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Online Learning

I Repeated game:

Decision method plays at

World reveals `t ∈ L

I Aim: minimize L̂n =
n∑

t=1

`t (at ).

I For example, aim to minimize regret, that is, perform well
compared to the best (in retrospect) from some class:

regret =
n∑

t=1

`t (at )−min
a∈A

n∑
t=1

`t (a)

= L̂n − L∗n.

I Data can be adversarially chosen.



Online Learning

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at )−min
a∈A

n∑
t=1

`t (a)

)
.



Online Learning: Motivations

1. Adversarial model is appropriate for
I Computer security.
I Computational finance.

2. Adversarial model assumes little:
It is often straightforward to convert a strategy for an
adversarial environment to a method for a probabilistic
environment.

3. Studying the adversarial model sometimes reveals the
deterministic core of a statistical problem: there are strong
similarities between the performance guarantees in the two
cases, and in particular between their dependence on the
complexity of the class of prediction rules.

4. There are significant overlaps in the design of methods for
the two problems:

I Regularization plays a central role.
I Many online prediction strategies have a natural

interpretation as a Bayesian method.



Computer Security: Spam Detection



Computer Security: Spam Email Detection

I Here, the action at might be a classification rule, and `t is
the indicator for a particular email being incorrectly
classified (e.g., spam allowed through).

I The sender can determine if an email is delivered (or
detected as spam), and try to modify it.

I An adversarial model allows an arbitrary sequence.
I We cannot hope for good classification accuracy in an

absolute sense; regret is relative to a comparison class.
I Minimizing regret ensures that the spam detection

accuracy is close to the best performance in retrospect on
the particular spam sequence.



Computer Security: Spam Email Detection

I Suppose we consider features of email messages from
some set X (e.g., information about the header, about
words in the message, about attachments).

I The decision method’s action at is a mapping from X to
[0,1] (think of the value as an estimated probability that the
message is spam).

I At each round, the adversary chooses a feature vector
xt ∈ X and a label yt ∈ {0,1}, and the loss is defined as

`t (at ) = (yt − at (xt ))2 .

I The regret is then the excess squared error, over the best
achievable on the data sequence:

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) =
n∑

t=1

(yt−at (xt ))2−min
a∈A

n∑
t=1

(yt−a(xt ))2.



Computer Security: Web Spam Detection

Web Spam Challenge (www.iw3c2.org)



Computer Security: Detecting Denial of Service

ACM



Computational Finance: Portfolio Optimization



Computational Finance: Portfolio Optimization

I Aim to choose a portfolio (distribution over financial
instruments) to maximize utility.

I Other market players can profit from making our decisions
bad ones. For example, if our trades have a market impact,
someone can front-run (trade ahead of us).

I Here, the action at is a distribution on instruments, and `t
might be the negative logarithm of the portfolio’s increase,
at · rt , where rt is the vector of relative price increases.

I We might compare our performance to the best stock
(distribution is a delta function), or a set of indices
(distribution corresponds to Dow Jones Industrial Average,
etc), or the set of all distributions.



Computational Finance: Portfolio Optimization

I The decision method’s action at is a distribution on the m
instruments, at ∈ ∆m = {a ∈ [0,1]m :

∑
i ai = 1}.

I At each round, the adversary chooses a vector of returns
rt ∈ Rm

+; the i th component is the ratio of the price of
instrument i at time t to its price at the previous time, and
the loss is defined as

`t (at ) = − log (at · rt ) .

I The regret is then the log of the ratio of the maximum value
the portfolio would have at the end (for the best mixture
choice) to the final portfolio value:

n∑
t=1

`t (at )−min
a∈A

n∑
t=1

`t (a) = max
a∈A

n∑
t=1

log(a ·rt )−
n∑

t=1

log(at ·rt ).



Online Learning: Motivations

2. Online algorithms are also effective in probabilistic settings.

I Easy to convert an online algorithm to a batch algorithm.
I Easy to show that good online performance implies good

i.i.d. performance, for example.



