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Online Learning I

» Repeated game:

Decision method plays a;
World reveals ¢; € L

n
> Aim: minimize L, = " ¢/(ay).
t=1
» For example, aim to minimize regret, that is, perform well
compared to the best (in retrospect) from some class:

n n
regret = Y (i(ar) — min > t(a)
=1

t=1

» Data can be adversarially chosen.



Online Learning I

Minimax regret is the value of the game:

n
minmax - - mlnmax ¢t(at) — min /i(a) | .
i (Y- tta0- min3_ o)

1



Online Learning: Motivations'

. Adversarial model is appropriate for

» Computer security.

» Computational finance.

. Adversarial model assumes little:

It is often straightforward to convert a strategy for an
adversarial environment to a method for a probabilistic
environment.

. Studying the adversarial model sometimes reveals the
deterministic core of a statistical problem: there are strong
similarities between the performance guarantees in the two
cases, and in particular between their dependence on the
complexity of the class of prediction rules.
. There are significant overlaps in the design of methods for
the two problems:

» Regularization plays a central role.

» Many online prediction strategies have a natural
interpretation as a Bayesian method.



Computer Security: Spam Detection I




Computer Security: Spam Email Detection'

Here, the action a; might be a classification rule, and ¢; is
the indicator for a particular email being incorrectly
classified (e.g., spam allowed through).

The sender can determine if an email is delivered (or
detected as spam), and try to modify it.

» An adversarial model allows an arbitrary sequence.

We cannot hope for good classification accuracy in an
absolute sense; regret is relative to a comparison class.

Minimizing regret ensures that the spam detection
accuracy is close to the best performance in retrospect on
the particular spam sequence.



Computer Security: Spam Email Detection'

» Suppose we consider features of email messages from
some set X (e.g., information about the header, about
words in the message, about attachments).

» The decision method’s action a; is a mapping from X to
[0, 1] (think of the value as an estimated probability that the
message is spam).

» At each round, the adversary chooses a feature vector
Xt € X and a label y; € {0, 1}, and the loss is defined as

t(ar) = (i — al(xr))?.
» The regret is then the excess squared error, over the best
achievable on the data sequence:

n

> ti(@r)—min > t(a) = Z(}’t—at(xt))z—fagig > (—a(x))?.
t=1 t=1 t=1

t=1



Computer Security: Web Spam Detection

Web Spam Challenge (www.iw3c2.org)



Computer Security: Detecting Denial of Service'

Aftacker Attacker Attacker

Web Server \Web Server Web Server
(a) DOS (b) DDOS (c) DRDOS

ACM



Computational Finance: Portfolio OptimizationI




Computational Finance: Portfolio Optimization

» Aim to choose a portfolio (distribution over financial
instruments) to maximize utility.

» Other market players can profit from making our decisions
bad ones. For example, if our trades have a market impact,
someone can front-run (trade ahead of us).

» Here, the action a; is a distribution on instruments, and ¢;
might be the negative logarithm of the portfolio’s increase,
a; - ry, where r; is the vector of relative price increases.

» We might compare our performance to the best stock
(distribution is a delta function), or a set of indices
(distribution corresponds to Dow Jones Industrial Average,
etc), or the set of all distributions.



Computational Finance: Portfolio Optimization I

» The decision method'’s action ay is a distribution on the m
instruments, a;: € A" ={ac[0,1]":>;a =1}

» At each round, the adversary chooses a vector of returns
ry € R'; the ith component is the ratio of the price of
instrument j at time f to its price at the previous time, and
the loss is defined as

li(at) = —log(at- r).

» The regret is then the log of the ratio of the maximum value
the portfolio would have at the end (for the best mixture
choice) to the final portfolio value:

n n n n
gét(ar)—ggggﬁr(a) = rggg log(a~rt)—§ log(a-rt)-



Online Learning: Motivations'

2. Online algorithms are also effective in probabilistic settings.

» Easy to convert an online algorithm to a batch algorithm.

» Easy to show that good online performance implies good
i.i.d. performance, for example.



Online Learning: Motivations'

3. Understanding statistical prediction methods.
» Many statistical methods, based on probabilistic
assumptions, can be effective in an adversarial setting.
» Analyzing their performance in adversarial settings
provides perspective on their robustness.

» We would like violations of the probabilistic assumptions to
have a limited impact.



Key Points

» Online Learning:
» repeated game.
» aim to minimize regret.
» Data can be adversarially chosen.
» Motivations:
» Often appropriate (security, finance).
» Algorithms also effective in probabilistic settings.
» Can provide insight into statistical prediction methods.



Course Synopsis I

» A finite comparison class: A = {1,..., m}.
» Converting online to batch.

» Online convex optimization.

» Log loss.

» Optimal regret.



Mo DD~

Finite Comparison Class I

“Prediction with expert advice.”
With perfect predictions: log m regret.

