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Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.

I Three views of log loss.
I Normalized maximum likelihood.
I Sequential investment.
I Constantly rebalanced portfolios.



Log Loss

A family of decision problems with several equivalent
interpretations:

I Maximizing long term rate of growth in portfolio
optimization.

I Minimizing redundancy in data compression.
I Minimizing likelihood ratio in sequential probability

assignment.
See Nicolò Cesa-Bianchi and Gàbor Lugosi, Prediction,
Learning and Games, Chapters 9, 10.



Log Loss

I Consider a finite outcome space Y = {1, . . . ,m}.
I The comparison class A is a set of sequences f1, f2, . . . of

maps ft : Y t → ∆Y .
I We write ft (yt |y1, . . . , yt−1), notation that is suggestive of a

conditional probability distribution.
I The adversary chooses, at round t , a value yt ∈ Y, and the

loss function for a particular sequence f is

`t (f ) = − ln(ft (yt |y1, . . . , yt−1)).



Log Loss: Notation

yn = yn
1 = (y1, . . . , yn),

fn(yn) =
n∏

t=1

ft (yt |y t−1),

an(yn) =
n∏

t=1

at (yt |y t−1).

Again, this notation is suggestive of probability distributions.
Check:

fn(yn) ≥ 0
∑

yn∈Yn

fn(yn) = 1.



Log Loss: Three applications

I Sequential probability assignment.
I Gambling/investment.
I Data compression.



Log Loss: Sequential Probability Assignment

Think of yt as the indicator for the event that it rains on day t .
Minimizing log loss is forecasting Pr(yt |y t−1) sequentially:

L∗n = inf
f∈F

n∑
t=1

ln
1

ft (yt |y t−1)

L̂n =
n∑

t=1

ln
1

at (yt |y t−1)

L∗n − L̂n = sup
f∈F

ln
fn(yn)

an(yn)
,

which is the worst ratio of log likelihoods.



Log Loss: Gambling

Suppose we are investing our initial capital C in proportions

at (1), . . . ,at (m)

across m horses. If horse i wins, it pays odds ot (i) ≥ 0. In that
case, our capital becomes Cat (i)ot (i).
Let yt ∈ {1, . . . ,m} denote the winner of race t .
Suppose that at (y |y1, . . . , yt−1) depends on the previous
winners. Then our capital goes from C to

C
n∏

t=1

at (yt |y t−1)ot (yt ).



Log Loss: Gambling

Compared to a set F of experts (who also start with capital C),
the ratio of the best expert’s final capital to ours is

sup
f∈F

C
∏n

t=1 ft (yt |y t−1)ot (yt )

C
∏n

t=1 at (yt |y t−1)ot (yt )

= sup
f∈F

fn(yn)

an(yn)

= exp
(

sup
f∈F

ln
fn(yn)

an(yn)

)
.



Log Loss: Data Compression

We can identify probability distributions with codes, and view
ln p(yn) as the length (in nats) of an optimal sequentially
constructed codeword encoding the sequence yn, under the
assumption that yn is generated by p.
Then

− ln pn(yn)− inf
f∈F

(
− ln fn(yn)

)
= L̂− L∗

is the redundancy (excess length) of the code with respect to a
family F of codes.



Log Loss: Optimal Prediction

The minimax regret for a class F is

Vn(F ) = inf
a

sup
yn∈Yn

ln
supf∈F fn(yn)

an(yn)
.

For a class F and n > 0, define the normalized maximum
likelihood strategy a∗ by

a∗n(yn) =
supf∈F fn(yn)∑

xn∈Yn supf∈F fn(xn)
.



Log Loss: Optimal Prediction

Theorem
1. a∗ is the unique strategy that satisfies

sup
yn∈Yn

ln
supf∈F fn(yn)

a∗n(yn)
= Vn(F ).

2. For all yn ∈ Yn,

ln
supf∈F fn(yn)

a∗n(yn)
= ln

∑
xn∈Yn

sup
f∈F

fn(xn).



Log Loss: Optimal Prediction

Proof.
2. By the definition of a∗n,

ln
supf∈F fn(yn)

a∗n(yn)
= ln

∑
xn∈Yn

sup
f∈F

fn(xn).

