Topics in Prediction and Learning
Lectures 2 and 3:
Online Convex Optimization

Peter Bartlett

Computer Science and Statistics
University of California at Berkeley

Mathematical Sciences
Queensland University of Technology

27 February–9 March, 2017
CREST, ENSAE
Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.
2. Adversary chooses loss $\ell_t \in L$.
3. Player incurs loss $\ell_t(a_t)$.

Player's aim:

$$R_n := n \sum_{t=1}^{n} \ell_t(a_t) - \inf n \sum_{t=1}^{n} \ell_t()$$
Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.

Player's aim:

$$R_n := n \sum_{t=1}^{n} \ell_t(a_t) - \inf n \sum_{t=1}^{n} \ell_t().$$
Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.
2. Adversary chooses loss $l_t \in L$.
A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.
2. Adversary chooses loss $\ell_t \in \mathcal{L}$.
3. Player incurs loss $\ell_t(a_t)$.

Player's aim:

$$R_n := \sum_{t=1}^{n} \ell_t(a_t) - \inf_{\sum_{t=1}^{n} \ell_t}.$$
Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.
2. Adversary chooses loss $\ell_t \in \mathcal{L}$.
3. Player incurs loss $\ell_t(a_t)$.

Player’s aim:

Minimize regret:

$$R_n := \sum_{t=1}^{n} \ell_t(a_t) - \inf_{a \in A} \sum_{t=1}^{n} \ell_t(a).$$
Online Prediction as a Zero-Sum Game

A repeated game:

At round t:

1. Player chooses prediction $a_t \in A$.
2. Adversary chooses loss $\ell_t \in L$.
3. Player incurs loss $\ell_t(a_t)$.

Player’s aim:

Minimize regret wrt comparison C:

$$R_n := \sum_{t=1}^{n} \ell_t(a_t) - \inf_{\hat{a} \in C} \sum_{t=1}^{n} \ell_t(\hat{a}_t).$$
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- \(A = \) convex subset of \(\mathbb{R}^d \).
- \(\mathcal{L} = \) set of convex real functions on \(A \).

Examples

- Quadratic loss: \(\ell_t(a) = \| x_t - a \|_2^2 \).
- Linear regression: \(\ell_t(a) = (x_t \cdot a - y_t)^2 \).
- Absolute loss linear regression: \(\ell_t(a) = |x_t \cdot a - y_t| \).
- Prediction with expert advice: \(\ell_t(a) = w^\top_t a \) (for \(A = \Delta_m \)).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A}.

Examples

- Quadratic loss: $\ell_t(a) = \|x_t - a\|^2$.
- Linear regression: $\ell_t(a) = (x_t \cdot a - y_t)^2$.
- Absolute loss linear regression: $\ell_t(a) = |x_t \cdot a - y_t|$.
- Prediction with expert advice: $\ell_t(a) = w_t^\top a$ ($A = \Delta_m$).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A}.

Examples

- Quadratic loss: $\ell_t(a) = \|x_t - a\|^2$.
- Linear regression: $\ell_t(a) = (x_t \cdot a - y_t)^2$.
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A}.

Examples

- Quadratic loss: $\ell_t(a) = \|x_t - a\|^2$.
- Linear regression: $\ell_t(a) = (x_t \cdot a - y_t)^2$.
- Absolute loss linear regression: $\ell_t(a) = |x_t \cdot a - y_t|$.
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} = \text{convex subset of } \mathbb{R}^d$.
- $\mathcal{L} = \text{set of convex real functions on } \mathcal{A}$.

Examples

- Quadratic loss: $\ell_t(a) = \|x_t - a\|^2$.
- Linear regression: $\ell_t(a) = (x_t \cdot a - y_t)^2$.
- Absolute loss linear regression: $\ell_t(a) = |x_t \cdot a - y_t|$.
- Prediction with expert advice: $\ell_t(a) = w_t^\top a$ \hspace{1cm} ($\mathcal{A} = \Delta^m$).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} = $ convex subset of \mathbb{R}^d.
- $\mathcal{L} = $ set of convex real functions on \mathcal{A}.

Examples

Shortest path: $\ell_t(a) = w^\top t a$ ($\mathcal{A} = $ flow, $w^t = $ edge weights).

Portfolio optimization: $\ell_t(a) = -\log (r^\top t a)$ ($\mathcal{A} = \Delta m$).

Collaborative filtering: $\ell_t(A) = (x^t - A_{it}, j_t)^2$. ($\mathcal{A} = \mathbb{R}^{m \times n}$).

SVM: $\ell_t(A) = (1 - y^t x^\top t a) + \lambda \|a\|_2$. ($\mathcal{A} = \mathcal{RKHS}$).

Density estimation: $\ell_t(a) = -\log (\exp (a^\top T(y^t)) - A(a))$, for exponential family with sufficient statistic $T(y^t)$.
Online Convex Optimization

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A}.

Examples

- Shortest path: $\ell_t(a) = w_t^\top a$ ($\mathcal{A} =$ flow, $w_t =$ edge weights).
- Portfolio optimization: $\ell_t(a) = -\log(r_t^\top a)$ ($\mathcal{A} =$ Δm).
- Collaborative filtering: $\ell_t(a) = (x_t - A_{ij}t)^2$ ($\mathcal{A} =$ $\mathbb{R}^{m \times n}$).
- SVM: $\ell_t(a) = (1 - y_t x_t^\top a) + \lambda \|a\|^2$ ($\mathcal{A} =$ RKHS).
- Density estimation: $\ell_t(a) = -\log(\exp(a' T(y_t)) - A(a))$, for exponential family with sufficient statistic $T(y_t)$.
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- \(\mathcal{A} = \) convex subset of \(\mathbb{R}^d \).
- \(\mathcal{L} = \) set of convex real functions on \(\mathcal{A} \).

Examples

- Shortest path: \(\ell_t(a) = w_t^\top a \) \quad (\(\mathcal{A} = \) flow, \(w_t = \) edge weights).
- Portfolio optimization: \(\ell_t(a) = -\log(r_t^\top a) \) \quad (\(\mathcal{A} = \Delta^m \)).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real functions on \mathcal{A}.

Examples

- Shortest path: $\ell_t(a) = w_t^\top a$ \hspace{1cm} ($\mathcal{A} =$ flow, $w_t =$ edge weights).
- Portfolio optimization: $\ell_t(a) = - \log(r_t^\top a)$ \hspace{1cm} ($\mathcal{A} = \Delta^m$).
- Collaborative filtering: $\ell_t(A) = (x_t - A_{i_t,j_t})^2$. \hspace{1cm} ($\mathcal{A} = \mathbb{R}^{m \times n}$).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- \(\mathcal{A} = \) convex subset of \(\mathbb{R}^d \).
- \(\mathcal{L} = \) set of convex real functions on \(\mathcal{A} \).

Examples

- Shortest path: \(\ell_t(a) = w_t^\top a \) (\(\mathcal{A} = \) flow, \(w_t = \) edge weights).
- Portfolio optimization: \(\ell_t(a) = -\log(r_t^\top a) \) (\(\mathcal{A} = \Delta^m \)).
- Collaborative filtering: \(\ell_t(A) = (x_t - A_{it,jt})^2 \) (\(\mathcal{A} = \mathbb{R}^{m \times n} \)).
- SVM: \(\ell_t(A) = (1 - y_t x_t^\top a)_+ + \lambda \| a \|^2 \) (\(\mathcal{A} = \) RKHS).
Online Prediction as a Zero-Sum Game

Online Convex Optimization

- $\mathcal{A} = \text{convex subset of } \mathbb{R}^d$.
- $\mathcal{L} = \text{set of convex real functions on } \mathcal{A}$.

Examples

- Shortest path: $\ell_t(a) = w_t^\top a$ \hspace{1cm} ($\mathcal{A} = \text{flow}$, $w_t = \text{edge weights}$).
- Portfolio optimization: $\ell_t(a) = -\log(r_t^\top a)$ \hspace{1cm} ($\mathcal{A} = \Delta^m$).
- Collaborative filtering: $\ell_t(A) = (x_t - A_{it,jt})^2$. \hspace{1cm} ($\mathcal{A} = \mathbb{R}^{m \times n}$).
- SVM: $\ell_t(A) = (1 - y_t x_t^\top a)_+^2 + \lambda \|a\|^2$. \hspace{1cm} ($\mathcal{A} = \text{RKHS}$).
- Density estimation: $\ell_t(a) = -\log(\exp(a' T(y_t) - A(a)))$, for exponential family with sufficient statistic $T(y)$.

Online convex optimization

1. Binary prediction
Online convex optimization

1. Binary prediction

2. General online convex
Online convex optimization

1. Binary prediction
2. General online convex
3. Minimax strategies
Online convex optimization

1. Binary prediction
 - With (perfect) expert advice

2. General online convex

3. Minimax strategies
Online convex optimization

1. Binary prediction
 - With (perfect) expert advice
 - Minimax strategy

2. General online convex

3. Minimax strategies
Online convex optimization

1. Binary prediction
 - With (perfect) expert advice
 - Minimax strategy
 - With imperfect experts: exponential weights

2. General online convex

3. Minimax strategies
Suppose we are predicting whether it will rain tomorrow.
Suppose we are predicting whether it will rain tomorrow.
We have access to a set of m experts, who each make a forecast.
Suppose we are predicting whether it will rain tomorrow.
We have access to a set of m experts, who each make a forecast.
Can we ensure that we predict almost as well as the best expert?
Suppose we are predicting whether it will rain tomorrow. We have access to a set of m experts, who each make a forecast. Can we ensure that we predict almost as well as the best expert? We’ll consider two settings: voting and prediction.
Voting

The player votes for a mixture of experts:

We set \(A = \Delta^m \), the probability simplex on \(\{1, \ldots, m\} \), and the loss function at time \(t \) is

\[\ell_t(a) = |a^\top f_t - y_t|, \]

where \(f_t \in \{0, 1\}^m \) are the forecasts of the experts and \(y_t \in \{0, 1\} \) is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on their forecasts:

We set \(A = (\Delta^m)_{\{0, 1\}^m} \), and the loss function at time \(t \) is

\[\ell_t(a) = |a(f_t)^\top f_t - y_t|. \]

The comparison class \(C \) is the set of constant functions. (That is, \(a \in C \) has \(p \in \Delta^m \) so that for all \(f \in \{0, 1\}^m \), \(a(f) = p \).)
Voting

The player votes for a mixture of experts: we set $A = \Delta^m$, the probability simplex on $\{1, \ldots, m\}$, and the loss function at time t is $\ell_t(a) = |a^\top f_t - y_t|$, where $f_t \in \{0, 1\}^m$ are the forecasts of the experts and $y_t \in \{0, 1\}$ is the outcome.
Voting

The player votes for a mixture of experts:
we set $A = \Delta^m$, the probability simplex on \{1, \ldots, m\}, and the loss function at time t is $\ell_t(a) = |a^\top f_t - y_t|$, where $f_t \in \{0, 1\}^m$ are the forecasts of the experts and $y_t \in \{0, 1\}$ is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on their forecasts:
Voting

The player votes for a mixture of experts: we set $A = \Delta^m$, the probability simplex on $\{1, \ldots, m\}$, and the loss function at time t is $\ell_t(a) = |a^\top f_t - y_t|$, where $f_t \in \{0, 1\}^m$ are the forecasts of the experts and $y_t \in \{0, 1\}$ is the outcome.

Prediction

The player votes for a mixture of experts, but the vote can depend on their forecasts: we set $A = (\Delta^m)^{\{0,1\}^m}$, and the loss function at time t is $\ell_t(a) = |a(f_t)^\top f_t - y_t|$.
Binary Prediction with Expert Advice

Voting
The player votes for a mixture of experts: we set $A = \Delta^m$, the probability simplex on $\{1, \ldots, m\}$, and the loss function at time t is $\ell_t(a) = |a^\top f_t - y_t|$, where $f_t \in \{0, 1\}^m$ are the forecasts of the experts and $y_t \in \{0, 1\}$ is the outcome.

Prediction
The player votes for a mixture of experts, but the vote can depend on their forecasts: we set $A = (\Delta^m)^{\{0,1\}^m}$, and the loss function at time t is $\ell_t(a) = |a(f_t)^\top f_t - y_t|$. The comparison class C is the set of constant functions. (That is, $a \in C$ has $p \in \Delta^m$ so that for all $f \in \{0, 1\}^m$, $a(f) = p$.)
Prediction allows the player to see how the experts’ predictions compare before making a prediction.
Prediction allows the player to see how the experts’ predictions compare before making a prediction.

We write $\ell_t(e_i) \in \{0, 1\}$ for the loss incurred by expert i, where $e_i \in \Delta^m$ is zero in all but the ith coordinate. and $\ell_t(e_i) \in \{0, 1\}$ is the indicator for expert i making an incorrect forecast at time t.

We can interpret any $a \in \Delta^m$ equivalently as a prediction, $\hat{y}_t = a^\top f_t \in [0, 1]$. And we can view \hat{y}_t either as the expectation of a random $\{0, 1\}$-valued prediction where the loss $\ell_t(a_t)$ is the probability of a mistake, or as a real-valued prediction, where the loss is the absolute difference between the prediction and the outcome.
The minimax regret is the value of the game:

$$\min_{a_1} \max_{\ell_1} \ldots \min_{a_n} \max_{\ell_n} \left(\sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in C} \sum_{t=1}^{n} \ell_t(a) \right).$$

An easier game

Suppose that the adversary is constrained to choose the sequence ℓ_t so that some expert incurs no loss, that is,

$$\min_{a \in C} \sum_{t=1}^{n} \ell_t(a) = 0.$$

How should we predict?
Define the set of experts who have been correct so far:

$$C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \}.$$

Choose

$$\hat{y}_t = a_t(f_t) \top f_t = \text{majority}\left(\{f_t(j) : j \in C_t\}\right).$$

Theorem

This strategy has regret no more than $\log_2 m$.

[Littlestone, 1988]
Halving Algorithm

- Define the set of experts who have been correct so far:

\[C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \} . \]

[Littlestone, 1988]
Halving Algorithm

- Define the set of experts who have been correct so far:
 \[C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \} \].

- Choose
 \[\hat{y}_t = a_t(f_t) \top f_t = \text{majority} (\{ f_t(j) : j \in C_t \}) \]

Theorem

This strategy has regret no more than \(\log_2 m \).

[Littlestone, 1988]
Halving Algorithm

- Define the set of experts who have been correct so far:

\[C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \} . \]

- Choose

\[\hat{y}_t = a_t(f_t)^\top f_t = \text{majority} (\{ f_t(j) : j \in C_t \}) \]

Theorem

This strategy has regret no more than \(\log_2 m \).

[Littlestone, 1988]
Proof

If the strategy makes a mistake (that is, \(\ell_t(a_t) = 1 \)), then the minority of \(\{f_t(j) : j \in C_t\} \) is correct, so at least half of the experts are eliminated:

\[
\|C_{t+1}\| \leq \frac{|C_t|}{2}.
\]
Proof

If the strategy makes a mistake (that is, $\ell_t(a_t) = 1$), then the minority of $\{f_t(j) : j \in C_t\}$ is correct, so at least half of the experts are eliminated:

$$|C_{t+1}| \leq \frac{|C_t|}{2}.$$

And otherwise $|C_{t+1}| \leq |C_t|$ (because $|C_t|$ never increases).
Proof

If the strategy makes a mistake (that is, $\ell_t(a_t) = 1$), then the minority of $\{f_t(j) : j \in C_t\}$ is correct, so at least half of the experts are eliminated:

$$|C_{t+1}| \leq \frac{|C_t|}{2}.$$

And otherwise $|C_{t+1}| \leq |C_t|$ (because $|C_t|$ never increases). Thus,

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \log_2 \frac{|C_1|}{|C_{n+1}|}.$$
Proof

If the strategy makes a mistake (that is, $\ell_t(a_t) = 1$), then the minority of $
\{f_t(j) : j \in C_t\}$ is correct, so at least half of the experts are eliminated:

$$|C_{t+1}| \leq \frac{|C_t|}{2}.$$

And otherwise $|C_{t+1}| \leq |C_t|$ (because $|C_t|$ never increases). Thus,

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \log_2 \frac{|C_1|}{|C_{n+1}|} = \log_2 m - \log_2 |C_{n+1}|$$
Proof

If the strategy makes a mistake (that is, \(\ell_t(a_t) = 1 \)), then the minority of \(\{f_t(j) : j \in C_t\} \) is correct, so at least half of the experts are eliminated:

\[
|C_{t+1}| \leq \frac{|C_t|}{2}.
\]

And otherwise \(|C_{t+1}| \leq |C_t| \) (because \(|C_t| \) never increases). Thus,

\[
\sum_{t=1}^{n} \ell_t(a_t) \leq \log_2 \frac{|C_1|}{|C_{n+1}|} = \log_2 m - \log_2 |C_{n+1}| \leq \log_2 m.
\]
We can do better with a randomized voting strategy.
Prediction with Expert Advice

We can do better with a randomized voting strategy.

Random Leader

Choose $a_t(f_t)$ uniformly on

$$C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \}.$$
Prediction with Expert Advice

We can do better with a randomized voting strategy.

Random Leader

Choose \(a_t(f_t) \) uniformly on

\[C_t = \{ i : \ell_1(e_i) = \cdots = \ell_{t-1}(e_i) = 0 \} . \]

Theorem

This strategy has regret no more than \(H_m - 1 \), where

\[H_m = \sum_{i=1}^{m} \frac{1}{i} \in (\ln m, \ln m + 1). \]

[Karlin and Peres, 2016]
Proof

We show that, at time t, the strategy can make no more than $H_{|C_t|} - 1$ mistakes from that time on.
Proof
We show that, at time t, the strategy can make no more than $H_{|C_t|} - 1$ mistakes from that time on.

- This is clearly true when $|C_t| = 1$: the strategy never makes another mistake.
Proof

We show that, at time t, the strategy can make no more than $H_{|C_t|} - 1$ mistakes from that time on.

- This is clearly true when $|C_t| = 1$: the strategy never makes another mistake.
- Suppose it is true for $|C_{t+1}| < k$, suppose that $|C_t| = k$, and suppose that j experts in C_t make a mistake at time t, where $1 \leq j \leq k - 1$.

Then the expected number of mistakes made from time t onwards is

$$
\text{no more than } j/k + H_k - j - 1 \leq H_k - 1.
$$
Proof

We show that, at time t, the strategy can make no more than $H_{|C_t|} - 1$ mistakes from that time on.

- This is clearly true when $|C_t| = 1$: the strategy never makes another mistake.

- Suppose it is true for $|C_{t+1}| < k$, suppose that $|C_t| = k$, and suppose that j experts in C_t make a mistake at time t, where $1 \leq j \leq k - 1$. Then the expected number of mistakes made from time t onwards is no more than

$$\frac{j}{k} + H_{k-j} - 1$$
We show that, at time t, the strategy can make no more than $H_{|C_t|} - 1$ mistakes from that time on.

- This is clearly true when $|C_t| = 1$: the strategy never makes another mistake.
- Suppose it is true for $|C_{t+1}| < k$, suppose that $|C_t| = k$, and suppose that j experts in C_t make a mistake at time t, where $1 \leq j \leq k - 1$. Then the expected number of mistakes made from time t onwards is no more than

$$\frac{j}{k} + H_{k-j} - 1 \leq H_k - 1.$$
Theorem

The minimax regret is between $\lfloor \log_4 m \rfloor$ and $\log_4 m$.

[Karlin and Peres, 2016]
Theorem

The minimax regret is between $\lceil \log_4 m \rceil$ and $\log_4 m$.

[Karlin and Peres, 2016]

Lower bound

Set $k = \lfloor \log_2 m \rfloor$ so that $2^k \leq m \leq 2^{k+1}$.
Theorem

The minimax regret is between $\lceil \log_4 m \rceil$ and $\log_4 m$.

[Karlin and Peres, 2016]

Lower bound

Set $k = \lfloor \log_2 m \rfloor$ so that $2^k \leq m \leq 2^{k+1}$. Consider the following adversary strategy:
Prediction with Expert Advice

Theorem
The minimax regret is between $\lfloor \log_4 m \rfloor$ and $\log_4 m$.

[Karlin and Peres, 2016]

Lower bound
Set $k = \lfloor \log_2 m \rfloor$ so that $2^k \leq m \leq 2^{k+1}$. Consider the following adversary strategy:
- Choose C_0 as the first k experts.
Theorem

The minimax regret is between $\lceil \log_4 m \rceil$ and $\log_4 m$.

[Karlin and Peres, 2016]

Lower bound

Set $k = \lfloor \log_2 m \rfloor$ so that $2^k \leq m \leq 2^{k+1}$. Consider the following adversary strategy:

- Choose C_0 as the first k experts.
- At round $1 \leq t \leq k$, choose $C_{t+1} \subset C_t$ uniformly at random from subsets of size $|C_t|/2$.