Online Learning: Motivations

3. Understanding statistical prediction methods.

I Many statistical methods, based on probabilistic
assumptions, can be effective in an adversarial setting.

I Analyzing their performance in adversarial settings
provides perspective on their robustness.

I We would like violations of the probabilistic assumptions to
have a limited impact.



Key Points

I Online Learning:
I repeated game.
I aim to minimize regret.
I Data can be adversarially chosen.

I Motivations:
I Often appropriate (security, finance).
I Algorithms also effective in probabilistic settings.
I Can provide insight into statistical prediction methods.



Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
I Converting online to batch.
I Online convex optimization.
I Log loss.
I Optimal regret.



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.



Prediction with Expert Advice

Suppose we are predicting whether it will rain tomorrow. We
have access to a set of m experts, who each make a forecast of
0 or 1. Can we ensure that we predict almost as well as the
best expert?
Here, A = {1, . . . ,m}. There are m experts, and each has a
forecast sequence f i

1, f
i
2, . . . from {0,1}. At round t , the

adversary chooses an outcome yt ∈ {0,1}, and sets

`t (i) = 1[f i
t 6= yt ] =

{
1 if f i

t 6= yt ,
0 otherwise.



Online Learning

Minimax regret is the value of the game:

min
a1

max
`1
· · ·min

an
max
`n

(
n∑

t=1

`t (at )−min
a∈A

n∑
t=1

`t (a)

)
.

L̂n =
n∑

t=1

`t (at ), L∗n = min
a∈A

n∑
t=1

`t (a).



Prediction with Expert Advice

An easier game: suppose that the adversary is constrained to
choose the sequence yt so that some expert incurs no loss
(L∗n = 0), that is, there is an i∗ ∈ {1, . . . ,m} such that for all t ,
yt = f i∗

t .
How should we predict?



Prediction with Expert Advice: Guess Who?



Prediction with Expert Advice: Halving

I Define the set of experts who have been correct so far:

Ct = {i : `1(i) = · · · = `t−1(i) = 0} .

I Choose at any element of{
i : f i

t = majority
(
{f j

t : j ∈ Ct}
)}

.

Theorem
This strategy has regret no more than log2 m.



Prediction with Expert Advice: Halving

Theorem
The halving strategy has regret no more than log2 m.

Proof.
If it makes a mistake (that is, `t (at ) = 1), then the minority of
{f j

t : j ∈ Ct} is correct, so at least half of the experts are
eliminated:

|Ct+1| ≤
|Ct |
2
.

And otherwise |Ct+1| ≤ |Ct | (because |Ct | never increases).
Thus,

L̂n =
n∑

t=1

`t (at )

≤ log2
|C1|
|Cn+1|

= log2 m − log2 |Cn+1| ≤ log2 m.



Prediction with Expert Advice

The proof follows a pattern we shall see again:
find some measure of progress (here, |Ct |) that

I changes monotonically when excess loss is incurred (here,
it halves),

I is somehow constrained (here, it cannot fall below 1,
because there is an expert who predicts perfectly).

What if there is no perfect expert?
Maintaining Ct makes no sense.



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.



Prediction with Expert Advice: Mixed Strategies

I We have m experts.
I Allow a mixed strategy, that is, at chosen from the simplex

∆m—the set of distributions on {1, . . . ,m},

∆m =

{
a ∈ [0,1]m :

m∑
i=1

ai = 1

}
.

I We can think of the strategy as choosing an element of
{1, . . . ,m} randomly, according to a distribution at . Or we
can think of it as playing an element at of ∆m, and
incurring the expected loss,

`t (at ) =
m∑

i=1

ai
t`t (ei),

where `t (ei) ∈ [0,1] is the loss incurred by expert i .
(ei denotes the vector with a single 1 in the i th coordinate,
and the rest zeros.)



Prediction with Expert Advice: Exponential Weights

I Maintain a set of (unnormalized) weights over experts:

w i
0 = 1,

w i
t+1 = w i

t exp (−η`t (ei)) .

I Here, η > 0 is a parameter of the algorithm.
I Choose at as the normalized vector,

at =
1∑m

i=1 w i
t
wt .