1. For any other a, there must be a yn ∈ Yn with
an(yn) < a∗n(yn). Then

ln
supf∈F fn(yn)

an(yn)
> ln

supf∈F fn(yn)

a∗n(yn)
,

which implies the sup over yn is bigger than its value for a∗.



Log Loss: Optimal Prediction

How do we compute the normalized maximum likelihood
strategy?

a∗n(yn) =
supf∈F fn(yn)∑

xn∈Yn supf∈F fn(xn)
.

This a∗n is a probability distribution on Yn. We can calculate it
sequentially via

a∗t (yt |y t−1) =
a∗t (y t )

a∗t−1(y t−1)
,

where
a∗t (y t ) =

∑
yn

t+1∈Yn−t

a∗n(yn).



Log Loss: Optimal Prediction

I In general, these are big sums.
I The normalized maximum likelihood strategy does not

exist if we cannot sum supf∈F fn(xn) over xn ∈ Y\.
I We need to know the horizon n: it is not possible to extend

the strategy for n − 1 to the strategy for n.
I In many cases, there are efficient strategies that

approximate the performance of the optimal (normalized
maximum likelihood) strategy.



Log Loss: Minimax Regret

Example
Suppose |F | = m. Then we have

Vn(F ) = ln
∑

yn∈Yn

sup
f∈F

fn(yn)

≤ ln
∑

yn∈Yn

∑
f∈F

fn(yn)

= ln
∑
f∈F

∑
yn∈Yn

fn(yn)

= ln N.



Log Loss: Minimax Regret

Example
Consider the class F of all constant experts:

ft (y |y t−1) = ft (y).

For |Y| = 2,

Vn(F ) =
1
2

ln n +
1
2

ln
π

2
+ o(1).



Minimax Regret: Proof Idea

Vn(F ) = ln
∑

yn∈Yn

sup
f∈F

fn(yn).

Suppose that f (1) = q, f (0) = 1− q. Clearly, fn(yn) depends
only on the number n1 of 1s in yn, and it’s easy to check that
the maximizing value of q is n1/n, so

sup
f∈F

fn(yn) = max
q

(1− q)n−n1qn1 =

(
n − n1

n

)n−n1 (n1

n

)n1
.

Thus (using Stirling’s approximation),

Vn(F ) = ln
n−1∑
n1=1

(
n
n1

)(
n − n1

n

)n−n1 (n1

n

)n1

...

= ln

(
(1 + o(1))

√
nπ
2

)
.



Log Loss

I Three views of log loss.
I Normalized maximum likelihood.
I Sequential investment.
I Constantly rebalanced portfolios.



Sequential Investment

Suppose that we have n financial instruments (let’s call them
1,2, . . . ,n), and at each period we need to choose how to
spread our capital. We invest a proportion pi in instrument i
(with pi ≥ 0 and

∑
i pi = 1). During the period, the value of

instrument i increases by a factor of xi ≥ 0 and so our wealth
increases by a factor of

p′x =
n∑

i=1

pixi .

For instance, x1 = 1 and x2 ∈ {0,2} corresponds to a choice
between doing nothing and placing a fair bet at even odds.



Asymptotic growth rate optimality of logarithmic utility

Logarithmic utility has the attractive property that, if the vectors
of market returns X1,X2, . . .Xt , . . . are random, then maximizing
expected log wealth leads to the optimal asymptotic growth
rate.
We’ll illustrate with a simple example, and then state a general
result. Suppose that we are betting on two instruments many
times. Their one-period returns (that is, the ratio of the
instrument’s value after period t to that before period t) satisfy

Pr(Xt ,1 = 1) = 1,
Pr(Xt ,2 = 0) = p,
Pr(Xt ,2 = 2) = 1− p.

Clearly, one is risk free, and the other has two possible
outcomes: complete loss of the investment, and doubling of the
investment.



Asymptotic growth rate optimality of logarithmic utility

For instance, suppose that we start with wealth at t = 0 of
V0 > 0, and 0 < p < 1. If we bet all of our money on instrument
2 at each step, then after T rounds we end up with expected
wealth of

EVT = (2(1− p))T V0,

and this is the maximum value of expected wealth over all
strategies. But with probability one, we will eventually have
wealth zero if we follow this strategy. What should we do?