Theorem

The minimax regret is between $\lceil \log_4 m \rceil$ and $\log_4 m$.

[Karlin and Peres, 2016]

Lower bound

Set $k = \lfloor \log_2 m \rfloor$ so that $2^k \leq m \leq 2^{k+1}$. Consider the following adversary strategy:

- Choose C_0 as the first k experts.
- At round $1 \leq t \leq k$, choose $C_{t+1} \subset C_t$ uniformly at random from subsets of size $|C_t|/2$.
- Choose $y_t \in \{0, 1\}$ uniformly at random.
Theorem

The minimax regret is between \([\log_4 m]\) and \(\log_4 m\).

[Karlin and Peres, 2016]

Lower bound

Set \(k = \left\lfloor \log_2 m \right\rfloor\) so that \(2^k \leq m \leq 2^{k+1}\). Consider the following adversary strategy:

- Choose \(C_0\) as the first \(k\) experts.
- At round \(1 \leq t \leq k\), choose \(C_{t+1} \subset C_t\) uniformly at random from subsets of size \(|C_t|/2\).
- Choose \(y_t \in \{0, 1\}\) uniformly at random.
- Set

\[
 f_t^i = \begin{cases}
 y_t & \text{for } i \in C_{t+1}, \\
 1 - y_t & \text{otherwise.}
 \end{cases}
\]
Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert.
Lower bound

Clearly, after k rounds there is still a perfect expert. The expected number of mistakes of any player strategy is

$$\frac{k}{2}$$
Lower bound

Clearly, after k rounds there is still a perfect expert. The expected number of mistakes of any player strategy is

$$\frac{k}{2} = \frac{\lfloor \log_2 m \rfloor}{2}$$
Prediction with Expert Advice

Lower bound

Clearly, after k rounds there is still a perfect expert. The expected number of mistakes of any player strategy is

$$\frac{k}{2} = \frac{\lfloor \log_2 m \rfloor}{2} \geq \lfloor \log_4 m \rfloor.$$
Minimax strategy

Set $a_t(f_t)^\top f_t = \phi(p_t)\hat{y} + (1 - \phi(p_t))(1 - \hat{y})$, where

$\phi(p_t) = \frac{1 + \log_4 p_t}{p_t}$.

That is, follow the majority with probability $\phi(p_t)$.

(NB: $\phi(p_t) = 1$ corresponds to the halving algorithm. $\phi(p_t) = p$ corresponds to voting uniformly on C_t.)
Minimax strategy

Set $a_t(f_t) \mathbf{T} f_t = \phi(p_t)\hat{y} + (1 - \phi(p_t))(1 - \hat{y})$, where

$$\hat{y} = \text{majority}\left(\{f_t(j) : j \in C_t\}\right),$$

That is, follow the majority with probability $\phi(p_t)$. (NB: $\phi(p_t) = 1$ corresponds to the halving algorithm. $\phi(p_t) = p$ corresponds to voting uniformly on C_t.)
Minimax strategy

Set \(a_t(f_t)^\top f_t = \phi(p_t)\hat{y} + (1 - \phi(p_t))(1 - \hat{y}) \), where

\[
\hat{y} = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right),
\]

\[
p_t = \frac{1}{|C_t|} \left| \left\{ i \in C_t : f_t(i) = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right) \right\} \right|,
\]
Minimax strategy

Set \(a_t(f_t)^\top f_t = \phi(p_t)\hat{y} + (1 - \phi(p_t))(1 - \hat{y}) \), where

\[
\hat{y} = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right), \\
p_t = \frac{1}{|C_t|} \left| \left\{ i \in C_t : f_t(i) = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right) \right\} \right|, \\
\phi(p) = 1 + \log_4 p.
\]
Prediction with Expert Advice

Minimax strategy

Set \(a_t(f_t)^\top f_t = \phi(p_t) \hat{y} + (1 - \phi(p_t))(1 - \hat{y}) \), where

\[
\hat{y} = \text{majority} (\{ f_t(j) : j \in C_t \}) ,
\]

\[
p_t = \frac{1}{|C_t|} \left| \left\{ i \in C_t : f_t(i) = \text{majority} (\{ f_t(j) : j \in C_t \}) \right\} \right| ,
\]

\[
\phi(p) = 1 + \log_4 p.
\]

That is, follow the majority with probability \(\phi(p_t) \).
Prediction with Expert Advice

Minimax strategy

Set $a_t(f_t) \top f_t = \phi(p_t)\hat{y} + (1 - \phi(p_t))(1 - \hat{y})$, where

\[
\hat{y} = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right),
\]

\[
p_t = \frac{1}{|C_t|} \left| \left\{ i \in C_t : f_t(i) = \text{majority} \left(\{ f_t(j) : j \in C_t \} \right) \right\} \right|
\]

\[
\phi(p) = 1 + \log_4 p.
\]

That is, follow the majority with probability $\phi(p_t)$.

(NB: $\phi(p) = 1$ corresponds to the halving algorithm. $\phi(p) = p$ corresponds to voting uniformly on C_t.)
We’d like an upper bound on the expected number of mistakes of the form $\log_a m$.

To make the inductive proof of this bound work, we need to consider two cases.

First, if the majority is correct ($y_t = \hat{y}$), then we need $\log_a (p_t m) + (1 - \phi(p_t)) \leq \log_a m$.

Second, if the minority is correct, then we need $\log_a ((1 - p_t) m) + \phi(p_t) \leq \log_a m$.

Proof

We'd like an upper bound on the expected number of mistakes of the form $\log_a m$. To make the inductive proof of this bound work, we need to consider two cases.

First, if the majority is correct ($y_t = \hat{y}$), then we need
$$\log_a (p_t m) + (1 - \phi(p_t)) \leq \log_a m.$$

Second, if the minority is correct, then we need
$$\log_a ((1 - p_t) m) + \phi(p_t) \leq \log_a m.$$

Proof

We’d like an upper bound on the expected number of mistakes of the form $\log_a m$. To make the inductive proof of this bound work, we need to consider two cases. First, if the majority is correct ($y_t = \hat{y}$), then we need

$$\log_a (p_t m) + (1 - \phi(p_t)) \leq \log_a m.$$
We’d like an upper bound on the expected number of mistakes of the form $\log_a m$. To make the inductive proof of this bound work, we need to consider two cases. First, if the majority is correct ($y_t = \hat{y}$), then we need

$$\log_a (p_t m) + (1 - \phi(p_t)) \leq \log_a m.$$

Second, if the minority is correct, then we need

$$\log_a ((1 - p_t)m) + \phi(p_t) \leq \log_a m.$$
Proof

\[
\log_a(p_t m) + (1 - \phi(p_t)) \leq \log_a m, \\
\log_a((1-p_t)m) + \phi(p_t) \leq \log_a m.
\]
Proof

$$\log_a(p_t m) + (1 - \phi(p_t)) \leq \log_a m,$$
$$\log_a((1 - p_t)m) + \phi(p_t) \leq \log_a m.$$

Rearranging and combining, we need

$$1 + \log_a p_t \leq \phi(p_t) \leq -\log_a(1 - p_t).$$
Proof

\[
\log_a(p_t m) + (1 - \phi(p_t)) \leq \log_a m,
\]
\[
\log_a((1 - p_t)m) + \phi(p_t) \leq \log_a m.
\]

Rearranging and combining, we need

\[
1 + \log_a p_t \leq \phi(p_t) \leq -\log_a (1 - p_t)
\]

\[
\Leftrightarrow \log_a (ap_t) \leq \log_a \left(\frac{1}{1 - p_t} \right).
\]
Proof

\[
\log_a(p_t m) + (1 - \phi(p_t)) \leq \log_a m, \\
\log_a((1 - p_t)m) + \phi(p_t) \leq \log_a m.
\]

Rearranging and combining, we need

\[
1 + \log_a p_t \leq \phi(p_t) \leq -\log_a(1 - p_t)
\]

\[
\Leftrightarrow \quad \log_a(ap_t) \leq \log_a \left(\frac{1}{1 - p_t} \right).
\]

The largest \(a\) satisfying \(ap_t(1 - p_t) \leq 1\) is \(a = 4\).
Proof

\[
\log_a(p_t m) + (1 - \phi(p_t)) \leq \log_a m, \\
\log_a((1 - p_t)m) + \phi(p_t) \leq \log_a m.
\]

Rearranging and combining, we need

\[
1 + \log_a p_t \leq \phi(p_t) \leq -\log_a (1 - p_t)
\]

\[
\Leftrightarrow \log_a (ap_t) \leq \log_a \left(\frac{1}{1 - p_t}\right).
\]

The largest \(a\) satisfying \(ap_t(1 - p_t) \leq 1\) is \(a = 4\).
So any \(\phi(p_t)\) between \(1 + \log_4 p_t\) and \(-\log_4(1 - p_t)\) will suffice.
Theorem

The minimax regret is between $\lfloor \log_4 m \rfloor$ and $\log_4 m$.
Online convex optimization

1. Binary prediction
 - With (perfect) expert advice
 - Minimax strategy
 - With imperfect experts: exponential weights

2. General online convex

3. Minimax strategies
We return to the voting setting, and allow even the best expert to make mistakes.
We return to the voting setting, and allow even the best expert to make mistakes.

Voting

The player votes for a mixture of experts: we set $A = \Delta^m$, the probability simplex on $\{1, \ldots, m\}$, and the loss function at time t is $\ell_t(a) = \sum_{i=1}^m a_i \ell_t(e_i)$, where $e_i \in \Delta^m$ is zero in all but the ith coordinate, and $\ell_t(e_i) \in \{0, 1\}$ is the indicator for the ith expert making an incorrect forecast at time t.
Exponential Weights

Maintain a set of (unnormalized) weights over experts:

\[w_i^1 = 1, \quad w_i^{t+1} = w_i^t \exp(-\eta \ell_t(e_i)). \]

Here, \(\eta > 0 \) is a parameter of the algorithm.

Choose \(a_t \) as the normalized vector,

\[a_t = \frac{1}{\sum_{i=1}^{m} w_i^t} w_i^t. \]

[Littlestone and Warmuth, 1994]
Exponential Weights

- Maintain a set of (unnormalized) weights over experts:

\[w_{i1} = 1, \quad w_{it+1} = w_{it} \exp(-\eta \ell_t(e^i)) \]

Here, \(\eta > 0 \) is a parameter of the algorithm.

Choose \(a_t \) as the normalized vector,

\[a_t = \frac{1}{\sum_{i=1}^m w_{it}} w_{it} \]

[Littlestone and Warmuth, 1994]
Exponential Weights

- Maintain a set of (unnormalized) weights over experts:

\[w_1^i = 1, \]

[Littlestone and Warmuth, 1994]
Exponential Weights

- Maintain a set of (unnormalized) weights over experts:

\[w_i^1 = 1, \]
\[w_{t+1}^i = w_t^i \exp(-\eta \ell_t(e_i)). \]

[Littlestone and Warmuth, 1994]
Exponential Weights

- Maintain a set of (unnormalized) weights over experts:

\[w^i_1 = 1, \]
\[w^i_{t+1} = w^i_t \exp (-\eta \ell_t(e_i)). \]

- Here, \(\eta > 0 \) is a parameter of the algorithm.
Prediction with Expert Advice

Exponential Weights

- Maintain a set of (unnormalized) weights over experts:

\[
\begin{align*}
 w_1^i &= 1, \\
 w_{t+1}^i &= w_t^i \exp(-\eta \ell_t(e_i)).
\end{align*}
\]

- Here, \(\eta > 0 \) is a parameter of the algorithm.
- Choose \(a_t \) as the normalized vector,

\[
a_t = \frac{1}{\sum_{i=1}^{m} w_t^i} w_t.
\]

[Littlestone and Warmuth, 1994]
The exponential weights strategy with parameter

\[\eta = \sqrt{\frac{8 \ln m}{n}} \]

has regret satisfying

\[R_n \leq \sqrt{\frac{n \ln m}{2}}. \]

[Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997]
We use a measure of progress:

\[W_t = \sum_{i=1}^{m} w_t^i. \]
Proof Idea

We use a measure of progress:

\[W_t = \sum_{i=1}^{m} w_t^i. \]

\[W_n \text{ grows at least as} \]

\[\exp \left(-\eta \min_i \sum_{t=1}^{n} \ell_t(e_i) \right). \]
Proof Idea

We use a measure of progress:

\[W_t = \sum_{i=1}^{m} w_t^i. \]

1. \(W_n \) grows at least as

\[\exp \left(-\eta \min_i \sum_{t=1}^{n} \ell_t(e_i) \right). \]

2. \(W_n \) grows no faster than

\[\exp \left(-\eta \sum_{t=1}^{n} \ell_t(a_t) \right). \]
Proof idea:

$$\ln \frac{W_{n+1}}{W_1}$$
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{n+1}}{W_1} = \ln \left(\sum_{i=1}^{m} w_i^{n+1} \right) - \ln m
\]
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{n+1}}{W_1} = \ln \left(\sum_{i=1}^{m} w^n_i \right) - \ln m
\]

\[
= \ln \left(\sum_{i=1}^{m} \exp \left(-\eta \sum_{t} \ell_t(e_i) \right) \right) - \ln m
\]
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{n+1}}{W_1} = \ln \left(\sum_{i=1}^{m} w_i^{n+1} \right) - \ln m
\]

\[
= \ln \left(\sum_{i=1}^{m} \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m
\]

\[
\geq \ln \left(\max_i \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m
\]
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{n+1}}{W_1} = \ln \left(\sum_{i=1}^{m} w_i^{n+1} \right) - \ln m
\]

\[
= \ln \left(\sum_{i=1}^{m} \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m
\]

\[
\geq \ln \left(\max_i \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m
\]

\[
= -\eta \min_i \left(\sum_t \ell_t(e_i) \right) - \ln m
\]
Proof idea:

\[
\ln \frac{W_{n+1}}{W_1} = \ln \left(\sum_{i=1}^{m} w^i_{n+1} \right) - \ln m \\
= \ln \left(\sum_{i=1}^{m} \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m \\
\geq \ln \left(\max_i \exp \left(-\eta \sum_t \ell_t(e_i) \right) \right) - \ln m \\
= -\eta \min_i \left(\sum_t \ell_t(e_i) \right) - \ln m \\
= -\eta \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) - \ln m.
\]
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{t+1}}{W_t} \leq -\eta \sum_i \ell_t (e^i) w_i t \sum_i w_i t + \eta^2 28 = -\eta \ell_t (a_t) + \eta^2.
\]

where we have used Hoeffding's inequality:

for a random variable \(X \in [a, b] \) and \(\lambda \in \mathbb{R} \),

\[
\ln (E e^{\lambda X}) \leq \lambda E X + \lambda^2 (b - a)^2.
\]
Proof idea:

\[
\ln \frac{W_{t+1}}{W_t} = \ln \left(\frac{\sum_{i=1}^{m} \exp(-\eta \ell_t(e_i)) w_i^t}{\sum_i w_i^t} \right)
\]
Proof idea:

\[
\ln \frac{W_{t+1}}{W_t} = \ln \left(\frac{\sum_{i=1}^{m} \exp(-\eta \ell_t(e_i)) w_t^i}{\sum_i w_t^i} \right) \\
\leq -\eta \frac{\sum_i \ell_t(e_i) w_t^i}{\sum_i w_t^i} + \frac{\eta^2}{8}
\]
Prediction with Expert Advice

Proof idea:

\[
\ln \frac{W_{t+1}}{W_t} = \ln \left(\frac{\sum_{i=1}^{m} \exp(-\eta \ell_t(e_i)) w_i^t}{\sum_i w_i^t} \right)
\leq -\eta \frac{\sum_i \ell_t(e_i) w_i^t}{\sum_i w_i^t} + \frac{\eta^2}{8}
\]

where we have used Hoeffding’s inequality: for a random variable \(X \in [a, b] \) and \(\lambda \in \mathbb{R} \),

\[
\ln \left(\mathbb{E} e^{\lambda X} \right) \leq \lambda \mathbb{E} X + \frac{\lambda^2 (b - a)^2}{8}.
\]
Proof idea:

\[
\ln \frac{W_{t+1}}{W_t} = \ln \left(\frac{\sum_{i=1}^{m} \exp(-\eta \ell_t(e_i))w_i^t}{\sum_i w_i^t} \right)
\leq -\eta \frac{\sum_i \ell_t(e_i)w_i^t}{\sum_i w_i^t} + \frac{\eta^2}{8}
\]

\[
= -\eta \ell_t(a_t) + \frac{\eta^2}{8},
\]

where we have used Hoeffding’s inequality: for a random variable \(X \in [a, b]\) and \(\lambda \in \mathbb{R}\),

\[
\ln \left(\mathbb{E}e^{\lambda X} \right) \leq \lambda \mathbb{E}X + \frac{\lambda^2(b - a)^2}{8}.
\]
Proof idea:

\[-\eta \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) - \ln m \leq \ln \frac{W_{n+1}}{W_1} \leq -\eta \sum_{t=1}^{n} \ell_t(a_t) + \frac{n\eta^2}{8}.\]
Proof idea:

\[-\eta \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) - \ln m \leq \ln \frac{W_{n+1}}{W_1} \leq -\eta \sum_{t=1}^{n} \ell_t(a_t) + \frac{n\eta^2}{8}.\]

Thus,

\[R_n \leq \frac{\ln m}{\eta} + \frac{\eta n}{8}.\]
Proof idea:

\[-\eta \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) - \ln m \leq \ln \frac{W_{n+1}}{W_1} \leq -\eta \sum_{t=1}^{n} \ell_t(a_t) + \frac{n\eta^2}{8}.\]

Thus,

\[R_n \leq \frac{\ln m}{\eta} + \frac{\eta n}{8}.\]

Choosing the optimal η gives the result:
Proof idea:

\[-\eta \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) - \ln m \leq \ln \frac{W_{n+1}}{W_1} \leq -\eta \sum_{t=1}^{n} \ell_t(a_t) + \frac{n\eta^2}{8}.\]

Thus,

\[R_n \leq \frac{\ln m}{\eta} + \frac{\eta n}{8}.\]

Choosing the optimal \(\eta\) gives the result:

Theorem

The exponential weights strategy with parameter \(\eta = \sqrt{8 \ln m/n}\) has regret no more than \(\sqrt{\frac{n \ln m}{2}}\).
For a finite set of actions (experts):

If one action is perfect (i.e., has zero loss), the minimax strategy gives per round regret of $\log_4 m_n$.

Exponential weights gives per round regret of $\sqrt{\ln m }^2 n$.
For a finite set of actions (experts):

- If one action is perfect (i.e., has zero loss), the minimax strategy gives per round regret of

\[
\log_4 \frac{m}{n}.
\]
Prediction with Expert Advice

Key Points

For a finite set of actions (experts):

- If one action is perfect (i.e., has zero loss), the minimax strategy gives per round regret of
 \[\frac{\log_4 m}{n}. \]

- Exponential weights gives per round regret of
 \[\sqrt{\frac{\ln m}{2n}}. \]
In the proof, the only properties of ℓ_t that we used were

1. boundedness: $\ell_t(e_i) \in [0, 1]$ (for Hoeffding's inequality), and
2. linearity, $\ell_t(a_t) = \sum_i \ell_t(e_i) w_i t$. For linearity, an inequality would have sufficed, $\ell_t(a_t) \leq \sum_i \ell_t(e_i) w_i t$, which corresponds to convexity of ℓ_t.
In the proof, the only properties of ℓ_t that we used were:

1. **boundedness**: $\ell_t(e_i) \in [0, 1]$ (for Hoeffding’s inequality), and
In the proof, the only properties of ℓ_t that we used were

1. boundedness: $\ell_t(e_i) \in [0, 1]$ (for Hoeffding’s inequality), and
2. linearity,

$$\ell_t(a_t) = \sum_i \ell_t(e_i)w^i_t.$$
In the proof, the only properties of ℓ_t that we used were

1. boundedness: $\ell_t(e_i) \in [0, 1]$ (for Hoeffding’s inequality), and
2. linearity,

$$\ell_t(a_t) = \sum_i \ell_t(e_i) w_t^i.$$

For linearity, an inequality would have sufficed,

$$\ell_t(a_t) \leq \sum_i \ell_t(e_i) w_t^i.$$
In the proof, the only properties of ℓ_t that we used were

1. boundedness: $\ell_t(e_i) \in [0, 1]$ (for Hoeffding’s inequality), and
2. linearity,

$$\ell_t(a_t) = \sum_i \ell_t(e_i) w_t^i.$$

For linearity, an inequality would have sufficed,

$$\ell_t(a_t) \leq \sum_i \ell_t(e_i) w_t^i,$$

which corresponds to convexity of ℓ_t.
Online convex optimization

1. Binary prediction
 - With (perfect) expert advice
 - Minimax strategy
 - With imperfect experts: exponential weights

2. General online convex
 - Empirical minimization fails
 - Gradient algorithm.
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization

3. Minimax strategies
Online convex optimization

The problem

- $\mathcal{A} =$ convex subset of \mathbb{R}^d.
- $\mathcal{L} =$ set of convex real-valued functions on \mathcal{A}.
Online convex optimization

The problem

- $\mathcal{A} = \text{convex subset of } \mathbb{R}^d$.
- $\mathcal{L} = \text{set of convex real-valued functions on } \mathcal{A}$.