Prediction with Expert Advice: Exponential Weights

Theorem
The exponential weights strategy with parameter

η =

√
8 ln m

n

has regret satisfying

L̂n − L∗n ≤
√

n ln m
2

.



Exponential Weights: Proof Idea

We use a measure of progress:

Wt =
m∑

i=1

w i
t .

1. Wn grows at least as

exp

(
−ηmin

i

n∑
t=1

`t (ei)

)
.

2. Wn grows no faster than

exp

(
−η

n∑
t=1

`t (at )

)
.



Exponential Weights: Proof 1

ln
Wn+1

W1
= ln

(
m∑

i=1

w i
n+1

)
− ln m

= ln

(
m∑

i=1

exp

(
−η
∑

t

`t (ei)

))
− ln m

≥ ln

(
max

i
exp

(
−η
∑

t

`t (ei)

))
− ln m

= −ηmin
i

(∑
t

`t (ei)

)
− ln m

= −ηL∗n − ln m.



Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤ −η

∑
i `t (ei)w i

t∑
i w i

t
+
η2

8

= −η`t (at ) +
η2

8
,

where we have used Hoeffding’s inequality:
for a random variable X ∈ [a,b] and λ ∈ R,

ln
(

EeλX
)
≤ λEX +

λ2(b − a)2

8
.



Aside: Proof of Hoeffding’s inequality

Define

A(λ) = log
(

EeλX
)

= log
(∫

eλx dP(x)

)
,

where X ∼ P. Then A is the log normalization of the
exponential family random variable Xλ with reference measure
P and sufficient statistic x . Since P has bounded support,
A(λ) <∞ for all λ, and we know that

A′(λ) = E(Xλ),

A′′(λ) = Var(Xλ).

Since P has support in [a,b], Var(Xλ) ≤ (b − a)2/4. Then a
Taylor expansion about λ = 0 (where Xλ has the same
distribution as X ) gives

A(λ) ≤ λEX +
λ2

8
(b − a)2.



Exponential Weights: Proof

−ηL∗n − ln m ≤ ln
Wn+1

W1
≤ −ηL̂n +

nη2

8
.

Thus,

L̂n − L∗n ≤
ln m
η

+
ηn
8
.

Choosing the optimal η gives the result:

Theorem
The exponential weights strategy with parameter

η =
√

8 ln m/n has regret no more than
√

n ln m
2 .



Key Points

For a finite set of actions (experts):
I If one is perfect (zero loss), halving algorithm gives per

round regret of
ln m

n
.

I Exponential weights gives per round regret of

O

(√
ln m

n

)
.



Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?

2. Do we need to know n to set η?



Prediction with Expert Advice: Refinements

1. Does exponential weights strategy give the faster rate if
L∗ = 0?
Replace Hoeffding:

ln EeλX ≤ λEX +
λ2

8
,

with ‘Bernstein’:
ln EeλX ≤ (eλ − 1)EX .

(for X ∈ [0,1]).



Exponential Weights: Proof 2

ln
Wt+1

Wt
= ln

(∑m
i=1 exp(−η`t (ei))w i

t∑
i w i

t

)
≤
(
e−η − 1

)
`t (at ).

Thus
L̂n ≤

η

1− e−η
L∗n +

ln m
1− e−η

.

For example, if L∗n = 0 and η is large, we obtain a regret bound
of roughly ln m/n again. And η large is like the halving
algorithm (it puts roughly equal weight on all experts that have
zero loss so far).



Prediction with Expert Advice: Refinements

2. Do we need to know n to set η?

I We used the optimal setting η =
√

8 ln m/n. But can this
regret bound be achieved uniformly across time?

I Yes; using a time-varying ηt =
√

8 ln m/t gives the same
rate (worse constants).

I It is also possible to set η as a function of L∗t , the best
cumulative loss so far, to give the improved bound for small
losses uniformly across time (worse constants).