Exponential weights strategy: 1/ nlog m regret.
Refinements and extensions:

Exponential weights and L* = 0

n unknown

L* unknown

Bayesian interpretation

Convex (versus linear) losses

Statistical prediction with a finite class.

vV VY Y VY



Prediction with Expert Advice'

Suppose we are predicting whether it will rain tomorrow. We
have access to a set of m experts, who each make a forecast of
0 or 1. Can we ensure that we predict almost as well as the
best expert?

Here, A ={1,..., m}. There are m experts, and each has a
forecast sequence f/, f3, ... from {0,1}. At round t, the
adversary chooses an outcome y; € {0, 1}, and sets

=102 = { § gt

0 otherwise.



Online Learning I

Minimax regret is the value of the game:

n
minmax - - mlnmax li(at) m|n li(a) | .
A L PUCRLECY

n
L= ti(a), Ly =min > " 4(a).
=1



Prediction with Expert Advice'

An easier game: suppose that the adversary is constrained to
choose the sequence y; so that some expert incurs no loss
(Ly = 0), that is, there is an i* € {1,..., m} such that for all £,
Y= ftl*

How should we predict?



Prediction with Expert Advice: Guess Who? I

AGES 6 and Up

The
ORIGINAL




Prediction with Expert Advice: Halving I

» Define the set of experts who have been correct so far:
Cr={i:t1(i) =+ =L1(/)=0}.

» Choose a; any element of
{i . fi = majority ({f{ je c,})} .

Theorem
This strategy has regret no more than log, m.



Prediction with Expert Advice: Halving I

Theorem
The halving strategy has regret no more than log, m.

Proof.
If it makes a mistake (that is, ¢;(a;) = 1), then the minority of
{fl . j € Ct} is correct, so at least half of the experts are
eliminated:

1G]

2

And otherwise |C;. 1| < |C¢| (because |C;| never increases).
Thus,

1G] <

n
Zn = Z Et(at)
t=1

< 1og, L —log, m — log, | o 1] < log, m.
‘Cn+1|




Prediction with Expert Advice'

The proof follows a pattern we shall see again:
find some measure of progress (here, |C;|) that

» changes monotonically when excess loss is incurred (here,
it halves),

» is somehow constrained (here, it cannot fall below 1,
because there is an expert who predicts perfectly).

What if there is no perfect expert?
Maintaining C; makes no sense.



Mo DD~

Finite Comparison Class I

“Prediction with expert advice.”
With perfect predictions: log m regret.

Exponential weights strategy: 1/ nlog m regret.
Refinements and extensions:

Exponential weights and L* = 0

n unknown

L* unknown

Bayesian interpretation

Convex (versus linear) losses

Statistical prediction with a finite class.

vV VY Y VY



Prediction with Expert Advice: Mixed Strategies'

» We have m experts.
» Allow a mixed strategy, that is, a; chosen from the simplex
AM—the set of distributions on {1,..., m},

m
A™ = {ae [0,1]”7:Za’:1}.
i=1
» We can think of the strategy as choosing an element of
{1,..., m} randomly, according to a distribution a;. Or we
can think of it as playing an element a; of A™, and
incurring the expected loss,

m
t(ar) =) aiti(en),
i=1

where /;(e;) € [0, 1] is the loss incurred by expert .
(e; denotes the vector with a single 1 in the ith coordinate,
and the rest zeros.)



Prediction with Expert Advice: Exponential Weights'

» Maintain a set of (unnormalized) weights over experts:
wh =1,
Wiy = wiexp(—nli(er)).
» Here, n > 0 is a parameter of the algorithm.
» Choose a; as the normalized vector,

1

a = ——
S w

Wt.



Prediction with Expert Advice: Exponential Weights'

Theorem
The exponential weights strategy with parameter

has regret satisfying




Exponential Weights: Proof Idea'

We use a measure of progress:

1. W, grows at least as

exp (—n miin i Et(e;)> .
t=1

2. W, grows no faster than

exp (—n > ét(at)> :
=1



Exponential Weights: Proof 1 I

W, i
n+ 2 : j

> In

=In (é exp (-nza(e,)» —Inm
(

max exp (—nZ&(ei)>> —Inm
r
= —nmin (Z Et(e,-)> —Inm
t

= —nL;, —Inm.



Exponential Weights: Proof 2 I

in Vet _ <2711 eXp(—nft(ei))Wti>
Wi > Wi
_nziér(ef)w{
2w
2

o -
= —nl(ar) + g

2
n
< ax
= —|-8

where we have used Hoeffding’s inequality:
for a random variable X € [a,b] and \ € R,

M\2(b — a)?

In (EeAX) <AEX + S



Aside: Proof of Hoeffding’s inequality'

A(\) = log (EeAX>

= log (/ eM dP(x)> ,

where X ~ P. Then A is the log normalization of the
exponential family random variable X with reference measure
P and sufficient statistic x. Since P has bounded support,
A(X) < oo for all A, and we know that

A(N) = E(X)),
A’(X) = Var(X)).
Since P has support in [a, b], Var(Xy) < (b — a)?/4. Then a

Taylor expansion about A = 0 (where X, has the same
distribution as X) gives

Define

A(\) < AEX + As (b— a)?.