Minimax regret

$$\min_{a_1} \max_{\ell_1} \cdots \min_{a_n} \max_{\ell_n} \left(\sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} \ell_t(a) \right).$$
Empirical minimization fails

Choosing \(a_t \) to minimize past losses, \(a_t = \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

Suppose \(\mathcal{A} = [-1, 1] \) and \(\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).

Consider the following sequence of losses:

- \(\ell_1(a) = \frac{1}{2} a \)
- \(\ell_2(a) = -a \)
- \(\ell_3(a) = a \)
- \(\ell_4(a) = -a \)
- \(\ell_5(a) = a \)

\(a_1 = 0 \), \(a_2 = -1 \), \(a_3 = 1 \), \(a_4 = -1 \), \(a_5 = 1 \), \(a^* = 0 \) shows \(\min_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq 0 \), but \(\sum_{t=1}^{n} \ell_t(a_t) = n - 1 \).
Online convex optimization

Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \arg\min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$.

Consider the following sequence of losses:

- $\ell_1(a) = \frac{1}{2} a$,
- $\ell_2(a) = -a$,
- $\ell_3(a) = a$,
- $\ell_4(a) = -a$,
- $\ell_5(a) = a$,

$a_1 = 0$, $a_2 = -1$, $a_3 = 1$, $a_4 = -1$, $a_5 = 1$.

$a^* = 0$ shows $\min_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq 0$, but $\sum_{t=1}^{n} \ell_t(a_t) = n - 1$.

32 / 132
Empirical minimization fails

Choosing \(a_t \) to minimize past losses, \(a_t = \arg \min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose \(\mathcal{A} = [-1, 1], \mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).
- Consider the following sequence of losses:

\[
a_1 = 0,
\]
Empirical minimization fails

Choosing \(a_t \) to minimize past losses, \(a_t = \arg \min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose \(A = [-1, 1] \), \(\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).
- Consider the following sequence of losses:

\[
\ell_1(a) = \frac{1}{2}a, \\
a_1 = 0,
\]
Choosing a_t to minimize past losses, $a_t = \arg \min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$.
- Consider the following sequence of losses:

\[
\ell_1(a) = \frac{1}{2} a,
\]

\[
a_1 = 0, \quad a_2 = -1,
\]
Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \arg\min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \}$.
- Consider the following sequence of losses:

$$
\ell_1(a) = \frac{1}{2} a, \quad \ell_2(a) = -a,
$$

$a_1 = 0, \quad a_2 = -1,$
Online convex optimization

Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \text{arg min}_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$.
- Consider the following sequence of losses:

$$
\ell_1(a) = \frac{1}{2}a, \quad \ell_2(a) = -a,
$$

$$
a_1 = 0, \quad a_2 = -1, \quad a_3 = 1,
$$
Online convex optimization

Empirical minimization fails

Choosing \(a_t \) to minimize past losses, \(a_t = \arg \min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose \(A = [-1, 1] \), \(\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).
- Consider the following sequence of losses:

\[
\ell_1(a) = \frac{1}{2} a, \quad \ell_2(a) = -a, \quad \ell_3(a) = a,
\]

\(a_1 = 0, \quad a_2 = -1, \quad a_3 = 1, \)
Online convex optimization

Empirical minimization fails

Choosing \(a_t \) to minimize past losses, \(a_t = \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose \(\mathcal{A} = [-1, 1] \), \(\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).
- Consider the following sequence of losses:

\[
\ell_1(a) = \frac{1}{2}a, \quad \ell_2(a) = -a, \quad \ell_3(a) = a,
\]

\[a_1 = 0, \quad a_2 = -1, \quad a_3 = 1, \quad a_4 = -1, \]
Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \arg \min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \}$.
- Consider the following sequence of losses:

\[
\ell_1(a) = \frac{1}{2} a, \quad \ell_2(a) = -a, \quad \ell_3(a) = a, \quad \ell_4(a) = -a,
\]
\[
a_1 = 0, \quad a_2 = -1, \quad a_3 = 1, \quad a_4 = -1,
\]
Empirical minimization fails

 Choosing \(a_t \) to minimize past losses, \(a_t = \arg\min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a) \), can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose \(A = [-1, 1], \mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1 \} \).
- Consider the following sequence of losses:

\[
\begin{align*}
\ell_1(a) &= \frac{1}{2}a, \\
\ell_2(a) &= -a, \\
\ell_3(a) &= a, \\
\ell_4(a) &= -a, \\
a_1 &= 0, \\
a_2 &= -1, \\
a_3 &= 1, \\
a_4 &= -1, \\
a_5 &= 1,
\end{align*}
\]
Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \arg \min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$.
- Consider the following sequence of losses:

$$\ell_1(a) = \frac{1}{2}a, \quad \ell_2(a) = -a, \quad \ell_3(a) = a, \quad \ell_4(a) = -a, \quad \ell_5(a) = a,$$

$$a_1 = 0, \quad a_2 = -1, \quad a_3 = 1, \quad a_4 = -1, \quad a_5 = 1,$$
Online convex optimization

Empirical minimization fails

Choosing a_t to minimize past losses, $a_t = \arg\min_{a \in A} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. (‘fictitious play,’ ‘follow the leader’)

- Suppose $A = [-1, 1]$, $\mathcal{L} = \{ a \mapsto v \cdot a : |v| \leq 1\}$.
- Consider the following sequence of losses:

$$
\ell_1(a) = \frac{1}{2} a, \quad \ell_2(a) = -a, \quad \ell_3(a) = a, \quad \ell_4(a) = -a, \quad \ell_5(a) = a,
$$

$$
a_1 = 0, \quad a_2 = -1, \quad a_3 = 1, \quad a_4 = -1, \quad a_5 = 1,
$$

- $a^* = 0$ shows $\min_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq 0$, but $\sum_{t=1}^{n} \ell_t(a_t) = n - 1$.
Online convex optimization

- Choosing a_t to minimize past losses can fail.

The strategy must avoid overfitting, just as in probabilistic settings. Similar approaches (regularization; Bayesian inference) are applicable in the online setting.

First approach: gradient steps. Stay close to previous decisions, but move in a direction of improvement.
Choosing a_t to minimize past losses can fail.
The strategy must avoid overfitting, just as in probabilistic settings.
Online convex optimization

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting, just as in probabilistic settings.
- Similar approaches (regularization; Bayesian inference) are applicable in the online setting.
Choosing a_t to minimize past losses can fail.
The strategy must avoid overfitting, just as in probabilistic settings.
Similar approaches (regularization; Bayesian inference) are applicable in the online setting.
First approach: gradient steps.
Stay close to previous decisions, but move in a direction of improvement.
Online convex optimization

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm.
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
\(a_1 \in A, \)
Online convex optimization: Gradient Method

\[a_1 \in \mathcal{A}, \quad a_{t+1} = (a_t - \eta \nabla \ell_t(a_t)), \]
$a_1 \in \mathcal{A}$,

$$a_{t+1} = \Pi_{\mathcal{A}} \left(a_t - \eta \nabla \ell_t(a_t) \right),$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A}.
Online convex optimization: Gradient Method

\[a_1 \in \mathcal{A}, \quad a_{t+1} = \Pi_{\mathcal{A}} (a_t - \eta \nabla \ell_t(a_t)), \]

where \(\Pi_{\mathcal{A}} \) is the Euclidean projection on \(\mathcal{A} \),

\[\Pi_{\mathcal{A}}(x) = \arg \min_{a \in \mathcal{A}} \|x - a\|. \]

[Zinkevich, 2003]
Online convex optimization: Gradient Method

\[a_1 \in \mathcal{A}, \quad a_{t+1} = \Pi_{\mathcal{A}} \left(a_t - \eta \nabla \ell_t(a_t) \right), \]

where \(\Pi_{\mathcal{A}} \) is the Euclidean projection on \(\mathcal{A} \),

\[\Pi_{\mathcal{A}}(x) = \arg \min_{a \in \mathcal{A}} \| x - a \|. \]

Theorem

the gradient strategy with \(\eta = D / (G \sqrt{n}) \)

[Zinkevich, 2003]
Online convex optimization: Gradient Method

\[a_1 \in A, \quad a_{t+1} = \Pi_A (a_t - \eta \nabla \ell_t(a_t)), \]

where \(\Pi_A \) is the Euclidean projection on \(A \),

\[\Pi_A(x) = \arg \min_{a \in A} \| x - a \|. \]

Theorem

For \(G = \max_t \| \nabla \ell_t(a_t) \| \) the gradient strategy with \(\eta = D/(G\sqrt{n}) \)
Online convex optimization: Gradient Method

\[a_1 \in \mathcal{A}, \quad a_{t+1} = \Pi_{\mathcal{A}}(a_t - \eta \nabla \ell_t(a_t)), \]

where \(\Pi_\mathcal{A} \) is the Euclidean projection on \(\mathcal{A} \),

\[\Pi_\mathcal{A}(x) = \arg \min_{a \in \mathcal{A}} \|x - a\|. \]

Theorem

For \(G = \max_t \|\nabla \ell_t(a_t)\| \) and \(D = \text{diam}(\mathcal{A}) \),

the gradient strategy with \(\eta = D/(G \sqrt{n}) \)

[Zinkevich, 2003]
Online convex optimization: Gradient Method

\[a_1 \in \mathcal{A}, \quad a_{t+1} = \Pi_{\mathcal{A}}(a_t - \eta \nabla \ell_t(a_t)), \]

where \(\Pi_{\mathcal{A}} \) is the Euclidean projection on \(\mathcal{A} \),

\[\Pi_{\mathcal{A}}(x) = \arg \min_{a \in \mathcal{A}} \| x - a \|. \]

Theorem

For \(G = \max_t \| \nabla \ell_t(a_t) \| \) and \(D = \text{diam}(\mathcal{A}) \),

the gradient strategy with \(\eta = D/(G \sqrt{n}) \) has regret satisfying

\[R_n \leq GD \sqrt{n}. \]
Example

\[A = \{ a \in \mathbb{R}^d : \|a\| \leq 1 \}, \]
Example

\(\mathcal{A} = \{ a \in \mathbb{R}^d : \|a\| \leq 1 \}, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\| \leq 1 \}. \)
Example

\[A = \{a \in \mathbb{R}^d : \|a\| \leq 1\}, \quad \mathcal{L} = \{a \mapsto \nu \cdot a : \|\nu\| \leq 1\}. \]

\[D = 2, \]
Example

$A = \{a \in \mathbb{R}^d : \|a\| \leq 1\}$, $\mathcal{L} = \{a \mapsto v \cdot a : \|v\| \leq 1\}$.
$D = 2$, $G \leq 1$.
Example

\[A = \{ a \in \mathbb{R}^d : \|a\| \leq 1 \}, \quad \mathcal{L} = \{ a \mapsto \nu \cdot a : \|\nu\| \leq 1 \}. \]

\[D = 2, \quad G \leq 1. \]

Regret is no more than \(2\sqrt{n} \).
Example

\[A = \{ a \in \mathbb{R}^d : \|a\| \leq 1 \}, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\| \leq 1 \}. \]

\[D = 2, \quad G \leq 1. \]

Regret is no more than \(2\sqrt{n} \).

(And \(O(\sqrt{n}) \) is optimal.)
Example

\[\mathcal{A} = \Delta^m, \]
Example

\(\mathcal{A} = \Delta^m, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\|_\infty \leq 1 \} \).
Online convex optimization: Gradient Method

Example

\[A = \Delta^m, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\|_\infty \leq 1 \}. \]

\[D = \sqrt{2}, \]

Regret is no more than \(\sqrt{2mn} \).

Since competing with the whole simplex is equivalent to competing with the vertices for linear losses, this is worse than exponential weights (\(\sqrt{m} \) versus \(\log m \)).
Example

\[A = \Delta^m, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\|_\infty \leq 1 \}. \]
\[D = \sqrt{2}, \quad G \leq \sqrt{m}. \]
Example

\[A = \Delta^m, \quad \mathcal{L} = \{ a \mapsto v \cdot a : \|v\|_\infty \leq 1 \}. \]
\[D = \sqrt{2}, \quad G \leq \sqrt{m}. \]

Regret is no more than \(\sqrt{2mn} \).
Online convex optimization: Gradient Method

Example

\[A = \Delta^m, \quad \mathcal{L} = \{a \mapsto v \cdot a : \|v\|_{\infty} \leq 1\}. \]
\[D = \sqrt{2}, \quad G \leq \sqrt{m}. \]
Regret is no more than \(\sqrt{2mn} \).

Since competing with the whole simplex is equivalent to competing with the vertices for linear losses, this is worse than exponential weights (\(\sqrt{m} \) versus \(\log m \)).
Proof:

Define \(\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t) \).
Online convex optimization: Gradient Method

Proof:

Define

\[\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t), \]
\[a_{t+1} = \Pi_A(\tilde{a}_{t+1}). \]
Online convex optimization: Gradient Method

Proof:

Define

\[\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t), \]

\[a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}). \]

Fix a comparator \(a \in \mathcal{A} \)
Define \(\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t), \)
\[a_{t+1} = \Pi_A(\tilde{a}_{t+1}). \]

Fix a comparator \(a \in A \) and consider the measure of progress \(\|a_t - a\|. \)
Define

\[
\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),
\]

\[
a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}).
\]

Fix a comparator \(a \in \mathcal{A} \) and consider the measure of progress \(\|a_t - a\| \).

\[
\|a_{t+1} - a\|^2
\]
Online convex optimization: Gradient Method

Proof:

Define

$$\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),$$
$$a_{t+1} = \Pi_{A}(\tilde{a}_{t+1}).$$

Fix a comparator $a \in A$ and consider the measure of progress $\|a_t - a\|$.

$$\|a_{t+1} - a\|^2 \leq \|\tilde{a}_{t+1} - a\|^2$$
Proof:

Define

\[\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t), \]
\[a_{t+1} = \Pi_A(\tilde{a}_{t+1}). \]

Fix a comparator \(a \in A \) and consider the measure of progress \(\|a_t - a\| \).

\[
\|a_{t+1} - a\|^2 \leq \|\tilde{a}_{t+1} - a\|^2 \\
= \|a_t - a\|^2 + \eta^2 \|

\nabla \ell_t(a_t)\|^2 - 2\eta \nabla \ell_t(a_t) \cdot (a_t - a).\]
Online convex optimization: Gradient Method

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))
\]
By convexity,

\[\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a) \]
Online convex optimization: Gradient Method

By convexity,

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a) \\
\leq \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2
\]
By convexity,

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a)
\]

\[
\leq \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2
\]

\[
\leq \frac{D^2}{2\eta} + \frac{\eta G^2 n}{2}.
\]
Online Convex Optimization

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
An observation: gradient algorithm is regularized minimization.

Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$. Suppose $A = \mathbb{R}^d$. Then minimizing the regularized criterion

$$a_{t+1} = \arg \min_{a \in A} \left(\eta_t \sum_{s=1}^t \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step $a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$. Indeed, setting the derivative to zero gives

$$a_{t+1} = -\eta_t \sum_{s=1}^t \nabla \ell_s = a_t - \eta_t \nabla \ell_t(a_t).$$
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.

A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.

\[
\begin{align*}
\text{Then minimizing the regularized criterion} & \quad a_{t+1} = \underset{a \in \mathcal{A}}{\arg \min} \left(\eta_t \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right) \\
& \text{corresponds to the gradient step} \quad a_{t+1} = a_t - \eta_t \nabla \ell_t(a_t)
\end{align*}
\]
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $A = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step $a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$.
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose \(\ell_t \) is linear: \(\ell_t(a) = g_t \cdot a \).
- Suppose \(\mathcal{A} = \mathbb{R}^d \).
- Then minimizing the regularized criterion

\[
 a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)
\]

corresponds to the gradient step \(a_{t+1} = a_t - \eta \nabla \ell_t(a_t) \).
- Indeed, setting the derivative to zero gives
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step $a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$.

- Indeed, setting the derivative to zero gives

$$a_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s$$
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $A = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step $a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$.

- Indeed, setting the derivative to zero gives

$$a_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s$$

$$a_t = -\eta \sum_{s=1}^{t-1} \nabla \ell_s.$$
A Regularization Viewpoint

An observation: gradient algorithm is regularized minimization.

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step $a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$.

- Indeed, setting the derivative to zero gives

$$a_{t+1} = -\eta \sum_{s=1}^{t} \nabla \ell_s = a_t - \eta \nabla \ell_t.$$
Online Convex Optimization: Regularization

Definition: Regularized minimization

Consider the family of strategies of the form:

\[a_{t+1} = \operatorname*{arg\,min}_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

Assume: The regularizer \(R : \mathbb{R}^d \to \mathbb{R} \) is strictly convex and differentiable.
Regularized minimization

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]
Regularized minimization

\[a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

- \(R \) keeps the sequence of \(a_t \)'s stable: it diminishes \(\ell_t \)'s influence.
Regularized minimization

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

- \(R \) keeps the sequence of \(a_t \)'s stable: it diminishes \(\ell_t \)'s influence.
- We can view the choice of \(a_{t+1} \) as trading off two competing forces: making \(\ell_t(a_{t+1}) \) small, and keeping \(a_{t+1} \) close to \(a_t \).
Regularized minimization

\[a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

- \(R \) keeps the sequence of \(a_t \)'s stable: it diminishes \(\ell_t \)'s influence.
- We can view the choice of \(a_{t+1} \) as trading off two competing forces: making \(\ell_t(a_{t+1}) \) small, and keeping \(a_{t+1} \) close to \(a_t \).
- This is a perspective that motivated many algorithms in the literature. We'll investigate why regularized minimization can be viewed this way.
Online Convex Optimization: Regularization

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision.
In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the **Bregman divergence** $D_{\Phi_{t-1}}$:
In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Definition

$$
\begin{align*}
\Phi_0 &= R, \\
\Phi_t &= \Phi_{t-1} + \eta \ell_t,
\end{align*}
$$
Online Convex Optimization: Regularization

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Definition

\[
\begin{align*}
\Phi_0 &= R, \\
\Phi_t &= \Phi_{t-1} + \eta \ell_t,
\end{align*}
\]

So

\[
a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)
= \arg\min_{a \in \mathcal{A}} \Phi_t(a).
\]
Definition: Bregman Divergence

For a strictly convex, differentiable $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)).$$

[Bregman, 1967]
Definition: Bregman Divergence

For a strictly convex, differentiable $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)).$$

$D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b.

[Bregman, 1967]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)) . \]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)) . \]

Example

For \(a \in \mathbb{R}^d \), the squared euclidean norm, \(\Phi(a) = \frac{1}{2} \| a \|^2 \), has

\[D_\Phi(a, b) = \frac{1}{2} \| a \|^2 - \left(\frac{1}{2} \| b \|^2 + b \cdot (a - b) \right) \]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)) . \]

Example

For \(a \in \mathbb{R}^d \), the squared euclidean norm, \(\Phi(a) = \frac{1}{2} \|a\|^2 \), has

\[D_\Phi(a, b) = \frac{1}{2} \|a\|^2 - \left(\frac{1}{2} \|b\|^2 + b \cdot (a - b) \right) \]

\[= \frac{1}{2} \|a - b\|^2 , \]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)). \]

Example

For \(a \in \mathbb{R}^d \), the squared euclidean norm, \(\Phi(a) = \frac{1}{2} \| a \|^2 \), has

\[
D_\Phi(a, b) = \frac{1}{2} \| a \|^2 - \left(\frac{1}{2} \| b \|^2 + b \cdot (a - b) \right)
= \frac{1}{2} \| a - b \|^2,
\]

the squared euclidean norm.
Bregman Divergence

\[D_{\Phi}(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)). \]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)). \]

Example

For \(a \in [0, \infty)^d \), the unnormalized negative entropy, \(\Phi(a) = \sum_{i=1}^{d} a_i (\ln a_i - 1) \), has
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)) . \]

Example

For \(a \in [0, \infty)^d \), the unnormalized negative entropy, \(\Phi(a) = \sum_{i=1}^{d} a_i (\ln a_i - 1) \), has

\[D_\Phi(a, b) = \sum_i (a_i (\ln a_i - 1) - b_i (\ln b_i - 1) - \ln b_i (a_i - b_i)) \]
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)). \]

Example

For \(a \in [0, \infty)^d \), the unnormalized negative entropy, \(\Phi(a) = \sum_{i=1}^{d} a_i (\ln a_i - 1) \), has

\[
D_\Phi(a, b) = \sum_i \left(a_i (\ln a_i - 1) - b_i (\ln b_i - 1) - \ln b_i (a_i - b_i) \right)
\]

\[
= \sum_i \left(a_i \ln \frac{a_i}{b_i} + b_i - a_i \right),
\]

the unnormalized KL divergence.
Bregman Divergence

\[D_\Phi(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)). \]

Example

For \(a \in [0, \infty)^d \), the unnormalized negative entropy, \(\Phi(a) = \sum_{i=1}^{d} a_i (\ln a_i - 1) \), has

\[
D_\Phi(a, b) = \sum_i \left(a_i (\ln a_i - 1) - b_i (\ln b_i - 1) - \ln b_i (a_i - b_i) \right)
\]

\[
= \sum_i \left(a_i \ln \frac{a_i}{b_i} + b_i - a_i \right),
\]

the unnormalized KL divergence.

