∑

t=1

`t (a) ≤ 1
η

(R(a)− R(a1)).

Thus, if at and at+1 are close, then regret is small:

Corollary
For all a ∈ A,

n∑
t=1

(`t (at )− `t (a)) ≤
n∑

t=1

(`t (at )− `t (at+1)) +
1
η

(R(a)− R(a1)) .

So how can we control the increments `t (at )− `t (at+1)?
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Regularization Methods: Regret Bounds

Definition
We say R is strongly convex wrt a norm ‖ · ‖ if, for all a,b,

R(a) ≥ R(b) +∇R(b) · (a− b) +
1
2
‖a− b‖2.

For linear losses and strongly convex regularizers, the dual
norm of the gradient is small:

Theorem
If R is strongly convex wrt a norm ‖ · ‖, and `t (a) = gt · a, then

‖at − at+1‖ ≤ η‖gt‖∗,

where ‖ · ‖∗ is the dual norm to ‖ · ‖:

‖v‖∗ = sup{|v · a| : a ∈ A, ‖a‖ ≤ 1}.



Regularization Methods: Regret Bounds

Proof.

R(at ) ≥ R(at+1) +∇R(at+1) · (at − at+1) +
1
2
‖at − at+1‖2,

R(at+1) ≥ R(at ) +∇R(at ) · (at+1 − at ) +
1
2
‖at − at+1‖2.

Combining,

‖at − at+1‖2 ≤ (∇R(at )−∇R(at+1)) · (at − at+1)

Hence,

‖at − at+1‖ ≤ ‖∇R(at )−∇R(at+1)‖∗ = ‖ηgt‖∗.



Regularization Methods: Regret Bounds

This leads to the regret bound:

Corollary
For linear losses, if R is strongly convex wrt ‖ · ‖, then for all
a ∈ A,

n∑
t=1

(`t (at )− `t (a)) ≤ η
n∑

t=1

‖gt‖2∗ +
1
η

(R(a)− R(a1)) .

Thus, for ‖gt‖∗ ≤ G and R(a)− R(a1) ≤ D2, choosing η
appropriately gives regret no more than 2GD

√
n.



Regularization Methods: Regret Bounds

Example
Consider R(a) = 1

2‖a‖
2, a1 = 0, and A contained in a

Euclidean ball of diameter D.
Then R is strongly convex wrt ‖ · ‖ and ‖ · ‖∗ = ‖ · ‖. And the
mapping between primal and dual spaces is the identity.
So if supa∈A ‖∇`t (a)‖ ≤ G, then regret is no more than
2GD

√
n.



Regularization Methods: Regret Bounds

Example
Consider A = ∆m, R(a) =

∑
i ai ln ai . Then the mapping

between primal and dual spaces is ∇R(a) = ln(a)
(component-wise). And the divergence is the KL divergence,

DR(a,b) =
∑

i

ai ln(ai/bi).

And R is strongly convex wrt ‖ · ‖1.
Suppose that ‖gt‖∞ ≤ 1. Also, R(a)− R(a1) ≤ ln m, so the
regret is no more than 2

√
n ln m.



Regularization Methods: Regret Bounds

Example
A = ∆m, R(a) =

∑
i ai ln ai .

What are the updates?

at+1 = ΠR
A(ãt+1)

= ΠR
A(∇R∗(∇R(ãt )− ηgt ))

= ΠR
A(∇R∗(ln(ãt exp(−ηgt )))

= ΠR
A(ãt exp(−ηgt )),

where the ln and exp functions are applied component-wise.
This is exponentiated gradient: mirror descent with ∇R = ln.
It is easy to check that the projection corresponds to
normalization, ΠR

A(ã) = ã/‖a‖1.



Regularization Methods: Regret Bounds

Notice that when the losses are linear, exponentiated gradient
is exactly the exponential weights strategy we discussed for a
finite comparison class.
Compare R(a) =

∑
i ai ln ai with R(a) = 1

2‖a‖
2,

for ‖gt‖∞ ≤ 1, A = ∆m:

O(
√

n ln m) versus O(
√

mn).



Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization

I Bregman divergence
I Regularized minimization equivalent and Bregman

divergence from previous
I Constrained minimization equivalent to unconstrained plus

Bregman projection
I Linearization
I Mirror descent

5. Regret bounds
I Unconstrained minimization
I Strong convexity
I Examples (gradient, exponentiated gradient)
I Extensions



Regularization Methods: Extensions

I Instead of

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a, ãt )

)
,

we can use

at+1 = arg min
a∈A

(
η`t (a) + DΦt−1(a,at )

)
.

And analogous results apply. For instance, this is the
approach used by the first gradient method we considered.

I We can get faster rates with stronger assumptions on the
losses...



Regularization Methods: Varying η

Theorem
Define

at+1 = arg min
a∈Rd

(
n∑

t=1

ηt`t (a) + R(a)

)
.

For any a ∈ Rd ,

L̂n−
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(
DΦt (at ,at+1) + DΦt−1(a,at )− DΦt (a,at+1)

)
.

If we linearize the `t , we have

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

(DR(at ,at+1) + DR(a,at )− DR(a,at+1)) .

But what if `t are strongly convex?



Regularization Methods: Strongly Convex Losses

Theorem
If `t is σ-strongly convex wrt R, that is, for all a,b ∈ Rd ,

`t (a) ≥ `t (b) +∇`t (b) · (a− b) +
σ

2
DR(a,b),

then for any a ∈ Rd , this strategy with ηt = 2
tσ has regret

L̂n −
n∑

t=1

`t (a) ≤
n∑

t=1

1
ηt

DR(at ,at+1).



Strongly Convex Losses: Proof idea

n∑
t=1

(`t (at )− `t (a))

≤
n∑

t=1

(
∇`t (at ) · (at − a)− σ

2
DR(a,at )

)
≤

n∑
t=1

1
ηt

(
DR(at ,at+1) + DR(a,at )− DR(a,at+1)− ηtσ

2
DR(a,at )

)
≤

n∑
t=1

1
ηt

DR(at ,at+1) +
n∑

t=2

(
1
ηt
− 1
ηt−1

− σ

2

)
DR(a,at )

+

(
1
η1
− σ

2

)
DR(a,a1).

And choosing ηt appropriately eliminates the second and third
terms.



Strongly Convex Losses

Example
For R(a) = 1

2‖a‖
2, we have

L̂n − L∗n ≤
1
2

n∑
t=1

1
ηt
‖ηt∇`t‖2 ≤

n∑
t=1

G2

tσ
= O

(
G2

σ
log n

)
.



Strongly Convex Losses

Key Point: When the loss is strongly convex wrt the regularizer,
the regret rate can be faster; in the case of quadratic R (and `t ),
it is O(log n), versus O(

√
n).



Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Online, adversarial versus batch, probabilistic.
I Optimal regret.
I Online convex optimization.