Prediction with Expert Advice: Refinements

3. We can interpret the exponential weights strategy as
computing a Bayesian posterior.
Consider f i

t ∈ [0,1], yt ∈ {0,1}, and `it = |f i
t − yt |. Then

consider a Bayesian prior that is uniform on m distributions.
Given the i th distribution, yt is a Bernoulli random variable with
parameter

e−η(1−f i
t )

e−η(1−f i
t ) + e−ηf i

t
.

Then exponential weights is computing the posterior
distribution over the m distributions.



Prediction with Expert Advice: Refinements

4. We could work with arbitrary convex losses on ∆m:
We defined loss as linear in a:

`t (a) =
∑

i

ai`t (ei).

We could replace this with any bounded convex function on
∆m. The only change in the proof is an equality becomes an
inequality:

−η
∑

i `t (ei)w i
t∑

i w i
t
≤ −η`t (at ).



Prediction with Expert Advice: Refinements

But note that the exponential weights strategy only competes
with the corners of the simplex:

Theorem
For convex functions `t : ∆m → [0,1], the exponential weights
strategy, with η =

√
8 ln m/n, satisfies

n∑
t=1

`t (at ) ≤ min
i

n∑
t=1

`t (ei) +

√
n ln m

2
.



Finite Comparison Class

1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions:
I Exponential weights and L∗ = 0
I n unknown
I L∗ unknown
I Bayesian interpretation
I Convex (versus linear) losses

5. Statistical prediction with a finite class.



Probabilistic Prediction Setting

Let’s consider a probabilistic formulation of a prediction
problem.

I There is a sample of size n drawn i.i.d. from an unknown
probability distribution P on X × Y:
(X1,Y1), . . . , (Xn,Yn).

I Some method chooses f̂ : X → Y.
I It suffers regret

E`(f̂ (X ),Y )−min
f∈F

E`(f (X ),Y ).

I Here, F is a class of functions from X to Y.



Probabilistic Setting: Zero Loss

Theorem
If some f ∗ ∈ F has E`(f ∗(X ),Y ) = 0, then choosing

f̂ ∈ Cn =
{

f ∈ F : Ê`(f (X ),Y ) = 0
}

leads to regret that is

O
(

log |F |
n

)
.



Probabilistic Setting: Zero Loss

Proof.

Pr(E`(f̂ ) ≥ ε) ≤ Pr(∃f ∈ F : Ê`(f ) = 0, E`(f̂ ) ≥ ε)
≤ |F |(1− ε)n

≤ |F |e−nε.

Integrating the tail bound Pr(E`(f̂ )n/ ln |F | ≥ x) ≥ 1− e−x gives
E`(f̂ ) ≤ c ln |F |/n.



Probabilistic Setting

Theorem
Choosing f̂ to minimize the empirical risk, Ê`(f (X ),Y ), leads to
regret that is

O

(√
log |F |

n

)
.



Probabilistic Setting

Proof.
By the triangle inequality and the definition of f̂ ,
E`f̂ −minf∈F E`f ≤ 2E supf∈F

∣∣∣E`f − Ê`f
∣∣∣.

E sup
f∈F

∣∣∣E`f − Ê`f
∣∣∣ = E sup

f∈F

∣∣∣EÊ′`f − Ê`f
∣∣∣

≤ E sup
f∈F

∣∣∣∣∣1n ∑
t

εt
(
`f (X ′t ,Y

′
t )− `f (Xt ,Yt )

)∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣1n ∑
t

εt`f (Xt ,Yt )

∣∣∣∣∣
≤ 2 max

Xi ,Yi

√∑
t

`(f (Xi ,Yi))2

√
2 log |F |

n

≤ 2

√
2 log |F |

n
.



Key Points

For a finite function class
I If one is perfect (zero loss), minimizing empirical risk gives

per round regret of
ln |F |

n
.

I In any case, it gives per round regret of

O

(√
ln |F |

n

)
.

just as in the adversarial setting.



Course Synopsis

I A finite comparison class: A = {1, . . . ,m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.
3. Exponential weights strategy:

√
n log m regret.

4. Refinements and extensions.
5. Statistical prediction with a finite class.

I Converting online to batch.
I Online convex optimization.
I Log loss.
I Optimal regret.