Thus, for \(a \in \Delta^d \), \(\Phi(a) = \sum_{i} a_i \ln a_i \) has \(D_\phi(a, b) = \sum_{i} a_i \ln \frac{a_i}{b_i} \).
Bregman Divergence

When the domain of Φ is $\mathcal{A} \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:
When the domain of Φ is $A \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:

- The interior of A is convex,
When the domain of Φ is $\mathcal{A} \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:

- The interior of \mathcal{A} is convex,
- For a sequence approaching the boundary of \mathcal{A}, $\|\nabla \Phi(a_n)\| \to \infty$.
Bregman Divergence

When the domain of Φ is $\mathcal{A} \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:

- The interior of \mathcal{A} is convex,
- For a sequence approaching the boundary of \mathcal{A}, $\|\nabla \Phi(a_n)\| \to \infty$.

We say that such a Φ is a *Legendre function*.
Properties

1. \(D_\Phi \geq 0 \), \(D_\Phi(a, a) = 0 \).

2. \(D_A + D_B = D_A + D_B \).

3. Bregman projection, \(\Pi_\Phi A(b) = \arg \min_{a \in A} D_\Phi(a, b) \) is uniquely defined for closed, convex \(A \).

4. Generalized Pythagoras: for closed, convex \(A \), \(a^* = \Pi_\Phi A(b), a \in A \):
 \[D_\Phi(a, b) \geq D_\Phi(a, a^*) + D_\Phi(a^*, b). \]

5. \(\nabla_a D_\Phi(a, b) = \nabla \Phi(a) - \nabla \Phi(b) \).
Properties

1. $D_\Phi \geq 0$

2. $D_A + B = D_A + D_B$

3. Bregman projection, $\Pi_\Phi A(b) = \arg\min_{a \in A} D_\Phi (a, b)$ is uniquely defined for closed, convex A.

4. Generalized Pythagorus: for closed, convex A, $a^* = \Pi_\Phi A(b)$, $a \in A$:

$$D_\Phi (a, b) \geq D_\Phi (a, a^*) + D_\Phi (a^*, b).$$

5. $\nabla_a D_\Phi (a, b) = \nabla \Phi(a) - \nabla \Phi(b)$.

49 / 132
Properties

1. \(D_\Phi \geq 0, \ D_\Phi(a, a) = 0. \)
Bregman Divergence

Properties

1. $D_{\Phi} \geq 0$, $D_{\Phi}(a, a) = 0$.
2. $D_{A+B} = D_A + D_B$.

Bregman projection, $\Pi_{\Phi}A(b) = \arg \min_{a \in A} D_{\Phi}(a, b)$ is uniquely defined for closed, convex A.

Generalized Pythagoras: for closed, convex A, $a^* = \Pi_{\Phi}A(b)$, $a \in A$:

$D_{\Phi}(a, b) \geq D_{\Phi}(a, a^*) + D_{\Phi}(a^*, b)$.

\[\nabla_a D_{\Phi}(a, b) = \nabla \Phi(a) - \nabla \Phi(b) \]
Bregman Divergence

Properties

1. $D_\Phi \geq 0$, $D_\Phi(a, a) = 0$.
2. $D_{A+B} = D_A + D_B$.
3. Bregman projection, $\Pi_\mathcal{A}^\Phi(b) = \arg \min_{a \in \mathcal{A}} D_\Phi(a, b)$ is uniquely defined for closed, convex \mathcal{A}.
Bregman Divergence

Properties

1. $D_\Phi \geq 0$, $D_\Phi(a, a) = 0$.
2. $D_{A+B} = D_A + D_B$.
3. Bregman projection, $\Pi^\Phi_A(b) = \arg \min_{a \in A} D_\Phi(a, b)$ is uniquely defined for closed, convex A.
4. Generalized Pythagorus: for closed, convex A, $a^* = \Pi^\Phi_A(b)$, $a \in A$:

\[D_\Phi(a, b) \geq D_\Phi(a, a^*) + D_\Phi(a^*, b). \]
Bregman Divergence

Properties

1. \(D_\Phi \geq 0, \ D_\Phi(a, a) = 0. \)
2. \(D_{A+B} = D_A + D_B. \)
3. Bregman projection, \(\Pi^\Phi_A(b) = \arg\min_{a \in A} D_\Phi(a, b) \) is uniquely defined for closed, convex \(A. \)
4. Generalized Pythagorus: for closed, convex \(A, \ a^* = \Pi^\Phi_A(b), \ a \in A: \)
 \[
 D_\Phi(a, b) \geq D_\Phi(a, a^*) + D_\Phi(a^*, b).
 \]
5. \(\nabla_a D_\Phi(a, b) = \nabla \Phi(a) - \nabla \Phi(b). \)
For \(\ell \) affine, \(D_{\Phi^+ \ell} = D_{\Phi} \).

For \(\Phi^* \) the Legendre dual of \(\Phi \),
\[
\nabla \Phi^* = \left(\nabla \Phi \right)^{-1},
\]

\[
D_{\Phi}(a, b) = D_{\Phi^*}(\nabla \phi(b), \nabla \phi(a)).
\]
For ℓ affine, $D_{\Phi_+\ell} = D_\Phi$.
Bregman Divergence

Properties

6. For ℓ affine, $D_{\Phi + \ell} = D_{\Phi}$.

7. For Φ^* the Legendre dual of Φ,

$$\nabla \Phi^* = (\nabla \Phi)^{-1},$$
Properties

6. For \(\ell \) affine, \(D_{\Phi+\ell} = D_\Phi \).

7. For \(\Phi^* \) the Legendre dual of \(\Phi \),

\[
\nabla \Phi^* = (\nabla \Phi)^{-1},
\]

\[
D_\Phi(a, b) = D_{\Phi^*}(\nabla \phi(b), \nabla \phi(a)).
\]
Definition: Legendre Dual

For a Legendre function \(\Phi : \mathcal{A} \rightarrow \mathbb{R} \), the Legendre dual is

\[
\Phi^*(u) = \sup_{v \in \mathcal{A}} (u \cdot v - \Phi(v)).
\]
Definition: Legendre Dual

For a Legendre function $\Phi : A \rightarrow \mathbb{R}$, the Legendre dual is

$$\Phi^*(u) = \sup_{v \in A} (u \cdot v - \Phi(v)).$$

- Φ^* is Legendre.
Definition: Legendre Dual

For a Legendre function $\Phi : A \rightarrow \mathbb{R}$, the Legendre dual is

$$\Phi^*(u) = \sup_{v \in A} (u \cdot v - \Phi(v)).$$

- Φ^* is Legendre.
- $\text{dom}(\Phi^*) = \nabla \Phi(\text{int dom } \Phi)$.

Bregman Divergence
Definition: Legendre Dual

For a Legendre function $\Phi : \mathcal{A} \to \mathbb{R}$, the Legendre dual is

$$\Phi^*(u) = \sup_{v \in \mathcal{A}} (u \cdot v - \Phi(v)).$$

- Φ^* is Legendre.
- $\text{dom}(\Phi^*) = \nabla \Phi(\text{int dom } \Phi)$.
- $\nabla \Phi^* = (\nabla \Phi)^{-1}$.

Bregman Divergence
Bregman Divergence

Definition: Legendre Dual

For a Legendre function $\Phi : \mathcal{A} \to \mathbb{R}$, the Legendre dual is

$$\Phi^*(u) = \sup_{v \in \mathcal{A}} (u \cdot v - \Phi(v)).$$

- Φ^* is Legendre.
- $\text{dom}(\Phi^*) = \nabla \Phi(\text{int dom } \Phi)$.
- $\nabla \Phi^* = (\nabla \Phi)^{-1}$.
- $D_\Phi(a, b) = D_{\Phi^*}(\nabla \phi(b), \nabla \phi(a))$.
Definition: Legendre Dual

For a Legendre function \(\Phi : \mathcal{A} \rightarrow \mathbb{R} \), the Legendre dual is

\[
\Phi^*(u) = \sup_{\nu \in \mathcal{A}} (u \cdot \nu - \Phi(\nu)).
\]

- \(\Phi^* \) is Legendre.
- \(\text{dom}(\Phi^*) = \nabla \Phi(\text{int dom } \Phi) \).
- \(\nabla \Phi^* = (\nabla \Phi)^{-1} \).
- \(D_{\Phi}(a, b) = D_{\Phi^*}(\nabla \phi(b), \nabla \phi(a)) \).
- \(\Phi^{**} = \Phi \).
For $\Phi = \frac{1}{2} \| \cdot \|_p^2$, the Legendre dual is $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.
Example

For $\Phi = \frac{1}{2} \| \cdot \|_p^2$, the Legendre dual is $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Example

For $\Phi(a) = \sum_{i=1}^{d} e^{a_i}$,

$$\nabla \Phi(a) = (e^{a_1}, \ldots, e^{a_d})',$$
Bregman Divergence

Example

For $\Phi = \frac{1}{2} \| \cdot \|_p^2$, the Legendre dual is $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$, where $1/p + 1/q = 1$.

Example

For $\Phi(a) = \sum_{i=1}^{d} e^{a_i}$,

$$\nabla \Phi(a) = (e^{a_1}, \ldots, e^{a_d})',$$

so

$$(\nabla \Phi)^{-1}(u) = \nabla \Phi^*(u) = (\ln u_1, \ldots, \ln u_d)'$$
Example

For $\Phi = \frac{1}{2} \| \cdot \|_p^2$, the Legendre dual is $\Phi^* = \frac{1}{2} \| \cdot \|_q^2$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Example

For $\Phi(a) = \sum_{i=1}^d e^{a_i}$,

$$\nabla \Phi(a) = (e^{a_1}, \ldots, e^{a_d})',$$

so

$$\left(\nabla \Phi\right)^{-1}(u) = \nabla \Phi^*(u) = (\ln u_1, \ldots, \ln u_d)'$$

and $\Phi^*(u) = \sum_i u_i(\ln u_i - 1)$.
Online Convex Optimization

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss plus the distance (Bregman divergence) to the previous decision.

Theorem

Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$
\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right).
$$
Properties of Regularization Methods

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss plus the distance (Bregman divergence) to the previous decision.

Theorem

Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right).$$

Then

$$\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$
Proof:

By the definition of Φ_t,

$\Phi_t(a) := \eta \sum_{s=1}^{t} \ell_s(a) + R(a)$

$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$
Proof:

By the definition of Φ_t,

$$ (\Phi_t(a) := \eta \sum_{s=1}^{t} \ell_s(a) + R(a)) $$

$$ \eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t). $$

The derivative wrt a is

$$ \nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t) $$

$$ = \nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t) $$
Properties of Regularization Methods

Proof:

By the definition of Φ_t,

$$\Phi_t(a) := \eta \sum_{s=1}^{t} \ell_s(a) + R(a)$$

$$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$$

The derivative wrt a is

$$\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

$$= \nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t)$$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \cdots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$
Proof:

By the definition of Φ_t,

$$(\Phi_t(a) := \eta \sum_{s=1}^{t} \ell_s(a) + R(a))$$

$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$

The derivative wrt a is

$$\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

$$= \nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t)$$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \cdots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$

So \tilde{a}_{t+1} minimizes Φ_t.
Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:
Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem

For

\[a_{t+1} = \arg \min_{a \in A} \Phi_t(a), \]

\[\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \Phi_t(a), \]

we have

\[a_{t+1} = \Pi_{\Phi_t(A)}(\tilde{a}_{t+1}). \]
Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem

For

\[a_{t+1} = \arg \min_{a \in A} \Phi_t(a), \]

\[\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \Phi_t(a), \]
Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem

For

\[a_{t+1} = \operatorname{arg\,min}_{a \in \mathcal{A}} \Phi_t(a), \]

\[\tilde{a}_{t+1} = \operatorname{arg\,min}_{a \in \mathbb{R}^d} \Phi_t(a), \]

we have

\[a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}). \]
Properties of Regularization Methods

Proof:

Let a'_{t+1} denote $\Pi_{\hat{A}}^{\Phi_t}(\hat{a}_{t+1})$.
Proof:

Let \(a'_{t+1} \) denote \(\Pi_A^{\Phi_t}(\tilde{a}_{t+1}) \). First, by definition of \(a_{t+1} \),

\[
\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1}).
\]
Proof:

Let a'_{t+1} denote $\Pi_A^\Phi(\tilde{a}_{t+1})$. First, by definition of a_{t+1},

$$\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1}).$$

Conversely,

$$D_\Phi(a'_{t+1}, \tilde{a}_{t+1}) \leq D_\Phi(a_{t+1}, \tilde{a}_{t+1}).$$
Proof:

Let \(a_{t+1} \) denote \(\Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}) \). First, by definition of \(a_{t+1} \),

\[
\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1}).
\]

Conversely,

\[
D_{\Phi_t}(a'_{t+1}, \tilde{a}_{t+1}) \leq D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).
\]

But \(\nabla \Phi_t(\tilde{a}_{t+1}) = 0 \), so

\[
D_{\Phi_t}(a, \tilde{a}_{t+1}) = \Phi_t(a) - \Phi_t(\tilde{a}_{t+1}).
\]
Properties of Regularization Methods

Proof:

Let a'_{t+1} denote $\Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1})$. First, by definition of a_{t+1},

$$\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1}).$$

Conversely,

$$D_{\Phi_t}(a'_{t+1}, \tilde{a}_{t+1}) \leq D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).$$

But $\nabla \Phi_t(\tilde{a}_{t+1}) = 0$, so

$$D_{\Phi_t}(a, \tilde{a}_{t+1}) = \Phi_t(a) - \Phi_t(\tilde{a}_{t+1}).$$

Thus, $\Phi_t(a'_{t+1}) \leq \Phi_t(a_{t+1})$.
Example

For **linear** ℓ_t, regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence **wrt** R to the previous decision:

$$\arg \min_{a \in A} \left(\eta \sum_{s=1}^{\infty} \ell_s(a) + R(a) \right) = \Pi_{R \in A} \left(\arg \min_{a \in R^d} \left(\eta \ell_t(a) + D_R(a, \tilde{a}_t) \right) \right),$$

because adding a linear function to Φ does not change D_Φ. (e.g., R squared Euclidean norm)
Properties of Regularization Methods

Example

For linear \(\ell_t \), regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence \textit{wrt} \(R \) to the previous decision:

\[
\arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right) = \Pi^R_A \left(\arg \min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_R(a, \tilde{a}_t) \right) \right),
\]
Example

For linear ℓ_t, regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence \textit{wrt} R to the previous decision:

$$\arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$

$$= \Pi_{A}^{R} \left(\arg \min_{a \in \mathbb{R}^d} (\eta \ell_t(a) + D_R(a, \tilde{a}_t)) \right),$$

because adding a linear function to Φ does not change D_Φ.

Example

For linear ℓ_t, regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence \textbf{wrt} R to the previous decision:

$$\arg\min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$

$$= \prod_{A}^{R} \left(\arg\min_{a \in \mathbb{R}^d} (\eta \ell_t(a) + D_{R}(a, \tilde{a}_t)) \right),$$

because adding a linear function to Φ does not change D_{Φ}.

(e.g., R squared Euclidean norm)
Online Convex Optimization

1. Binary prediction

2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization

3. Minimax strategies
Properties of Regularization Methods: Linear loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.
Properties of Regularization Methods: Linear loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

$$\sum_{t=1}^{n} g_t \cdot a_t - \min_{a \in A} \sum_{t=1}^{n} g_t \cdot a \leq C_n(g_1, \ldots, g_n)$$

Proof:

Convexity implies $\ell_t(a_t) - \ell_t(a) \leq \nabla \ell_t(a_t) \cdot (a_t - a)$.

60 / 132
We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

$$\sum_{t=1}^{n} g_t \cdot a_t - \min_{a \in A} \sum_{t=1}^{n} g_t \cdot a \leq C_n(g_1, \ldots, g_n)$$

can be used to construct a strategy for online convex optimization, with regret

$$\sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in A} \sum_{t=1}^{n} \ell_t(a) \leq C_n(\nabla \ell_1(a_1), \ldots, \nabla \ell_n(a_n)).$$
We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Theorem

Any strategy for online linear optimization, with regret satisfying

$$\sum_{t=1}^{n} g_t \cdot a_t - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} g_t \cdot a \leq C_n(g_1, \ldots, g_n)$$

can be used to construct a strategy for online convex optimization, with regret

$$\sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} \ell_t(a) \leq C_n(\nabla \ell_1(a_1), \ldots, \nabla \ell_n(a_n)).$$

Proof:

Convexity implies $\ell_t(a_t) - \ell_t(a) \leq \nabla \ell_t(a_t) \cdot (a_t - a)$.