Asymptotic growth rate optimality of logarithmic utility

Suppose that, for period t , we bet a fraction bt of our wealth on
instrument 2. Then if we define

Wt = 1[Xt ,2 = 2] (that is, we win the bet),

then we have

Vt+1 = (1 + bt )
Wt (1− b)1−Wt Vt .

Consider the asymptotic growth rate of wealth,

G = lim
T→∞

1
T

log2
VT

V0
.

(This extracts the exponent.)



Asymptotic growth rate optimality of logarithmic utility

By the weak law of large numbers, we have

G = lim
T→∞

(
1
T

T∑
t=1

(Wt log2(1 + bt ) + (1−Wt ) log2(1− bt ))

)

= lim
T→∞

(
1
T

T∑
t=1

((1− p) log2(1 + bt ) + p log2(1− bt ))

)
.

For what values of bt is this maximized? Well, the concavity of
log2, together with Jensen’s inequality, implies that, for all
xi ≥ 0 with

∑
i xi = x ,

max
∑

xi log yi

s.t.
∑

yi = y

has the solution yi = xiy/x . Thus, we should set bt = 1− 2p.



Asymptotic growth rate optimality of logarithmic utility

That is, if we choose the proportion bt to allocate to each
instrument so as to maximize the expected log return,

((1− p) log2(1 + bt ) + p log2(1− bt )) ,

then we obtain the optimal exponent in the asymptotic growth
rate, which is

G = (1− p) log2(2(1− p)) + p log2(2p).

Notice that if p is strictly less than 1/2, G > 0. That is, we have
exponential growth. Compare this with the two individual
alternatives: choosing instrument 1 gives no growth, whereas
choosing instrument 2 gives expected wealth that grows
exponentially, but it leads to ruin, almost surely.



Asymptotic growth rate optimality of logarithmic utility

This result was first pointed out by Kelly [5]. Kelly viewed p as
the probability that a one-bit message containing the future
outcome Xt was transmitted through a communication channel
incorrectly, and then the optimal exponent G is equal to the
channel capacity,

G = 1−
(

(1− p) log2
1

1− p
+ p log2

1
p

)
.



Asymptotic growth rate optimality of logarithmic utility

Maximizing expected log return is asymptotically optimal much
more generally. To define the general result, suppose that, in
period t , we need to distribute our wealth over m instruments.
We allocate proportion bt ,i to the i th, and assume the bt ∈ ∆m,
the m-simplex. Then, if the period t returns are
Xt ,1, . . . ,Xt ,m ≥ 0, the yield per dollar invested is bt · Xt , so that
our initial capital of Vt becomes

Vt+1 = Vtbt · Xt .

By a strategy, we mean a sequence of functions {bt} which, at
time t , uses the allocation bt (X1, . . . ,Xt−1) ∈ ∆m.



Asymptotic growth rate optimality of logarithmic utility

Definition
If Xt ∈ Rm

+ denotes the random returns of m instruments during
period t , we say that strategy b∗ is log-optimal if

b∗t (X0, . . . ,Xt−1) = arg max
b∈∆m

E [log(b · Xt )|X0, . . . ,Xt−1] .



Asymptotic growth rate optimality of logarithmic utility

Breiman [3] proved the following result for i.i.d. discrete-valued
returns; Algoet and Cover [1] proved the general case.

Theorem
Suppose that the log-optimal strategy b∗ has capital growth
V0,V ∗1 , . . . ,V

∗
T over T periods and some strategy b has capital

growth V0,V1, . . . ,VT . Then almost surely

lim sup
T→∞

1
T

log
VT

V ∗T
≤ 0.

In particular, if the returns are i.i.d., then in each period the
optimal strategy (at least, optimal to first order in the exponent)
allocates its capital according to some fixed mixture b∗ ∈ ∆m.
This mixture is the one that maximizes the expected logarithm
of the one-period yield.



Asymptotic growth rate optimality of logarithmic utility

This is an appealing property: if we are interested in what
happens asymptotically, then we should use log as a utility
function, and maximize the expected log return during each
period.