Properties of Regularization Methods

Key Point:
We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.
Properties of Regularization Methods

Key Point:
We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret. Thus, we can work with linear ℓ_t.
Online convex optimization

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

\[
\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} (\eta \sum_{s=1}^{T} g_s \cdot a + R(a))
\]

can be written

\[
\tilde{a}_{t+1} = (\nabla R)^{-1}(\nabla R(\tilde{a}_t) - \eta g_t).
\]

This corresponds to first mapping from \(\tilde{a}_t\) through \(\nabla R\), then taking a step in the direction \(-g_t\), then mapping back through \((\nabla R)^{-1} = \nabla R^\ast\) to \(\tilde{a}_{t+1}\).

see [Nemirovsky and Yudin, 1983]
Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as \textit{mirror descent}—taking a gradient step in a dual space:

\begin{align*}
\hat{a}_{t+1} &= \arg \min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^{t} g_s \cdot a + R(a) \right)
\end{align*}

see [Nemirovsky and Yudin, 1983]
Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem

The decisions

$$\tilde{a}_{t+1} = \text{arg min}_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^{t} g_s \cdot a + R(a) \right)$$

can be written

$$\tilde{a}_{t+1} = (\nabla R)^{-1} (\nabla R(\tilde{a}_t) - \eta g_t).$$

see [Nemirovsky and Yudin, 1983]
Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem

The decisions

\[\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^{t} g_s \cdot a + R(a) \right) \]

can be written

\[\tilde{a}_{t+1} = (\nabla R)^{-1} (\nabla R(\tilde{a}_t) - \eta g_t). \]

This corresponds to first mapping from \(\tilde{a}_t \) through \(\nabla R \), then taking a step in the direction \(-g_t \), then mapping back through \((\nabla R)^{-1} = \nabla R^* \) to \(\tilde{a}_{t+1} \).

see [Nemirovsky and Yudin, 1983]
Proof:

For the unconstrained minimization, we have

\[\nabla R(\tilde{a}_{t+1}) = -\eta_t \sum_{s=1}^{\tilde{a}_t} g_s, \]
\[\nabla R(\tilde{a}_t) = -\eta_t \sum_{s=1}^{\tilde{a}_t} g_s, \]

which can be written

\[\tilde{a}_{t+1} = \nabla R - \eta g_t. \]
Proof:

For the unconstrained minimization, we have

\[\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s, \]
Proof:
For the unconstrained minimization, we have

\[\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s, \]

\[\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s, \]
Proof:

For the unconstrained minimization, we have

\[\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s, \]
\[\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s, \]

so \[\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t. \]
Proof:

For the unconstrained minimization, we have

\[\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s, \]

\[\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s, \]

so \[\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t, \] which can be written

\[\tilde{a}_{t+1} = \nabla R^{-1}(\nabla R(\tilde{a}_t) - \eta g_t). \]
Online Convex Optimization

1. Binary prediction

2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization

3. Minimax strategies
Recall: Regularized minimization

\[a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

The regularizer \(R : \mathbb{R}^d \to \mathbb{R} \) is strictly convex and differentiable.
Regularization methods: Regret

Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret against any $a \in \mathcal{A}$ of

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a)$$

$$= \frac{D_R(a, a_1) - D_{\Phi_n}(a, a_{n+1})}{\eta} + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}),$$

and thus

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathcal{A}} \left(\sum_{t=1}^{n} \ell_t(a) + D_R(a, a_1) \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).$$

So the sizes of the steps $D_{\Phi_t}(a_t, a_{t+1})$ determine the regret bound.
Theorem

For $A = \mathbb{R}^d$, regularized minimization suffers regret against any $a \in A$ of

$$
\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) = \frac{D_R(a, a_1) - D_{\Phi_n}(a, a_{n+1})}{\eta} + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}),
$$

and thus

$$
\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).
$$
Regularization methods: Regret

Theorem

For $A = \mathbb{R}^d$, regularized minimization suffers regret against any $a \in A$ of

\[
\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) = D_R(a, a_1) - D_{\Phi_n}(a, a_{n+1}) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}),
\]

and thus

\[
\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).
\]

So the sizes of the steps $D_{\Phi_t}(a_t, a_{t+1})$ determine the regret bound.
Regularization methods: Regret

Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D\Phi_t(a_t, a_{t+1}).$$
Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\sum_{t=1}^n \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^n \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^n D_{\Phi_t}(a_t, a_{t+1}).$$

Notice that, because a_{t+1} is the unconstrained minimizer of Φ_t,

$$D_{\Phi_t}(a_t, a_{t+1}) = D_{\Phi^*_t}(\nabla \Phi_t(a_{t+1}), \nabla \Phi_t(a_t))$$
Regularization methods: Regret

Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).$$

Notice that, because a_{t+1} is the unconstrained minimizer of Φ_t,

$$D_{\Phi_t}(a_t, a_{t+1}) = D_{\Phi_t^*}(\nabla \Phi_t(a_{t+1}), \nabla \Phi_t(a_t))$$

$$= D_{\Phi_t^*}(0, \nabla \Phi_{t-1}(a_t) + \eta \nabla \ell_t(a_t))$$
Regularization methods: Regret

Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).$$

Notice that, because a_{t+1} is the unconstrained minimizer of Φ_t,

$$D_{\Phi_t}(a_t, a_{t+1}) = D_{\Phi^*_t}(\nabla \Phi_t(a_{t+1}), \nabla \Phi_t(a_t))$$

$$= D_{\Phi^*_t}(0, \nabla \Phi_{t-1}(a_t) + \eta \nabla \ell_t(a_t))$$

$$= D_{\Phi^*_t}(0, \eta \nabla \ell_t(a_t)).$$
Theorem

For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).$$

Notice that, because a_{t+1} is the unconstrained minimizer of Φ_t,

$$D_{\Phi_t}(a_t, a_{t+1}) = D_{\Phi_t^*}(\nabla \Phi_t(a_{t+1}), \nabla \Phi_t(a_t))$$
$$= D_{\Phi_t^*}(0, \nabla \Phi_{t-1}(a_t) + \eta \nabla \ell_t(a_t))$$
$$= D_{\Phi_t^*}(0, \eta \nabla \ell_t(a_t)).$$

So it is the size of the gradient steps, $D_{\Phi_t^*}(0, \eta \nabla \ell_t(a_t))$, that determines the regret.
Example

Suppose $R = \frac{1}{2} \| \cdot \|^2$.
Example

Suppose $R = \frac{1}{2} \| \cdot \|^2$. Then we have

$$\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) + \frac{\|a^* - a_1\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|g_t\|^2.$$
Regularization methods: Regret

Example

Suppose \(R = \frac{1}{2} \| \cdot \|^2 \). Then we have

\[
\sum_{t=1}^{n} \ell_t(a_t) \leq \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) + \frac{\| a^* - a_1 \|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \| g_t \|^2.
\]

And if \(\| g_t \| \leq G \) and \(\| a^* - a_1 \| \leq D \), choosing \(\eta \) appropriately gives regret \(\leq DG\sqrt{n} \).
Regularity methods: Regret

Seeing the future gives small regret

For regularized minimization, that is,

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right), \]

see also [Kalai and Vempala, 2005]
Seeing the future gives small regret

For regularized minimization, that is,

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right) ,$$

for all $a \in \mathcal{A}$,

$$\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta} (R(a) - R(a_1)).$$

see also [Kalai and Vempala, 2005]
Seeing the future gives small regret

For regularized minimization, that is,

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right), \]

for all \(a \in A, \)

\[\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta}(R(a) - R(a_1)). \]

(NB: This is cheating!)
Proof:

Since a_{t+1} minimizes Φ_t, and a_t minimizes $\Phi_t - 1$,

$$\eta_t \sum_{s=1}^{2} \ell_s(a) + R(a) \geq \eta_t \sum_{s=1}^{2} \ell_s(a_{t+1}) + R(a_{t+1}) \geq \eta \ell_t(a_{t+1}) + \eta_t - 1 \sum_{s=1}^{2} \ell_s(a_{t+1}) + R(a_{t+1}).$$
Proof:

Since a_{t+1} minimizes Φ_t,
Since \(a_{t+1} \) minimizes \(\Phi_t \),

\[
\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})
\]
Regularization methods: Regret

Proof:

Since a_{t+1} minimizes Φ_t,

$$\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})$$

$$= \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_{t+1}) + R(a_{t+1})$$
Regularization methods: Regret

Proof:

Since \(a_{t+1} \) minimizes \(\Phi_t \), and \(a_t \) minimizes \(\Phi_{t-1} \),

\[
\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})
\]

\[
= \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_{t+1}) + R(a_{t+1})
\]

\[
\geq \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_t) + R(a_t)
\]
Proof:

Since \(a_{t+1} \) minimizes \(\Phi_t \), and \(a_t \) minimizes \(\Phi_{t-1} \),

\[
\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})
\]

\[
= \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})
\]

\[
\geq \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_{t+1}) + R(a_t)
\]

\[
\vdots
\]

\[
\geq \eta \sum_{s=1}^{t} \ell_s(a_{s+1}) + R(a_1).
\]
Theorem

For all $a \in A$,

$$
\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta} (R(a) - R(a_1)).
$$
Regularization methods: Regret

Theorem

For all $a \in A$,

$$
\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta} (R(a) - R(a_1)).
$$

Thus, if a_t and a_{t+1} are close, then regret is small:

Corollary

For all $a \in A$,

$$
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a_{t+1})) + \frac{1}{\eta} (R(a) - R(a_1)).
$$
Regularization methods: Regret

Theorem
For all \(a \in A \),

\[
\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta} (R(a) - R(a_1)).
\]

Thus, if \(a_t \) and \(a_{t+1} \) are close, then regret is small:

Corollary
For all \(a \in A \),

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a_{t+1})) + \frac{1}{\eta} (R(a) - R(a_1)).
\]

So how can we control the increments \(\ell_t(a_t) - \ell_t(a_{t+1}) \)?
We say \(R \) is strongly convex wrt a norm \(\| \cdot \| \) if, for all \(a, b \),

\[
R(a) \geq R(b) + \nabla R(b) \cdot (a - b) + \frac{1}{2} \| a - b \|^2.
\]
For linear losses and strongly convex regularizers, the dual norm of the gradient is small.
Regularization methods: Regret

For linear losses and strongly convex regularizers, the dual norm of the gradient is small.

Theorem

If R is strongly convex wrt a norm $\| \cdot \|$, and $\ell_t(a) = g_t \cdot a$, then

$$\|a_t - a_{t+1}\| \leq \eta \|g_t\|_*,$$

where a_{t+1} minimizes Φ_t and $\| \cdot \|_*$ is the dual norm to $\| \cdot \|:

$$\|v\|_* = \sup\{v \cdot a : \|a\| \leq 1\}.$$
Regularization methods: Regret

For linear losses and strongly convex regularizers, the dual norm of the gradient is small.

Theorem

If R is strongly convex wrt a norm $\| \cdot \|$, and $\ell_t(a) = g_t \cdot a$, then

$$\| a_t - a_{t+1} \| \leq \eta \| g_t \|_*,$$

where a_{t+1} minimizes Φ_t and $\| \cdot \|_*$ is the dual norm to $\| \cdot \|:

$$\| v \|_* = \sup \{ v \cdot a : \| a \| \leq 1 \}.$$

Note that the definition implies a generalization of the Cauchy-Schwarz inequality: for $\| a \| > 0$,

$$v \cdot \frac{a}{\| a \|} \leq \| v \|_*.$$
Regularization methods: Regret

Proof:

\[R(a_t) \geq R(a_{t+1}) + \nabla R(a_{t+1}) \cdot (a_t - a_{t+1}) + \frac{1}{2} \| a_t - a_{t+1} \|^2, \]
Proof:

\[
R(a_t) \geq R(a_{t+1}) + \nabla R(a_{t+1}) \cdot (a_t - a_{t+1}) + \frac{1}{2}\|a_t - a_{t+1}\|^2,
\]

\[
R(a_{t+1}) \geq R(a_t) + \nabla R(a_t) \cdot (a_{t+1} - a_t) + \frac{1}{2}\|a_t - a_{t+1}\|^2.
\]
Regularization methods: Regret

Proof:

\begin{align*}
R(a_t) &\geq R(a_{t+1}) + \nabla R(a_{t+1}) \cdot (a_t - a_{t+1}) + \frac{1}{2} \|a_t - a_{t+1}\|^2, \\
R(a_{t+1}) &\geq R(a_t) + \nabla R(a_t) \cdot (a_{t+1} - a_t) + \frac{1}{2} \|a_t - a_{t+1}\|^2.
\end{align*}

Combining,

\[\|a_t - a_{t+1}\|^2 \leq (\nabla R(a_t) - \nabla R(a_{t+1})) \cdot (a_t - a_{t+1}) \]
Regularization methods: Regret

Proof:

\[R(a_t) \geq R(a_{t+1}) + \nabla R(a_{t+1}) \cdot (a_t - a_{t+1}) + \frac{1}{2} \|a_t - a_{t+1}\|^2, \]

\[R(a_{t+1}) \geq R(a_t) + \nabla R(a_t) \cdot (a_{t+1} - a_t) + \frac{1}{2} \|a_t - a_{t+1}\|^2. \]

Combining,

\[\|a_t - a_{t+1}\|^2 \leq (\nabla R(a_t) - \nabla R(a_{t+1})) \cdot (a_t - a_{t+1}) \]

Hence,

\[\|a_t - a_{t+1}\| \leq \|\nabla R(a_t) - \nabla R(a_{t+1})\|_* = \|\eta g_t\|_* . \]
Regularization methods: Regret

This leads to the regret bound:

Corollary

For linear losses, if R is strongly convex wrt $\| \cdot \|$, then for all $a \in \mathcal{A}$,

$$
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \eta \sum_{t=1}^{n} \|g_t\|_*^2 + \frac{1}{\eta} (R(a) - R(a_1)).
$$
This leads to the regret bound:

Corollary

For linear losses, if R is strongly convex wrt $\| \cdot \|$, then for all $a \in A$,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \eta \sum_{t=1}^{n} \|g_t\|_{\ast}^2 + \frac{1}{\eta} (R(a) - R(a_1)).$$

Thus, for $\|g_t\|_{\ast} \leq G$ and $R(a) - R(a_1) \leq D^2$, choosing η appropriately gives regret no more than $2GD\sqrt{n}$.
Example

Consider $R(a) = \frac{1}{2} \|a\|^2$, $a_1 = 0$, and A contained in a Euclidean ball of diameter D.
Consider $R(a) = \frac{1}{2}||a||^2$, $a_1 = 0$, and \mathcal{A} contained in a Euclidean ball of diameter D.

Then R is strongly convex wrt $|| \cdot ||$ and $|| \cdot ||_* = || \cdot ||$. And the mapping between primal and dual spaces is the identity.
Consider \(R(a) = \frac{1}{2}\|a\|^2 \), \(a_1 = 0 \), and \(\mathcal{A} \) contained in a Euclidean ball of diameter \(D \).

Then \(R \) is strongly convex wrt \(\| \cdot \| \) and \(\| \cdot \|_* = \| \cdot \| \). And the mapping between primal and dual spaces is the identity.

So if \(\sup_{a \in \mathcal{A}} \| \nabla \ell_t(a) \| \leq G \), then regret is no more than \(2GD\sqrt{n} \).
Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$.
Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise).
Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a, b) = \sum_i a_i \ln(a_i/b_i).$$
Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a, b) = \sum_i a_i \ln(a_i/b_i).$$

And R is strongly convex wrt $\| \cdot \|_1$.
Regularization methods: Regret

Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a, b) = \sum_i a_i \ln(a_i/b_i).$$

And R is strongly convex wrt $\| \cdot \|_1$. Also, $R(a) - R(a_1) \leq \ln m$.
Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a, b) = \sum_i a_i \ln(a_i/b_i).$$

And R is strongly convex wrt $\| \cdot \|_1$. Also, $R(a) - R(a_1) \leq \ln m$. Suppose that $\|g_t\|_\infty \leq 1$.

Regularization methods: Regret
Example

Consider $\mathcal{A} = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$. Then the mapping between primal and dual spaces is $\nabla R(a) = \ln(a)$ (component-wise). And the divergence is the KL divergence,

$$D_R(a, b) = \sum_i a_i \ln(a_i/b_i).$$

And R is strongly convex wrt $\|\cdot\|_1$. Also, $R(a) - R(a_1) \leq \ln m$.

Suppose that $\|g_t\|_{\infty} \leq 1$. Then the regret is no more than $2\sqrt{n \ln m}$.

Regularization methods: Regret
Example

\[A = \Delta^m, \quad R(a) = \sum_i a_i \ln a_i. \]
Regularization methods: Regret

Example

\[\mathcal{A} = \Delta^m, \quad R(a) = \sum_i a_i \ln a_i. \]

What are the updates?

\[a_{t+1} = \Pi_{\mathcal{A}}^R(\tilde{a}_{t+1}) \]
Example

\[\mathcal{A} = \Delta^m, \quad R(a) = \sum_i a_i \ln a_i. \]

What are the updates?

\[a_{t+1} = \Pi_{\mathcal{A}}^R(\tilde{a}_{t+1}) \]
\[= \Pi_{\mathcal{A}}^R(\nabla R^*(\nabla R(\tilde{a}_t) - \eta g_t)) \]
Regularization methods: Regret

Example

\(\mathcal{A} = \Delta^m, R(a) = \sum_i a_i \ln a_i. \)

What are the updates?

\[
a_{t+1} = \prod_{\mathcal{A}}^R (\tilde{a}_{t+1}) \\
= \prod_{\mathcal{A}}^R (\nabla R^* (\nabla R(\tilde{a}_t) - \eta g_t)) \\
= \prod_{\mathcal{A}}^R (\nabla R^* (\ln(\tilde{a}_t \exp(-\eta g_t)))))
\]
Example

\[\mathcal{A} = \Delta^m, \quad R(a) = \sum_i a_i \ln a_i. \]

What are the updates?

\[a_{t+1} = \Pi_R^{\mathcal{A}}(\tilde{a}_{t+1}) \]
\[= \Pi_R^{\mathcal{A}}(\nabla R^*(\nabla R(\tilde{a}_t) - \eta g_t)) \]
\[= \Pi_R^{\mathcal{A}}(\nabla R^*(\ln(\tilde{a}_t \exp(-\eta g_t)))) \]
\[= \Pi_R^{\mathcal{A}}(\tilde{a}_t \exp(-\eta g_t)), \]
Regularization methods: Regret

Example

\[A = \Delta^m, \quad R(a) = \sum_i a_i \ln a_i. \]

What are the updates?

\[
a_{t+1} = \Pi_{\mathcal{A}}^{R}(\tilde{a}_{t+1}) \\
= \Pi_{\mathcal{A}}^{R}(\nabla R^*(\nabla R(\tilde{a}_t) - \eta g_t)) \\
= \Pi_{\mathcal{A}}^{R}(\nabla R^*(\ln(\tilde{a}_t \exp(-\eta g_t)))) \\
= \Pi_{\mathcal{A}}^{R}(\tilde{a}_t \exp(-\eta g_t)),
\]

where the \text{ln} and \text{exp} functions are applied component-wise.
Example

$A = \Delta^m$, $R(a) = \sum_i a_i \ln a_i$.

What are the updates?

$$a_{t+1} = \Pi^R_A(\tilde{a}_{t+1})$$
$$= \Pi^R_A(\nabla R^* (\nabla R(\tilde{a}_t) - \eta g_t))$$
$$= \Pi^R_A(\nabla R^* (\ln(\tilde{a}_t \exp(-\eta g_t))))$$
$$= \Pi^R_A(\tilde{a}_t \exp(-\eta g_t)),$$

where the \ln and \exp functions are applied component-wise.

This is exponentiated gradient: mirror descent with $\nabla R = \ln$.
Regularization methods: Regret

Example

\(A = \Delta^m, \ R(a) = \sum_i a_i \ln a_i. \)

What are the updates?

\[
a_{t+1} = \Pi^R_A(\tilde{a}_{t+1}) \\
= \Pi^R_A(\nabla R^*(\nabla R(\tilde{a}_t) - \eta g_t)) \\
= \Pi^R_A(\nabla R^*(\ln(\tilde{a}_t \exp(-\eta g_t)))) \\
= \Pi^R_A(\tilde{a}_t \exp(-\eta g_t)),
\]

where the \(\ln \) and \(\exp \) functions are applied component-wise.

This is exponentiated gradient: mirror descent with \(\nabla R = \ln \).

It is easy to check that the projection corresponds to normalization,

\[
\Pi^R_A(\tilde{a}) = \tilde{a}/\|\tilde{a}\|_1.
\]
Notice that when the losses are linear, exponentiated gradient is exactly the exponential weights strategy we discussed for a finite comparison class.
Regularization methods: Regret

Notice that when the losses are linear, exponentiated gradient is exactly the exponential weights strategy we discussed for a finite comparison class. Compare \(R(a) = \sum_i a_i \ln a_i \) with \(R(a) = \frac{1}{2} \|a\|^2 \), for \(\|g_t\|_\infty \leq 1 \), \(\mathcal{A} = \Delta^m \):

\[
O(\sqrt{n \ln m}) \text{ versus } O(\sqrt{mn}).
\]
Instead of

\[a_{t+1} = \arg \min_{a \in A} (\eta \ell_t(a) + D\Phi_{t-1}(a, \tilde{a}_t)) , \]

we can use

\[a_{t+1} = \arg \min_{a \in A} (\eta \ell_t(a) + D\Phi_{t-1}(a, a_t)) . \]
Instead of
\[a_{t+1} = \arg \min_{a \in \mathcal{A}} (\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t)), \]
we can use
\[a_{t+1} = \arg \min_{a \in \mathcal{A}} (\eta \ell_t(a) + D_{\Phi_{t-1}}(a, a_t)). \]
Instead of

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right), \]

we can use

\[a_{t+1} = \arg \min_{a \in A} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, a_t) \right). \]

And analogous results apply. For instance, this is the approach used by the first gradient method we considered.
Online convex optimization

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
Regularization methods: Strongly convex losses

Key Point:
When the loss is strongly convex wrt the regularizer, the regret rate can be faster; in the case of quadratic ℓ_t, it is $O(\log n)$, versus $O(\sqrt{n})$.
Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

$$
\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a),
$$

$$
a_{t+1} = \arg \min_{a \in \mathbb{R}^d} \Phi_t(a).
$$
Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

$$
\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a),
$$

$$
a_{t+1} = \arg \min_{a \in \mathbb{R}^d} \Phi_t(a).
$$

For any $a \in \mathbb{R}^d$,

$$
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) = \sum_{t=1}^{n} \frac{1}{\eta_t} \left(D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t) - D_{\Phi_t}(a, a_{t+1}) \right).
$$
Some intuition about time-varying \(\eta \):

Consider

\[
\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a), \quad a_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a).
\]

For any \(a \in \mathbb{R}^d \),

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) = \sum_{t=1}^{n} \frac{1}{\eta_t} (D\Phi_t(a_t, a_{t+1}) + D\Phi_{t-1}(a, a_t) - D\Phi_t(a, a_{t+1})).
\]

(Easy to check. Use \(\nabla \Phi_t(a_{t+1}) = \nabla \Phi_{t-1}(a_t) = 0 \).)
Regularization methods: Strongly convex losses

Some intuition about time-varying η:

Consider

$$\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a), \quad a_{t+1} = \arg \min_{a \in \mathbb{R}^d} \Phi_t(a).$$

For any $a \in \mathbb{R}^d$,

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a) \right) = \sum_{t=1}^{n} \frac{1}{\eta_t} \left(D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t) - D_{\Phi_t}(a, a_{t+1}) \right).$$

(Easy to check. Use $\nabla \Phi_t(a_{t+1}) = \nabla \Phi_{t-1}(a_t) = 0$.)

What keeps the last two terms small?
Some intuition about time-varying η:

Consider

$$\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a), \quad a_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a).$$

For any $a \in \mathbb{R}^d$,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) = \sum_{t=1}^{n} \frac{1}{\eta_t} (D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t) - D_{\Phi_t}(a, a_{t+1})).$$

(Easy to check. Use $\nabla \Phi_t(a_{t+1}) = \nabla \Phi_{t-1}(a_t) = 0$.)

What keeps the last two terms small? If we linearize the ℓ_t, we have

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} (D_R(a_t, a_{t+1}) + D_R(a, a_t) - D_R(a, a_{t+1})).$$
Regularization methods: Strongly convex losses

Some intuition about time-varying η

Consider

$$\Phi_t(a) = \sum_{s=1}^{t} \eta_s \ell_s(a) + R(a), \quad a_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a).$$

For any $a \in \mathbb{R}^d$,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) = \sum_{t=1}^{n} \frac{1}{\eta_t} (D\Phi_t(a_t, a_{t+1}) + D\Phi_{t-1}(a, a_t) - D\Phi_t(a, a_{t+1})).$$

(Easy to check. Use $\nabla \Phi_t(a_{t+1}) = \nabla \Phi_{t-1}(a_t) = 0$.)

What keeps the last two terms small? If we linearize the ℓ_t, we have

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} (D_R(a_t, a_{t+1}) + D_R(a, a_t) - D_R(a, a_{t+1})), $$

which requires $\eta_t \approx$ constant. But what if ℓ_t are strongly convex?
Theorem

If ℓ_t is σ-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma}{2} D_R(a, b),$$

and R is strongly convex wrt $\|\cdot\|$,

then for any $a_t \in A$, mirror descent,

$$a_{t+1} = \Pi_{R \cdot A}(\nabla R - 1(\nabla R(a_t) - \eta_t \nabla \ell_t(a_t))),$$

with $\eta_t \geq \frac{2}{\sigma}$ has regret

$$n \sum_{t=1}^{\infty} \ell_t(a_t) - n \sum_{t=1}^{\infty} \ell_t(a) \leq n \sum_{t=1}^{\infty} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) \leq n \sum_{t=1}^{\infty} \frac{1}{\eta_t} \|\nabla \ell_t(a_t)\|_2^2.$$
Theorem

If ℓ_t is σ-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma}{2} D_R(a, b),$$

and R is strongly convex wrt $\| \cdot \|$,

[B., Hazan, Rakhlin, 2007]
Theorem

If ℓ_t is σ-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma}{2} D_R(a, b),$$

and R is strongly convex wrt $\| \cdot \|$, then for any $a \in A$, mirror descent,

$$a_{t+1} = \Pi_R^A (\nabla^{-1} R(a_t) - \eta_t \nabla \ell_t(a_t))$$

with $\eta_t \geq \frac{2}{t\sigma}$ has regret

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) \leq \sum_{t=1}^{n} \eta_t \|\nabla \ell_t(a_t)\|_*^2.$$
Regularization methods: Strongly convex losses

Proof

\[\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right). \]
Regularization methods: Strongly convex losses

Proof

\[\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a_t, a) \right). \]

Define: \(\tilde{a}_{t+1} \) so that \(a_{t+1} = \Pi_{\mathcal{A}}^R(\tilde{a}_{t+1}) \):
Proof

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right).
\]

Define: \(\tilde{a}_{t+1} \) so that \(a_{t+1} = \Pi_{\mathcal{A}}^{R}(\tilde{a}_{t+1}) \):

\[
\tilde{a}_{t+1} := \nabla R^{-1} \left(\nabla R(a_t) - \eta_t \nabla \ell_t(a_t) \right),
\]
Regularization methods: Strongly convex losses

Proof

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right).$$

Define: \tilde{a}_{t+1} so that $a_{t+1} = \Pi_{\mathcal{A}}^{R} (\tilde{a}_{t+1})$:

$$\tilde{a}_{t+1} := \nabla R^{-1} (\nabla R(a_t) - \eta_t \nabla \ell_t(a_t)),$$

and hence

$$\nabla R^{-1} (\tilde{a}_{t+1}) := \nabla R(a_t) - \eta_t \nabla \ell_t(a_t).$$
Regularization methods: Strongly convex losses

Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} (\nabla R(a_t) - \nabla R(\hat{a}_{t+1})) \cdot (a_t - a) \]
Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - a) \]

where the first equality follows from the definition of \(\tilde{a}_{t+1} \),
Regularization methods: Strongly convex losses

Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]

\[= \frac{1}{\eta_t} (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - a) \]

\[= \frac{1}{\eta_t} (D_R(a, a_t) - D_R(a, \tilde{a}_{t+1}) + D_R(a_t, \tilde{a}_{t+1})) \]

where the first equality follows from the definition of \(\tilde{a}_{t+1} \),
Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]

\[= \frac{1}{\eta_t} \left(\nabla R(a_t) - \nabla R(\tilde{a}_{t+1}) \right) \cdot (a_t - a) \]

\[= \frac{1}{\eta_t} \left(D_R(a, a_t) - D_R(a, \tilde{a}_{t+1}) + D_R(a_t, \tilde{a}_{t+1}) \right) \]

where the first equality follows from the definition of \(\tilde{a}_{t+1} \), the second follows from the definition of Bregman divergence,
Regularization methods: Strongly convex losses

Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} \left(\nabla R(a_t) - \nabla R(\tilde{a}_{t+1}) \right) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} \left(D_R(a, a_t) - D_R(a, \tilde{a}_{t+1}) + D_R(a_t, \tilde{a}_{t+1}) \right) \]
\[\leq \frac{1}{\eta_t} \left(D_R(a, a_t) - D_R(a, a_{t+1}) + D_R(a_t, \tilde{a}_{t+1}) \right) , \]

where the first equality follows from the definition of \(\tilde{a}_{t+1} \),
the second follows from the definition of Bregman divergence,
Regularization methods: Strongly convex losses

Proof

\[\nabla \ell_t(a_t) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - a) \]
\[= \frac{1}{\eta_t} (D_R(a, a_t) - D_R(a, \tilde{a}_{t+1}) + D_R(a_t, \tilde{a}_{t+1})) \]
\[\leq \frac{1}{\eta_t} (D_R(a, a_t) - D_R(a, a_{t+1}) + D_R(a_t, \tilde{a}_{t+1})) , \]

where the first equality follows from the definition of \(\tilde{a}_{t+1} \), the second follows from the definition of Bregman divergence, and the inequality follows from the Pythagorean Theorem for \(D_R \) (for \(a^* = \Pi^\Phi_A(b) \) and \(a \in A, D_\Phi(a, b) \geq D_\Phi(a, a^*) + D_\Phi(a^*, b) \).)
Regularization methods: Strongly convex losses

Proof

\[\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \]

\[\leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right) \]

Choosing \(\eta_t = c/t \) for \(c \geq 2/\sigma \) eliminates the second and third terms.
Proof

\[\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right) \leq \sum_{t=1}^{n} \left(\frac{1}{\eta_t} \left(D_R(a, a_t) - D_R(a, a_{t+1}) + D_R(a_t, \tilde{a}_{t+1}) \right) - \frac{\sigma}{2} D_R(a, a_t) \right) \]

And choosing \(\eta_t = \frac{c}{t} \) for \(c \geq 2/\sigma \) eliminates the second and third terms.
Regularization methods: Strongly convex losses

Proof

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \\
\leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right) \\
\leq \sum_{t=1}^{n} \left(\frac{1}{\eta_t} (D_R(a, a_t) - D_R(a, a_{t+1}) + D_R(a_t, \tilde{a}_{t+1})) - \frac{\sigma}{2} D_R(a, a_t) \right) \\
= \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \frac{\sigma}{2} \right) D_R(a_t, a_t) \\
+ \left(\frac{1}{\eta_1} - \frac{\sigma}{2} \right) D_R(a, a_1).
\]
Regularization methods: Strongly convex losses

Proof

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \\
\leq \sum_{t=1}^{n} \left(\nabla \ell_t(a_t) \cdot (a_t - a) - \frac{\sigma}{2} D_R(a, a_t) \right) \\
\leq \sum_{t=1}^{n} \left(\frac{1}{\eta_t} (D_R(a, a_t) - D_R(a, a_{t+1}) + D_R(a_t, \tilde{a}_{t+1})) - \frac{\sigma}{2} D_R(a, a_t) \right) \\
= \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \frac{\sigma}{2} \right) D_R(a, a_t) \\
+ \left(\frac{1}{\eta_1} - \frac{\sigma}{2} \right) D_R(a, a_1).
\]

And choosing \(\eta_t = c/t \) for \(c \geq 2/\sigma \) eliminates the second and third terms.
Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]
Proof

Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]
\[= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \]
Also,

\[
D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t)
\]

\[
= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1})
\]

\[
= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1})
\]
Regularization methods: Strongly convex losses

Proof

Also,

\[
D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \\
= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \\
= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1})
\]

where the second equality is from the definition of \(\tilde{a}_{t+1} \)
Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]

\[= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \]

\[= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1}) \]

\[\leq \eta_t \| \nabla \ell_t(a_t) \|_{\ast} \| a_t - \tilde{a}_{t+1} \| \]

where the second equality is from the definition of \(\tilde{a}_{t+1} \)
Proof

Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]

\[= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \]

\[= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1}) \]

\[\leq \eta_t \| \nabla \ell_t(a_t) \|_\ast \| a_t - \tilde{a}_{t+1} \| \]

\[\leq \eta_t \| \nabla \ell_t(a_t) \|_\ast \| \nabla R(a_t) - \nabla R(\tilde{a}_{t+1}) \|_\ast \]

where the second equality is from the definition of \(\tilde{a}_{t+1} \)
Regularization methods: Strongly convex losses

Proof

Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]
\[= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \]
\[= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1}) \]
\[\leq \eta_t \|\nabla \ell_t(a_t)\|_\ast \|a_t - \tilde{a}_{t+1}\| \]
\[\leq \eta_t \|\nabla \ell_t(a_t)\|_\ast \|\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})\|_\ast \]

where the second equality is from the definition of \(\tilde{a}_{t+1} \)
and the second inequality follows from the strong convexity of \(R \) wrt \(\| \cdot \| \).
Regularization methods: Strongly convex losses

Proof

Also,

\[D_R(a_t, \tilde{a}_{t+1}) \leq D_R(a_t, \tilde{a}_{t+1}) + D_R(\tilde{a}_{t+1}, a_t) \]
\[= (\nabla R(a_t) - \nabla R(\tilde{a}_{t+1})) \cdot (a_t - \tilde{a}_{t+1}) \]
\[= \eta_t \nabla \ell_t(a_t) \cdot (a_t - \tilde{a}_{t+1}) \]
\[\leq \eta_t \| \nabla \ell_t(a_t) \|_* \| a_t - \tilde{a}_{t+1} \| \]
\[\leq \eta_t \| \nabla \ell_t(a_t) \|_* \| \nabla R(a_t) - \nabla R(\tilde{a}_{t+1}) \|_* \]
\[= \eta_t^2 \| \nabla \ell_t(a_t) \|_*^2, \]

where the second equality is from the definition of \(\tilde{a}_{t+1} \) and the second inequality follows from the strong convexity of \(R \) wrt \(\| \cdot \| \).
Theorem

If ℓ_t is σ-strongly convex wrt R and R is strongly convex wrt $\| \cdot \|$, then for any $a \in A$, mirror descent, $a_{t+1} = \Pi_A^R ((\nabla R)^{-1} (\nabla R(a_t) - \eta_t \nabla \ell_t(a_t)))$ with $\eta_t \geq \frac{2}{t \sigma}$ has regret

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \eta_t \| \nabla \ell_t(a_t) \|_*^2.$$
Regularization methods: Strongly convex losses

Theorem

If ℓ_t is σ-strongly convex wrt R and R is strongly convex wrt $\| \cdot \|$, then for any $a \in A$, mirror descent, $a_{t+1} = \Pi_A^R (\nabla R)^{-1} (\nabla R(a_t) - \eta_t \nabla \ell_t(a_t))$ with $\eta_t \geq \frac{2}{t\sigma}$ has regret

$$\sum_{t=1}^n \ell_t(a_t) - \sum_{t=1}^n \ell_t(a) \leq \sum_{t=1}^n \eta_t \| \nabla \ell_t(a_t) \|^2_{*}.$$

Example

For $R(a) = \frac{1}{2} \| a \|^2_2$, we have

$$\sum_{t=1}^n \ell_t(a_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^n \ell_t(a) \leq \sum_{t=1}^n \eta_t \| \nabla \ell_t \|^2_{*} = O \left(\frac{G^2}{\sigma} \log n \right).$$
Also, even if $\sigma = 0$, this proof shows that we can choose $\eta_t = c/\sqrt{t}$ to get a regret bound of the form

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a) \right) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{\sqrt{t}}{c} - \frac{\sqrt{t-1}}{c} \right) D_R(a, a_t) + \frac{1}{c} D_R(a, a_1)$$

Where $D_R(a, b) = \frac{\|a - b\|^2}{c}$.
Brief digression: Linear Losses

Also, even if $\sigma = 0$, this proof shows that we can choose $\eta_t = c/\sqrt{t}$ to get a regret bound of the form

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))$$

$$\leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{\sqrt{t}}{c} - \frac{\sqrt{t-1}}{c} \right) D_R(a, a_t) + \frac{1}{c} D_R(a, a_1)$$

$$\leq \sum_{t=1}^{n} \eta_t \|\nabla \ell_t(a_t)\|_*^2 + \frac{D^2}{c} \sum_{t=1}^{n} \left(\sqrt{t} - \sqrt{t-1} \right)$$

$\leq c G^2 + D^2 c \sqrt{n} = O(DG \sqrt{n})$
Also, even if $\sigma = 0$, this proof shows that we can choose $\eta_t = c/\sqrt{t}$ to get a regret bound of the form

$$
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))
\leq \sum_{t=1}^{n} \frac{1}{\eta_t} DR(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{\sqrt{t}}{c} - \frac{\sqrt{t-1}}{c} \right) DR(a, a_t) + \frac{1}{c} DR(a, a_1)
\leq \sum_{t=1}^{n} \eta_t \|\nabla \ell_t(a_t)\|^2 + \frac{D^2}{c} \sum_{t=1}^{n} \left(\sqrt{t} - \sqrt{t-1} \right)
\leq \left(cG^2 + \frac{D^2}{c} \right) \sqrt{n}
$$
Also, even if $\sigma = 0$, this proof shows that we can choose $\eta_t = c/\sqrt{t}$ to get a regret bound of the form

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))$$

$$\leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{\sqrt{t}}{c} - \frac{\sqrt{t-1}}{c} \right) D_R(a, a_t) + \frac{1}{c} D_R(a, a_1)$$

$$\leq \sum_{t=1}^{n} \eta_t \|\nabla \ell_t(a_t)\|_*^2 + \frac{D^2}{c} \sum_{t=1}^{n} \left(\sqrt{t} - \sqrt{t-1} \right)$$

$$\leq \left(cG^2 + \frac{D^2}{c} \right) \sqrt{n}$$

$$= O(DG \sqrt{n}).$$
Regularization methods: Convexity and Strong Convexity

<table>
<thead>
<tr>
<th>ℓ_t</th>
<th>η_t</th>
<th>R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>convex</td>
<td>$\frac{1}{\sqrt{t}}$</td>
<td>$O(\sqrt{n})$</td>
</tr>
<tr>
<td>σ-strongly convex</td>
<td>$\frac{1}{\sigma t}$</td>
<td>$O\left(\frac{1}{\sigma \log n}\right)$</td>
</tr>
</tbody>
</table>
Regularization methods: Convexity and Strong Convexity

<table>
<thead>
<tr>
<th>ℓ_t</th>
<th>η_t</th>
<th>R_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>convex</td>
<td>$\frac{1}{\sqrt{t}}$</td>
<td>$O(\sqrt{n})$</td>
</tr>
<tr>
<td>σ-strongly convex</td>
<td>$\frac{1}{\sigma t}$</td>
<td>$O\left(\frac{1}{\sigma \log n}\right)$</td>
</tr>
</tbody>
</table>

All that changes is the step-size.
Regularization methods: Convexity and Strong Convexity

<table>
<thead>
<tr>
<th>(\ell_t)</th>
<th>(\eta_t)</th>
<th>(R_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>convex</td>
<td>(\frac{1}{\sqrt{t}})</td>
<td>(O(\sqrt{n}))</td>
</tr>
<tr>
<td>(\sigma)-strongly convex</td>
<td>(\frac{1}{\sigma t})</td>
<td>(O\left(\frac{1}{\sigma \log n}\right))</td>
</tr>
</tbody>
</table>

All that changes is the step-size.

What if we don’t know \(\sigma \)?

Can we adapt our step-size to give the right rate?
Outline

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
 - Strong convexity (Adaptive Gradient)
 - Diagonal regularizers (AdaGrad)
3. Minimax strategies
Regularization methods: adapting to strong convexity

Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R_n.

$$R_n = \sum_{t=1}^n (\ell_t(a_t) - \ell_t(a)) = \sum_{t=1}^n (\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) + \lambda_t (g(a) - g(a_t))) \leq D_n^2 \sum_{t=1}^n \lambda_t + \sum_{t=1}^n (\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a)),$$

where we've defined $D_n^2 := \sup_{a,a_t} (g(a) - g(a_t))$. This is an approximation error term, plus the regret for the regularized losses $\tilde{\ell}_t$.
Regularization methods: adapting to strong convexity

Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R.

$R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq D^2 \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} (\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a)),$

where we've defined $D^2 := \sup_{a, a_t} (g(a) - g(a_t))$. This is an approximation error term, plus the regret for the regularized losses $\tilde{\ell}_t(\cdot)$.

Regularization methods: adapting to strong convexity

Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R.

$$R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))$$
Regularization methods: adapting to strong convexity

Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R.

$$R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))$$

$$= \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) + \lambda_t (g(a) - g(a_t)) \right)$$
Regularization methods: adapting to strong convexity

Adaptive regularization

Replace \(\ell_t(\cdot) \) with \(\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot) \), where \(g \) is strongly convex wrt \(R \).

\[
R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \\
= \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) + \lambda_t (g(a) - g(a_t)) \right) \\
\leq D^2 \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right),
\]
Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R.

\[
R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))
\]

\[
= \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) + \lambda_t (g(a) - g(a_t)) \right)
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right),
\]

where we’ve defined $D^2 := \sup_{a,a_t} (g(a) - g(a_t))$.

This is an approximation error term, plus the regret for the regularized losses $\tilde{\ell}_t(\cdot)$.

Regularization methods: adapting to strong convexity
Regularization methods: adapting to strong convexity

Adaptive regularization

Replace $\ell_t(\cdot)$ with $\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot)$, where g is strongly convex wrt R.

$$R_n = \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a))$$
$$= \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) + \lambda_t (g(a) - g(a_t)) \right)$$
$$\leq D^2 \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right),$$

where we’ve defined $D^2 := \sup_{a,a_t} (g(a) - g(a_t))$.

This is an approximation error term, plus the regret for the regularized losses $\tilde{\ell}_t$.
Regularization methods: adapting to strong convexity

\[
R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n).
\]
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s?
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s? (We’ll give a bound.)
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s? (We’ll give a bound.)
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)?
This is similar to a model selection problem.

1. How does \tilde{R}_n depend on the λ_ts? (We’ll give a bound.)
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex ℓ_t? (Yes.)
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s? (We’ll give a bound.)
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)? (Yes.)
3. Can we choose \(\lambda_t \) online to obtain the best trade-off between these two terms?
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

This is similar to a model selection problem.