Constantly rebalanced portfolios

A constantly rebalanced portfolio (CRP) is an investment
strategy defined by a mixture vector b ∈ ∆m. At every time
step, it allocates proportion bj of the total capital to instrument j .
We have seen that, for i.i.d. returns, the asymptotic growth rate
is maximized by a particular CRP. The Dow Jones Industrial
Average measures the performance of another CRP (the one
that allocates one thirtieth of its capital to each of thirty stocks).
Investing in a single stock is another special case of a CRP. (As
an illustration of the benefits provided by rebalancing, consider
an i.i.d. market with two instruments and return vectors chosen
uniformly from {(2,1/2), (1/2,2)}. Investing in any single
instrument leads to a growth rate of 0, whereas a (1/2,1/2)
CRP will have wealth that increases by a factor of 5/4 in each
period.)



Constantly rebalanced portfolios

Now that we’ve motivated CRPs, we’ll drop all probabilistic
assumptions and move back to an online setting. Suppose that
the market is adversarial (a reasonable assumption), and
consider the problem of competing with the best CRP in
hindsight. That is, at each step t we must choose an allocation
of our capital bt so that, after T rounds, the logarithm of our
wealth is close to that of the best CRP.



Constantly rebalanced portfolios

The following theorem is due to Cover [4] (the proof we give is
due to Blum and Kalai [2]). It shows that there is a universal
portfolio strategy, that is, one that competes with the best CRP.

Theorem
There is a strategy (call it bU ) for which

log(VT ) ≥ log(VT (b∗))− (m − 1) log(T + 1)− 1,

where b∗ is the best CRP.
The strategy is conceptually very simple. It involves distributing
capital uniformly across all CRPs at each period.



Constantly rebalanced portfolios

Consider competing with the m single instrument portfolios. We
could just place our money uniformly across the m instruments
at the start, and leave it there. Then we have

log(VT ) = log

 m∑
j=1

T∏
t=1

Xt ,j(V0/m)


≥ max

j
log

(
T∏

t=1

Xt ,j(V0/m)

)

= max
j

log

(
T∏

t=1

Xt ,jV0

)
− log(m),

that is, our regret with respect to the best single instrument
portfolio (in hindsight) is no more than log m.



Constantly rebalanced portfolios

To compete with the set of CRPs, we adopt a similar strategy:
we allocate our capital uniformly over ∆m, and then calculate
the mixture bt that corresponds at time t to this initial
distribution. Consider an infinitesimal region around a point
b ∈ ∆m. If µ is the uniform measure on ∆m, the initial
investment in CRP b is dµ(b)V0. By time t − 1, this has grown
to Vt−1(b)dµ(b)V0, and so this is the contribution to the overall
mixture bt . And of course we need to appropriately normalize
(by the total capital at time t − 1):

bt =

∫
∆m

bVt−1(b)dµ(b)∫
∆m

Vt−1(b)dµ(b)
.



Constantly rebalanced portfolios

How does this strategy perform? Suppose that b∗ is the best
CRP in hindsight. Then the region around b∗ contains very
similar mixtures, and provided that there is enough volume of
sufficiently similar CRPs, our strategy should be able to
compete with b∗. Indeed, consider the set of mixtures of b∗ with
some other vector a ∈ ∆m,

S = {(1− ε)b∗ + εa : a ∈ ∆m}.

For every b ∈ S, we have

V1(b)

V0
=

V1((1− ε)b∗ + εa)

V0
≥ (1− ε)V1(b∗)

V0
.

Thus, after T steps,

VT (b)

VT (b∗)
≥ (1− ε)T .



Constantly rebalanced portfolios

Also, the proportion of initial wealth allocated to CRPs in S is

µ(S) = µ({εa : a ∈ ∆m}) = εm−1.

Combining these two facts, we have that

log
(

VT (bU)

VT (b∗)

)
≥ log

(
(1− ε)T εm−1

)
.

Setting ε = 1/(T + 1) gives a regret of

log
(

(1− 1/(T + 1))T (T + 1)−(m−1)
)
> −1−(m−1) log(T +1).



Constantly rebalanced portfolios

There are other approaches to portfolio optimization based on
the online prediction strategies that we have seen earlier in
lectures. For instance, the exponential weights algorithm can
be used in this setting, although it leads to

√
T regret, rather

than log T . Also, gradient descent approaches have also been
investigated. For a Newton update method, logarithmic regret
bounds have been proved.
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