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s? (We’ll give a bound.)
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)? (Yes.)
3. Can we choose \(\lambda_t \) online to obtain the best trade-off between these two terms? (Yes.)
Theorem

If ℓ_t is σ_t-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma_t}{2} D_R(a, b),$$

and R is strongly convex wrt $\| \cdot \|$, see, e.g., [B., Hazan, Rakhlin, 2007]
Theorem

If ℓ_t is σ_t-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$
\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma_t}{2} D_R(a, b),
$$

and R is strongly convex wrt $\|\cdot\|$, then for any $a \in \mathbb{R}^d$, mirror descent with $\eta_t = 2 / \sum_{s=1}^{t} \sigma_s$ has regret

$$
\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) \leq 2 \sum_{t=1}^{n} \frac{\|\nabla \ell_t(a_t)\|^2}{\sum_{s=1}^{t} \sigma_s}.
$$

see, e.g., [B., Hazan, Rakhlin, 2007]
Theorem

If ℓ_t is σ_t-strongly convex wrt R, that is, for all $a, b \in \mathbb{R}^d$,

$$\ell_t(a) \geq \ell_t(b) + \nabla \ell_t(b) \cdot (a - b) + \frac{\sigma_t}{2} D_R(a, b),$$

and R is strongly convex wrt $\|\cdot\|$, then for any $a \in \mathbb{R}^d$, mirror descent with $\eta_t = 2/\sum_{s=1}^{t} \sigma_s$ has regret

$$\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) \leq 2 \sum_{t=1}^{n} \frac{\|\nabla \ell_t(a_t)\|^2_*}{\sum_{s=1}^{t} \sigma_s}.$$

Notice: η_t is used to update a_t to a_{t+1}, so it uses only past information.

see, e.g., [B., Hazan, Rakhlin, 2007]
As before (when σ_t was constant), we have

\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \frac{\sigma_t}{2} \right) D_R(a, a_t) + \left(\frac{1}{\eta_1} - \frac{\sigma_1}{2} \right) D_R(a, a_1).
\]
Regularization methods: adapting to strong convexity

Proof idea

As before (when σ_t was constant), we have

$$\sum_{t=1}^{n} \left(\ell_t(a_t) - \ell_t(a) \right) \leq \sum_{t=1}^{n} \frac{1}{\eta_t} D_R(a_t, \tilde{a}_{t+1}) + \sum_{t=2}^{n} \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}} - \frac{\sigma_t}{2} \right) D_R(a, a_t) + \left(\frac{1}{\eta_1} - \frac{\sigma_1}{2} \right) D_R(a, a_1).$$

And the choice of η_t eliminates the second and third terms.
Regularization methods: adapting to strong convexity

Adaptive regularization

Work with \(\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot) \) (where \(g \) is strongly convex wrt \(R \)). If the \(\ell_t \) are \(\sigma_t \)-strongly convex wrt \(R \), then \(\tilde{\ell}_t \) are \((\sigma_t + \lambda_t) \)-strongly convex.
Regularization methods: adapting to strong convexity

Adaptive regularization

Work with \(\tilde{\ell}_t(\cdot) := \ell_t(\cdot) + \lambda_t g(\cdot) \) (where \(g \) is strongly convex wrt \(R \)). If the \(\ell_t \) are \(\sigma_t \)-strongly convex wrt \(R \), then \(\tilde{\ell}_t \) are \((\sigma_t + \lambda_t) \)-strongly convex. Using mirror descent for the \(\tilde{\ell}_t \)s, we choose steps

\[
\eta_t = \frac{2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}.
\]
Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

\[\sum_{t=1}^{n} \ell_t(a_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right) \]
Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

\[
\sum_{t=1}^{n} \ell_t(a_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right)
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{\| \nabla \tilde{\ell}_t(a_t) \|^2_*}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}
\]
Regret

This strategy incurs regret

\[
\sum_{t=1}^{n} \ell_t(a_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right)
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{\|\nabla \tilde{\ell}_t(a_t)\|_*^2}{\sum_{s=1}^{t}(\sigma_s + \lambda_s)}
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t}(\sigma_s + \lambda_s)},
\]
Regularization methods: adapting to strong convexity

Regret

This strategy incurs regret

\[
\sum_{t=1}^{n} \ell_t(a_t) - \inf_{a \in \mathbb{R}^d} \sum_{t=1}^{n} \ell_t(a) \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \left(\tilde{\ell}_t(a_t) - \tilde{\ell}_t(a) \right)
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{\|\nabla \tilde{\ell}_t(a_t)\|^2_*}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}
\]

\[
\leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)},
\]

where \(\|\nabla \ell_t(a_t)\|^*_* \leq G_t\) and \(\|\nabla g(a_t)\|^*_* \leq B\).
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s?
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)?
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s?
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)?
3. Can we choose \(\lambda_t \) online to obtain the best trade-off between these two terms?
Regularization methods: adapting to strong convexity

And the best choice of $\lambda_1, \ldots, \lambda_n$ is good here in the convex case:

Example

Assume $\sigma_t \geq 0$. Choose

$$\lambda_1 = \sqrt{\frac{\sum_{t=1}^{n} G_t^2}{B^2 + D^2}}$$

and $\lambda_2 = \cdots = \lambda_n = 0$.
And the best choice of $\lambda_1, \ldots, \lambda_n$ is good here in the convex case:

Example

Assume $\sigma_t \geq 0$. Choose

$$\lambda_1 = \sqrt{\frac{\sum_{t=1}^{n} G_t^2}{B^2 + D^2}}$$

and $\lambda_2 = \cdots = \lambda_n = 0$. Then the bound gives

$$R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}$$

$$= O \left(\sqrt{(B^2 + D^2) \sum_{t=1}^{n} G_t^2} \right).$$
Regularization methods: adapting to strong convexity

And the best choice of $\lambda_1, \ldots, \lambda_n$ is good here in the convex case:

Example

Assume $\sigma_t \geq 0$. Choose

$$
\lambda_1 = \sqrt{\frac{\sum_{t=1}^{n} G_t^2}{B^2 + D^2}}
$$

and $\lambda_2 = \cdots = \lambda_n = 0$. Then the bound gives

$$
R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}
$$

$$
= O \left(\sqrt{(B^2 + D^2) \sum_{t=1}^{n} G_t^2} \right).
$$

If $G_t \leq G$, this is $R_n = O \left(\sqrt{B^2 + D^2} G \sqrt{n} \right)$.

And the best choice of $\lambda_1, \ldots, \lambda_n$ is good here in the strongly convex case:

Example

Assume $\sigma_t \geq \sigma$ and $G_t \leq G$. Choose $\lambda_1 = \cdots = \lambda_n = 0$.

The bound gives $R_n \leq D^2 \sum_{t=1}^n \lambda_t + 2 \sum_{t=1}^n (G_t + \lambda_t B)^2 \sum_{s=1}^t (\sigma_s + \lambda_s) = O(G^2 \sigma \log n)$.

102 / 132
And the best choice of $\lambda_1, \ldots, \lambda_n$ is good here in the strongly convex case:

Example

Assume $\sigma_t \geq \sigma$ and $G_t \leq G$. Choose $\lambda_1 = \cdots = \lambda_n = 0$. Then the bound gives

$$R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + 2 \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}$$

$$= O \left(\frac{G^2}{\sigma} \log n \right).$$
Regularization methods: adapting to strong convexity

We can also obtain a spectrum of rates with the best choice of $\lambda_1, \ldots, \lambda_n$:

Example

Suppose $\sigma_t = t^{-\alpha}$ and $G_t \leq G$. Then the bound gives

$$R_n = \begin{cases}
O(\log n) & \text{if } \alpha = 0, \\
O(\sqrt{n}) & \text{if } \alpha > 1/2.
\end{cases}$$
We can also obtain a spectrum of rates with the best choice of $\lambda_1, \ldots, \lambda_n$:

Example

Suppose $\sigma_t = t^{-\alpha}$ and $G_t \leq G$. Then the bound gives

$$R_n = \begin{cases}
O(\log n) & \text{if } \alpha = 0, \\
O(n^{\alpha}) & \text{if } 0 < \alpha \leq 1/2, \\
O(\sqrt{n}) & \text{if } \alpha > 1/2.
\end{cases}$$

Choose $\lambda_1 = n^{\alpha_1}$ and $\lambda_2 = \cdots = \lambda_n = 0.$
We can also obtain a spectrum of rates with the best choice of $\lambda_1, \ldots, \lambda_n$:

Example

Suppose $\sigma_t = t^{-\alpha}$ and $G_t \leq G$. Then the bound gives

$$R_n = \begin{cases}
O(\log n) & \text{if } \alpha = 0, \\
O(n^\alpha) & \text{if } 0 < \alpha \leq 1/2, \\
O(\sqrt{n}) & \text{if } \alpha > 1/2.
\end{cases}$$

(Choose $\lambda_1 = n^\alpha$ and $\lambda_2 = \cdots \lambda_n = 0.$)
Regularization methods: adapting to strong convexity

\[R_n \leq D^2 \sum_{t=1}^{n} \lambda_t + \tilde{R}_n(\lambda_1, \ldots, \lambda_n). \]

1. How does \(\tilde{R}_n \) depend on the \(\lambda_t \)s?
2. Does the best trade-off between the two terms above ensure the optimal rates for convex and strongly convex \(\ell_t \)?
3. Can we choose \(\lambda_t \) online to obtain the best trade-off between these two terms?
Theorem

Choosing

\[\lambda_t = \frac{1}{2} \left(\sqrt{\left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right)^2 + \frac{16 G_t^2}{D^2 + B^2} - \left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right)} \right) \]

with this regularized mirror descent strategy

[B., Hazan, Rakhlin, 2007]
Regularization methods: adapting to strong convexity

Theorem

Choosing

\[\lambda_t = \frac{1}{2} \left(\sqrt{\left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right)^2 + \frac{16G_t^2}{D^2 + B^2} - \left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right)} \right) \]

with this regularized mirror descent strategy gives regret

\[R_n = O \left(\inf_{\lambda_1, \ldots, \lambda_n} \left((D^2 + B^2) \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)} \right) \right) . \]

[B., Hazan, Rakhlin, 2007]
Notice that we’re using information about each ℓ_t only after we see it.
Notice that we’re using information about each ℓ_t only after we see it.

Compare this to the simple gradient method that we saw earlier, which chooses $\eta = D/(G\sqrt{n})$. Here, we don’t need to know the upper bound G (or n): we choose λ_t as a function of information about past losses, and we can compete with the optimal bounds.
Notice that we’re using information about each ℓ_t only after we see it.

Compare this to the simple gradient method that we saw earlier, which chooses $\eta = D/(G\sqrt{n})$. Here, we don’t need to know the upper bound G (or n): we choose λ_t as a function of information about past losses, and we can compete with the optimal bounds.

For instance, for the case of convex functions that satisfy a gradient dual norm bound G,

$$R_n = O \left(\sqrt{B^2 + D^2 G \sqrt{n}} \right).$$

(And similarly for the stronger version that replaces G by the rms dual norm of the gradients.)
Proof Idea

We prove that balancing the two terms is near-optimal: Consider

\[H_n(\{\lambda_t\}) := \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \frac{C_t}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)}. \]

Then choosing \(\lambda_t \) to solve the quadratic equation

\[\lambda_t = \frac{C_t}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)} \]

ensures that

\[H_n(\{\lambda_t\}) \leq 2 \inf_{\{\lambda^*_t\}} H_n(\{\lambda^*_t\}). \]
Proof Idea

There is an inductive proof of this balancing result, which considers separately the cases

\[\sum_{s=1}^{t} \lambda_s < \sum_{s=1}^{t} \lambda^*_s \]

and

\[\sum_{s=1}^{t} \lambda_s > \sum_{s=1}^{t} \lambda^*_s, \]

and exploits the fact that the two terms of \(H_t \) are monotonic in \(\sum_{s=1}^{t} \lambda_s \). And the choice of \(\lambda_t \) in the theorem is the positive solution to the appropriate quadratic equation.
Regularization methods: adapting to strong convexity

Theorem

Choosing

\[
\lambda_t = \frac{1}{2} \left(\sqrt{\left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right)^2} + \frac{16 G_t^2}{D^2 + B^2} - \left(\sum_{s=1}^{t-1} (\sigma_s + \lambda_s) + \sigma_t \right) \right)
\]

with this regularized mirror descent strategy gives regret

\[
R_n = O \left(\inf_{\lambda_1, \ldots, \lambda_n} \left((D^2 + B^2) \sum_{t=1}^{n} \lambda_t + \sum_{t=1}^{n} \frac{(G_t + \lambda_t B)^2}{\sum_{s=1}^{t} (\sigma_s + \lambda_s)} \right) \right).
\]
Outline

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
 - Strong convexity (Adaptive Gradient)
 - Diagonal regularizers (AdaGrad)
3. Minimax strategies
We considered mirror descent where we added an adaptively chosen component of a regularizer g that is strongly convex wrt R. To simplify, assume $g = R$.
We considered mirror descent where we added an adaptively chosen component of a regularizer g that is strongly convex wrt R. To simplify, assume $g = R$. We can view this in two ways:

$$a_{t+1} = \arg \min_{a \in A} \left(\sum_{s=1}^{t} \eta_s \nabla (\ell_s + \lambda_s R)(a_s) \cdot (a - a_t) + R(a) \right)$$
We considered mirror descent where we added an adaptively chosen component of a regularizer g that is strongly convex wrt R. To simplify, assume $g = R$. We can view this in two ways:

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\sum_{s=1}^{t} \eta_s \nabla (\ell_s + \lambda_s R)(a_s) \cdot (a - a_t) + R(a) \right)$$

$$= \arg \min_{a \in \mathcal{A}} \left(\eta_t \nabla (\ell_t + \lambda_t R)(a_t) \cdot (a - a_t) + D_R(a, \tilde{a}_t) \right).$$
Regularization methods: Adaptive regularization

We considered mirror descent where we added an adaptively chosen component of a regularizer g that is strongly convex wrt R. To simplify, assume $g = R$. We can view this in two ways:

$$a_{t+1} = \arg\min_{a \in A} \left(\sum_{s=1}^{t} \eta_s \nabla (\ell_s + \lambda_s R)(a_s) \cdot (a - a_t) + R(a) \right)$$

$$= \arg\min_{a \in A} \left(\eta_t \nabla (\ell_t + \lambda_t R)(a_t) \cdot (a - a_t) + D_R(a, \tilde{a}_t) \right).$$

Rather than minimizing the sum of the linearization of $\ell_t + \lambda_t R$ plus the regularizer R, we could instead minimize the linearization of ℓ_t plus the regularizer $(1 + \lambda_t)R$:

$$a_{t+1} = \arg\min_{a \in A} \left(\eta_t \nabla \ell_t(a_t) \cdot (a - a_t) + D_{(1+\lambda_t)R}(a, \tilde{a}_t) \right).$$
Regularization methods: Adaptive regularization

Adaptive regularization:
\[R_t(a) = (1 + \lambda t) R(a). \]

We could be more ambitious, and consider more than a single parameter \(\lambda t \).
For example, generalizing the gradient case (where \(R(a) = \|a\|_2^2 \)), we could consider
\[R_t(a) = a^\top M_t a, \]
with \(M_t = (1 + \lambda t) I \) (as before), with \(M_t \) a positive diagonal matrix, or with \(M_t \succ 0 \) (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.
Adaptive regularization: \(R_t(a) = (1 + \lambda_t)R(a) \).
Adaptive regularization: $R_t(a) = (1 + \lambda_t)R(a)$.

We could be more ambitious, and consider more than a single parameter (λ_t).
Regularization methods: Adaptive regularization

- Adaptive regularization: \(R_t(a) = (1 + \lambda_t)R(a) \).
- We could be more ambitious, and consider more than a single parameter (\(\lambda_t \)).
- For example, generalizing the gradient case (where \(R(a) = \|a\|_2^2 \)), we could consider

\[
R_t(a) = a^\top M_t a,
\]

with \(M_t \equiv (1 + \lambda_t)I \) (as before), with \(M_t \) a positive diagonal matrix, or with \(M_t \succ 0 \) (an arbitrary positive definite matrix). We can view this as adapting the step-size in different directions.
Regularization methods: Adaptive regularization

- Adaptive regularization: \(R_t(a) = (1 + \lambda_t)R(a) \).
- We could be more ambitious, and consider more than a single parameter \(\lambda_t \).
- For example, generalizing the gradient case (where \(R(a) = \|a\|_2^2 \)), we could consider
 \[
 R_t(a) = a^\top M_t a,
 \]
 with \(M_t = (1 + \lambda_t)I \) (as before),
Adaptive regularization: $R_t(a) = (1 + \lambda_t)R(a)$.

We could be more ambitious, and consider more than a single parameter (λ_t).

For example, generalizing the gradient case (where $R(a) = \|a\|_2^2$), we could consider

$$R_t(a) = a^\top M_t a,$$

- with $M_t = (1 + \lambda_t)I$ (as before),
- with M_t a positive diagonal matrix, or
Regularization methods: Adaptive regularization

- Adaptive regularization: \(R_t(a) = (1 + \lambda_t)R(a) \).
- We could be more ambitious, and consider more than a single parameter \(\lambda_t \).
- For example, generalizing the gradient case (where \(R(a) = \|a\|_2^2 \)), we could consider
 \[
 R_t(a) = a^\top M_t a,
 \]
 - with \(M_t = (1 + \lambda_t)I \) (as before),
 - with \(M_t \) a positive diagonal matrix, or
 - with \(M_t \succ 0 \) (an arbitrary positive definite matrix).
Adaptive regularization: \(R_t(a) = (1 + \lambda_t)R(a) \).

We could be more ambitious, and consider more than a single parameter \(\lambda_t \).

For example, generalizing the gradient case (where \(R(a) = \|a\|_2^2 \)), we could consider

\[
R_t(a) = a^\top M_t a,
\]

- with \(M_t = (1 + \lambda_t)I \) (as before),
- with \(M_t \) a positive diagonal matrix, or
- with \(M_t \succ 0 \) (an arbitrary positive definite matrix).

We can view this as adapting the step-size in different directions.
Regularization methods: Adaptive regularization

Consider the following version of mirror descent (also called ‘proximal gradient’: stay close to \(a_t\) instead of \(\tilde{a}_t\)):

\[
a_{t+1} = \arg\min_{a \in A} \left(\eta \nabla \ell_t(a_t) \cdot a + D_{R_t}(a, a_t) \right).
\]
Consider the following version of mirror descent (also called ‘proximal gradient’: stay close to a_t instead of \tilde{a}_t):

$$a_{t+1} = \arg \min_{a \in A} (\eta \nabla \ell_t(a_t) \cdot a + D_{R_t}(a, a_t)).$$

Similar arguments give the following theorem.

Theorem

For R_t strongly-convex wrt some norm $\| \cdot \|_{R_t}$,

$$R_n \leq \frac{1}{\eta} D_{R_1}(a^*, a_1) + \frac{1}{\eta} \sum_{t=1}^{n-1} (D_{R_{t+1}}(a, a_{t+1}) - D_{R_t}(a, a_{t+1}))$$

$$+ \frac{\eta}{2} \sum_{t=1}^{n} \| \nabla \ell_t(a_t) \|_{R_t,*}^2.$$
Regularization methods: Adaptive regularization

Example

For $R_t(a) = a^\top M_t a$ with M_t a positive diagonal matrix, say, $M_t = \text{diag}(s_t)$, we have

$$D_{R_t}(a, b) = (a - b)^\top M_t (a - b) = \sum_i (a_i - b_i)^2 s_{t,i}.$$
Example

For $R_t(a) = a^\top M_t a$ with M_t a positive diagonal matrix, say, $M_t = \text{diag}(s_t)$, we have

$$D_{R_t}(a, b) = (a - b)^\top M_t (a - b) = \sum_i (a_i - b_i)^2 s_{t,i}.$$

And D_{R_t} is strongly convex wrt the norm $\|a\|^2_{R_t} = 2a^\top M_t a$.
Regularization methods: Adaptive regularization

Example

For $R_t(a) = a^\top M_t a$ with M_t a positive diagonal matrix, say, $M_t = \text{diag}(s_t)$, we have

$$D_{R_t}(a, b) = (a - b)^\top M_t (a - b) = \sum_i (a_i - b_i)^2 s_{t,i}.$$

And D_{R_t} is strongly convex wrt the norm $\|a\|_{R_t}^2 = 2a^\top M_t a$. Also

$$\|g\|_{R_t,*}^2 = \frac{1}{2} g^\top M_t^{-1} g = \frac{1}{2} \sum_i \frac{g_i^2}{s_{t,i}}.$$
Example

Applying the theorem, the regret satisfies

\[R_n \leq \frac{1}{\eta} D_{R_1}(a^*, a_1) + \frac{1}{\eta} \sum_{t=1}^{n-1} \left(D_{R_{t+1}}(a, a_{t+1}) - D_{R_t}(a, a_{t+1}) \right) \]

\[+ \frac{\eta}{2} \sum_{t=1}^{n} \left\| \nabla \ell_t(a_t) \right\|_{R_t,*}^2 \]
Regularization methods: Adaptive regularization

Example

Applying the theorem, the regret satisfies

\[
R_n \leq \frac{1}{\eta} D_{R_1}(a^*, a_1) + \frac{1}{\eta} \sum_{t=1}^{n-1} (D_{R_{t+1}}(a, a_{t+1}) - D_{R_t}(a, a_{t+1})) \\
+ \frac{\eta}{2} \sum_{t=1}^{n} \| \nabla \ell_t(a_t) \|_{R_t,*}^2 \\
\leq \frac{1}{\eta} D_{R_1}(a^*, a_1) + \frac{1}{\eta} \sum_{t=1}^{n-1} \max_i (a_i^* - a_{t+1,i})^2 \| s_{t+1} - s_t \|_1 \\
+ \frac{\eta}{4} \sum_{t=1}^{n} \nabla \ell_t(a_t)^\top \text{diag}(s_t)^{-1} \nabla \ell_t(a_t).
\]
Regularization methods: Adaptive regularization

Adagrad

If we insist that the regularization increases (that is, the components of \(s_t \) are monotonically non-decreasing with \(t \)), we can choose

\[
 s_{t,i} = \sqrt{\sum_{s=1}^{t} \nabla \ell_t(a_t)_i^2},
\]

[Duchi, Hazan, Singer, 2011]
Regularization methods: Adaptive regularization

Adagrad

[Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of s_t are monotonically non-decreasing with t), we can choose

$$s_{t,i} = \sqrt{\sum_{s=1}^{t} \nabla \ell_t(a_t)_i^2},$$

$$\eta = D_\infty := \sup_{a^*, a_t} \|a^* - a_t\|_\infty,$$
Regularization methods: Adaptive regularization

Adagrad

[duchi, hazan, singer, 2011]

If we insist that the regularization increases (that is, the components of s_t are monotonically non-decreasing with t), we can choose

$$s_{t,i} = \sqrt{\sum_{s=1}^{t} \nabla \ell_t(a_t)_i^2},$$

$$\eta = D_\infty := \sup_{a^*,a_t} \|a^* - a_t\|_\infty,$$

to give an adaptivity result (versus constant s):

$$R_n \leq c \min_{\eta,s} \left(\frac{D^2_\infty}{\eta} s^\top 1 + \eta \sum_{t=1}^{n} \nabla \ell_t(a_t)^\top \text{diag}(s)^{-1} \nabla \ell_t(a_t) \right).$$
Regularization methods: Adaptive regularization

Adagrad

[Duchi, Hazan, Singer, 2011]

If we insist that the regularization increases (that is, the components of s_t are monotonically non-decreasing with t), we can choose

$$s_{t,i} = \sqrt{\sum_{s=1}^{t} \nabla\ell_t(a_t)_i^2},$$

$$\eta = D_\infty := \sup_{a^*,a_t} \|a^* - a_t\|_\infty,$$

to give an adaptivity result (versus constant s):

$$R_n \leq c \min_{\eta,s} \left(\frac{D_\infty^2}{\eta} s^\top 1 + \eta \sum_{t=1}^{n} \nabla\ell_t(a_t)^\top \text{diag}(s)^{-1} \nabla\ell_t(a_t) \right)$$

$$= O \left(D_\infty \sum_{i=1}^{d} \sqrt{\sum_{t=1}^{n} \nabla\ell_t(a_t)_i^2} \right).$$
Regularization methods: Adaptive regularization

Adagrad

The gradient term might be much smaller than \(\sqrt{nd} \). For instance, if the gradients are sparse and bounded (for instance, for logistic regression with sparse \{0, 1\}-valued features), then we expect the gradient terms to be much smaller. For features that appear more frequently, the \(s_t \) will be larger (learning rate slower in those directions). More generally, for coordinate directions with large gradients, we can make the corresponding component of \(s \) large (to keep things more stable in those directions), and for coordinate directions with small gradients, we can use less regularization.
Adagrad

- The gradient term might be much smaller than \sqrt{nd}.
Adagrad

- The gradient term might be much smaller than \(\sqrt{nd} \).
- For instance, if the gradients are sparse and bounded (for instance, for logistic regression with sparse \(\{0,1\} \)-valued features), then we expect the gradient terms to be much smaller.
 For features that appear more frequently, the \(s_{t,i} \) will be larger (learning rate slower in those directions).
Adagrad

- The gradient term might be much smaller than \sqrt{nd}.
- For instance, if the gradients are sparse and bounded (for instance, for logistic regression with sparse $\{0, 1\}$-valued features), then we expect the gradient terms to be much smaller.
 For features that appear more frequently, the $s_{t,i}$ will be larger (learning rate slower in those directions).
- More generally, for coordinate directions with large gradients, we can make the corresponding component of s large (to keep things more stable in those directions), and for coordinate directions with small gradients, we can use less regularization.
Regularization methods: Adaptive regularization

Adagrad

A similar approach can be applied to matrices, with

\[M_t = \frac{(\sum_{s=1}^{t} \nabla \ell_t(a_t) \nabla \ell_t(a_t)^\top)^{1/2}}{\text{tr} \left(\sum_{s=1}^{t} \nabla \ell_t(a_t) \nabla \ell_t(a_t)^\top \right)^{1/2}} \]

playing the role of \(s_t \).
Outline

1. Binary prediction
2. General online convex
 - Empirical minimization fails
 - Gradient algorithm
 - A regularization viewpoint
 - Bregman divergence
 - Properties of regularization
 - Linearization
 - Mirror descent
 - Regret bounds
 - Strongly convex losses
 - Adaptive regularization
3. Minimax strategies
Outline

1. Binary prediction
2. General online convex
3. Minimax strategies
 - Convex and strongly convex losses
 - The linear game
Convex and strongly convex losses

The convex and linear games

For a convex set \(A \subset \mathbb{R}^d \) and a sequence \(G_1, \ldots, G_n \geq 0 \), define

\[
G_{\text{conv}} (A, \{G_t\}) \quad \text{as the online convex optimization game with constraints}
\]

\(a_t \in A \) and

\[
\ell_t \in \{ \ell : \| \nabla \ell(a_t) \| \leq G_t, \ell \text{ convex} \}.
\]
Convex and strongly convex losses

The convex and linear games

For a convex set $\mathcal{A} \subset \mathbb{R}^d$ and a sequence $G_1, \ldots, G_n \geq 0$, define $G_{\text{conv}}(\mathcal{A}, \{G_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{ \ell : \| \nabla \ell(a_t) \| \leq G_t, \ \ell \ \text{convex} \}.$$

Define $G_{\text{lin}}(\mathcal{A}, \{G_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{ \ell : \ell(a) = v^\top(a - a_t) + c, \ v \in \mathbb{R}^d, \ c \in \mathbb{R}, \|v\| \leq G_t \}.$$
Convex and strongly convex losses

The convex and linear games

For a convex set $\mathcal{A} \subset \mathbb{R}^d$ and a sequence $G_1, \ldots, G_n \geq 0$, define $G_{\text{conv}}(\mathcal{A}, \{G_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{\ell : \|\nabla \ell(a_t)\| \leq G_t, \ell \text{ convex}\}.$$

Define $G_{\text{lin}}(\mathcal{A}, \{G_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{\ell : \ell(a) = v^\top(a - a_t) + c, v \in \mathbb{R}^d, c \in \mathbb{R}, \|v\| \leq G_t\}.$$

- The adversary’s constraints depend on the player’s choices.
Convex and strongly convex losses

The strongly convex and quadratic games

For a convex set $\mathcal{A} \subset \mathbb{R}^d$ and sequences $G_1, \ldots, G_n \geq 0$ and $\sigma_1, \ldots, \sigma_n \geq 0$, define $G_{st-\text{conv}}(\mathcal{A}, \{G_t\}, \{\sigma_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{\ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I\}.$$
Convex and strongly convex losses

The strongly convex and quadratic games

For a convex set $\mathcal{A} \subset \mathbb{R}^d$ and sequences $G_1, \ldots, G_n \geq 0$ and $\sigma_1, \ldots, \sigma_n \geq 0$, define $\mathcal{G}_{st-conv}(\mathcal{A}, \{G_t\}, \{\sigma_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$
\ell_t \in \{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \}.
$$

Define $\mathcal{G}_{quad}(\mathcal{A}, \{G_t\}, \{\sigma_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$
\ell_t \in \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \ v \in \mathbb{R}^d, \ c \in \mathbb{R}, \ \|v\| \leq G_t \right\}.
$$
For a convex set $\mathcal{A} \subset \mathbb{R}^d$ and sequences $G_1, \ldots, G_n \geq 0$ and $\sigma_1, \ldots, \sigma_n \geq 0$, define $\mathcal{G}_{\text{st-conv}} (\mathcal{A}, \{G_t\}, \{\sigma_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{ \ell : \| \nabla \ell (a_t) \| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \}.$$

Define $\mathcal{G}_{\text{quad}} (\mathcal{A}, \{G_t\}, \{\sigma_t\})$ as the online convex optimization game with constraints $a_t \in \mathcal{A}$ and

$$\ell_t \in \{ \ell : \ell (a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \| a - a_t \|^2 + c, v \in \mathbb{R}^d, c \in \mathbb{R}, \| v \| \leq G_t \}.$$

- Again, the adversary’s constraints depend on the player’s choices.
Convex and strongly convex losses

Theorem

For fixed \mathcal{A}, $\{G_t\}$ and $\{\sigma_t\}$, we have

$$
V_n (G_{st-conv} (\mathcal{A}, \{G_t\}, \{\sigma_t\})) = V_n (G_{quad} (\mathcal{A}, \{G_t\}, \{\sigma_t\}))
$$

[Abernethy, B., Rakhlin, Tewari, 2008]
Convex and strongly convex losses

Theorem

For fixed \mathcal{A}, $\{G_t\}$ and $\{\sigma_t\}$, we have

$$V_n (\mathcal{G}_{st-conv} (\mathcal{A}, \{G_t\}, \{\sigma_t\})) = V_n (\mathcal{G}_{quad} (\mathcal{A}, \{G_t\}, \{\sigma_t\})),$$

$$V_n (\mathcal{G}_{conv} (\mathcal{A}, \{G_t\})) = V_n (\mathcal{G}_{lin} (\mathcal{A}, \{G_t\})).$$

[Abernethy, B., Rakhlin, Tewari, 2008]
Fix sets N_1, \ldots, N_n and $M \subseteq N_t$.

Suppose that for all $\ell_t \in N_t$ and $a_t \in A$ there is an $\ell^*_t \in M$ such that for all $a_1, \ell_1, \ldots, a_t-1, \ell_{t-1},$ and $a_{t+1}, \ell_{t+1}, \ldots, a_n, \ell_n$,

$$R_n(a_1, \ell_1, \ldots, a_t, \ell_t, \ldots, a_n, \ell_n) \leq R_n(a_1, \ell_1, \ldots, a_t, \ell^*_t, \ldots, a_n, \ell_n).$$
Lemma

Fix sets N_1, \ldots, N_n and $M \subseteq N_t$.
Suppose that for all $\ell_t \in N_t$ and $a_t \in \mathcal{A}$ there is an $\ell_t^* \in M$ such that
for all $a_1, \ell_1, \ldots, a_{t-1}, \ell_{t-1}$, and $a_{t+1}, \ell_{t+1}, \ldots, a_n, \ell_n$,

$$R_n(a_1, \ell_1, \ldots, a_t, \ell_t, \ldots, a_n, \ell_n) \leq R_n(a_1, \ell_1, \ldots, a_t, \ell_t^*, \ldots, a_n, \ell_n).$$

Then

$$\inf_{a_1 \in \mathcal{A}} \sup_{\ell_1 \in N_1} \cdots \inf_{a_t \in \mathcal{A}} \sup_{\ell_t \in N_t} \cdots \inf_{a_n \in \mathcal{A}} \sup_{\ell_n \in N_n} R_n(a_1, \ell_1, \ldots, a_n, \ell_n).$$
Lemma

Fix sets N_1, \ldots, N_n and $M \subseteq N_t$. Suppose that for all $\ell_t \in N_t$ and $a_t \in A$ there is an $\ell_t^* \in M$ such that for all $a_1, \ell_1, \ldots, a_t-1, \ell_{t-1}$, and $a_{t+1}, \ell_{t+1}, \ldots, a_n, \ell_n$,

$$R_n(a_1, \ell_1, \ldots, a_t, \ell_t, \ldots, a_n, \ell_n) \leq R_n(a_1, \ell_1, \ldots, a_t, \ell_t^*, \ldots, a_n, \ell_n).$$

Then

$$\inf_{a_1 \in A} \sup_{\ell_1 \in N_1} \ldots \inf_{a_t \in A} \sup_{\ell_t \in N_t} \ldots \inf_{a_n \in A} \sup_{\ell_n \in N_n} R_n(a_1, \ell_1, \ldots, a_n, \ell_n) = \inf_{a_1 \in A} \sup_{\ell_1 \in N_1} \ldots \inf_{a_t \in A} \sup_{\ell_t \in M} \ldots \inf_{a_n \in A} \sup_{\ell_n \in N_n} R_n(a_1, \ell_1, \ldots, a_n, \ell_n).$$

(Because $M \subset N_t$, and it contains ℓ_t^* that's always at least as good as ℓ_t.)
Lemma

Fix sets N_1, \ldots, N_n and $M \subseteq N_t$. Suppose that for all $\ell_t \in N_t$ and $a_t \in A$ there is an $\ell_t^* \in M$ such that for all $a_1, \ell_1, \ldots, a_t, \ell_t, \ldots, a_n, \ell_n$,

$$R_n(a_1, \ell_1, \ldots, a_t, \ell_t, \ldots, a_n, \ell_n) \leq R_n(a_1, \ell_1, \ldots, a_t, \ell_t^*, \ldots, a_n, \ell_n).$$

Then

$$\inf_{a_1 \in A} \sup_{\ell_1 \in N_1} \cdots \inf_{a_t \in A} \sup_{\ell_t \in N_t} \cdots \inf_{a_n \in A} \sup_{\ell_n \in N_n} R_n(a_1, \ell_1, \ldots, a_n, \ell_n) = \inf_{a_1 \in A} \sup_{\ell_1 \in N_1} \cdots \inf_{a_t \in A} \sup_{\ell_t \in M} \cdots \inf_{a_n \in A} \sup_{\ell_n \in N_n} R_n(a_1, \ell_1, \ldots, a_n, \ell_n).$$

(Because $M \subset N_t$, and it contains ℓ_t^* that’s always at least as good as ℓ_t.)
Convex and strongly convex losses

Proof idea

For the strongly convex case, define

$$M := \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \right\},$$

and notice that $M \subseteq N_t := \left\{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \right\}$.

For $\ell_t \in N_t$, define ℓ^*_t as

$$\ell^*_t(a) = \ell_t(a_t) + \nabla \ell_t(a_t)^\top (a - a_t) + \sigma_t t \|a - a_t\|^2.$$

Notice that $\ell^*_t \in M$, since $\ell^*_t(a_t) = \ell_t(a_t)$ and $\nabla \ell_t(a_t) = \nabla \ell^*_t(a_t)$.

Also, $\ell_t(a) \geq \ell^*_t(a)$ for all a, so M and N_t satisfy the conditions of the lemma.

The convex/linear case uses a similar argument.
Proof idea

For the strongly convex case, define

\[
M := \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \right\},
\]

and notice that

\[
M \subseteq N_t := \left\{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \right\}.
\]
Proof idea

For the strongly convex case, define

\[M := \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \right\}, \]

and notice that

\[M \subseteq N_t := \left\{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \right\}. \]

For \(\ell_t \in N_t \), define \(\ell_t^* \) as

\[\ell_t^*(a) = \ell_t(a_t) + \nabla \ell_t(a_t)^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2. \]
Convex and strongly convex losses

Proof idea

For the strongly convex case, define

\[M := \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \right\}, \]

and notice that

\[M \subseteq N_t := \left\{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \right\}. \]

For \(\ell_t \in N_t \), define \(\ell^*_t \) as

\[\ell^*_t(a) = \ell_t(a_t) + \nabla \ell_t(a_t)^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2. \]

Notice that \(\ell^*_t \in M \), since \(\ell^*_t(a_t) = \ell_t(a_t) \) and \(\nabla \ell_t(a_t) = \nabla \ell^*_t(a_t) \).
Convex and strongly convex losses

Proof idea

For the strongly convex case, define

$$M := \left\{ \ell : \ell(a) = v^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \right\},$$

and notice that

$$M \subseteq N_t := \left\{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \right\}.$$

For $\ell_t \in N_t$, define ℓ_t^* as

$$\ell_t^*(a) = \ell_t(a_t) + \nabla \ell_t(a_t)^\top (a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2.$$

Notice that $\ell_t^* \in M$, since $\ell_t^*(a_t) = \ell_t(a_t)$ and $\nabla \ell_t(a_t) = \nabla \ell_t^*(a_t)$. Also, $\ell_t(a) \geq \ell_t^*(a)$ for all a, so M and N_t satisfy the conditions of the lemma.
Convex and strongly convex losses

Proof idea

For the strongly convex case, define

\[M := \{ \ell : \ell(a) = v^\top(a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2 + c, \|v\| \leq G_t \} , \]

and notice that

\[M \subseteq N_t := \{ \ell : \|\nabla \ell(a_t)\| \leq G_t, \nabla^2 \ell \succeq \sigma_t I \} . \]

For \(\ell_t \in N_t \), define \(\ell_t^* \) as

\[\ell_t^*(a) = \ell_t(a_t) + \nabla \ell_t(a_t)^\top(a - a_t) + \frac{\sigma_t}{2} \|a - a_t\|^2. \]

Notice that \(\ell_t^* \in M \), since \(\ell_t^*(a_t) = \ell_t(a_t) \) and \(\nabla \ell_t(a_t) = \nabla \ell_t^*(a_t) \). Also, \(\ell_t(a) \geq \ell_t^*(a) \) for all \(a \), so \(M \) and \(N_t \) satisfy the conditions of the lemma. The convex/linear case uses a similar argument.
Outline

1. Binary prediction
2. General online convex
3. Minimax strategies
 - Convex and strongly convex losses
 - The linear game
The linear game

Theorem

For $A = \{ a \in \mathbb{R}^d : \|a\| \leq r \}$ with $d \geq 3$, and a fixed sequence $\{ G_t \}$,

$$V_n (G_{\text{conv}} (A, \{ G_t \})) = V_n (G_{\text{lin}} (A, \{ G_t \})) = r \sqrt{\sum_{t=1}^{n} G_t^2}.$$

[Abernethy, B., Rakhlin, Tewari, 2008]
Wlog, we can assume $r = 1$ and $\ell_t(a) = w^T a$ with $\|w\| \leq G_t$.
The linear game

Proof

1. Wlog, we can assume $r = 1$ and $\ell_t(a) = w^\top a$ with $\|w\| \leq G_t$.

2. Writing $W_t := \sum_{s=1}^{t} w_s$,

$$\min_{a\in\mathcal{A}} \sum_{t=1}^{n} \ell_t(a) = -\|W_n\|.$$
The linear game

Proof

The adversary can ensure

\[R_n \geq \sqrt{n} \sum_{t=1}^{n} G_t^2, \]

by playing \(w_t \) satisfying

\[w_t^\top a_t = 0, \quad w_t^\top W_{t-1} = 0, \quad \|w_t\| = G_t. \]
The adversary can ensure
\[R_n \geq \sqrt{\sum_{t=1}^{n} G_t^2}, \]
by playing \(w_t \) satisfying
\[w_t^\top a_t = 0, \quad w_t^\top W_{t-1} = 0, \quad \|w_t\| = G_t. \]

To see this, notice that this choice ensures \(\sum_{t=1}^{n} \ell_t(a_t) = 0 \) and so \(R_n = \|W_n\|. \)
The linear game

Proof

The adversary can ensure

\[R_n \geq \sqrt{\sum_{t=1}^{n} G_t^2}, \]

by playing \(w_t \) satisfying

\[w_t^\top a_t = 0, \quad w_t^\top W_{t-1} = 0, \quad \|w_t\| = G_t. \]

To see this, notice that this choice ensures \(\sum_{t=1}^{n} \ell_t(a_t) = 0 \) and so \(R_n = \|W_n\| \). But

\[\|W_t\| = \|W_{t-1} + w_t\| = \sqrt{\|W_{t-1}\|^2 + \|w_t\|^2} = \sqrt{\sum_{s=1}^{t} G_s^2}. \]
If the player defines $W_0 = 0$ and chooses

$$a_t = \frac{-W_{t-1}}{\sqrt{\|W_{t-1}\|^2 + \sum_{s=t}^{n} G_s^2}},$$

then

$$R_n \leq \sqrt{\sum_{t=1}^{n} G_t^2}.$$
The linear game

Proof

This is equivalent to showing that, for this a_t, no matter what choices of w_t the adversary makes,

$$\sum_{t=1}^{n} w_t^\top a_t + \|W_n\| \leq \sqrt{\sum_{t=1}^{n} G_t^2}.$$
The linear game

Proof
This is equivalent to showing that, for this a_t, no matter what choices of w_t the adversary makes,

$$
\sum_{t=1}^{n} w_t^T a_t + \|W_n\| \leq \sqrt{\sum_{t=1}^{n} G_t^2}.
$$

The proof is by a backward induction, and involves a 2-dimensional geometric argument (since a_t is aligned with W_{t-1}, we need only consider the role of w_t).
Outline

1. Binary prediction
2. General online convex
3. Minimax strategies
 - Convex and strongly convex losses
 - The linear game