Exponential Weights: Proof'

W,
—nL’,‘,—Inmglnﬁg—nL,ﬁ-—.

Thus,
Inm nn

L, — Ly < —+ .
n
Choosing the optimal 7 gives the result:

Theorem
The exponential weights strategy with parameter

n = \/8Inm/n has regret no more than /'3™.



Key Points

For a finite set of actions (experts):

» If one is perfect (zero loss), halving algorithm gives per

round regret of
Inm

n
» Exponential weights gives per round regret of

of/5m)



Prediction with Expert Advice: Refinements I

. Does exponential weights strategy give the faster rate if
L* =07

. Do we need to know nto set n?



Prediction with Expert Advice: Refinements I

1. Does exponential weights strategy give the faster rate if
L* =07
Replace Hoeffding:

2
InEe™ < AEX + %,

with ‘Bernstein’:
InEe*X < (e* — 1)EX.

(for X € [0, 1]).



Exponential Weights: Proof 2 I

W > exp(—nli(e))w
Ind}j:ln( 1 Zthit t)
< (e7"—1)4(ar).

Thus

A n . Inm

Lo < s—mbnt 7=
For example, if L;, = 0 and 7 is large, we obtain a regret bound
of roughly In m/n again. And 7 large is like the halving
algorithm (it puts roughly equal weight on all experts that have
zero loss so far).



Prediction with Expert Advice: Refinements I

2. Do we need to know n to set ?

» We used the optimal setting n» = 1/81n m/n. But can this
regret bound be achieved uniformly across time?

» Yes; using a time-varying n; = \/8Inm/t gives the same
rate (worse constants).

» It is also possible to set n as a function of L}, the best
cumulative loss so far, to give the improved bound for small
losses uniformly across time (worse constants).



Prediction with Expert Advice: Refinements I

3. We can interpret the exponential weights strategy as
computing a Bayesian posterior.
Consider f/ € [0,1], yt € {0,1}, and ¢} = |/ — y|. Then
consider a Bayesian prior that is uniform on m distributions.
Given the ith distribution, y; is a Bernoulli random variable with
parameter _

e*”(dlfftl)

e-1(1=1) 4 g=nf{’

Then exponential weights is computing the posterior
distribution over the m distributions.



Prediction with Expert Advice: Refinements I

4. We could work with arbitrary convex losses on A™:
We defined loss as linear in a:

= Z a(e)

We could replace this with any bounded convex function on
A™. The only change in the proof is an equality becomes an
inequality:

Z, ti(ei)

ZI Wt

w!
=2 < ply(ay).



Prediction with Expert Advice: Refinements I

But note that the exponential weights strategy only competes
with the corners of the simplex:

Theorem
For convex functions ¢; : A™ — [0, 1], the exponential weights

strategy, withn = /81Inm/n, satisfies

ninm

n n
- i
;Et(at) < milntz_;ﬂt(e )+




Mo DD~

Finite Comparison Class I

“Prediction with expert advice.”
With perfect predictions: log m regret.

Exponential weights strategy: 1/ nlog m regret.
Refinements and extensions:

Exponential weights and L* = 0

n unknown

L* unknown

Bayesian interpretation

Convex (versus linear) losses

Statistical prediction with a finite class.

vV VY Y VY



Probabilistic Prediction Setting I

Let’s consider a probabilistic formulation of a prediction
problem.

» There is a sample of size ndrawn i.i.d. from an unknown
probability distribution P on X x Y:
(X17 Y1)7 B (Xn, Yn)

» Some method chooses f: X — ).
» It suffers regret

E((f(X),Y) — min E/(f(X), ).

» Here, F is a class of functions from X to V.



Probabilistic Setting: Zero Loss'
Theorem

If some f* € F has E{(f*(X), Y) = 0, then choosing

fec,= {fe F:EE(f(X),Y):O}

o (%017,

leads to regret that is




Probabilistic Setting: Zero Loss'

Proof.

Pr(E((F) > €) < Pr(3f € F : E¢(f) = 0, E{(f) > ¢)
< [F|(1—¢)"
< |Fle™".

A

Integrating the tail bound Pr(E¢(f)n/In|F| > x) > 1 — e ¥ gives

A

E/(f) < cIn|F]|/n. O



Probabilistic Setting I
Theorem

Choosing f to minimize the empirical risk, E/(f(X), Y), leads to

regret that is
0 ( log |F |> ‘
n



Probabilistic Setting I
Proof.

By the triangle inequality and the definition of f,
Ef? — minfe,_- E/f < 2E SUPtcF ‘Eff — éff‘

Esup |E¢; — E¢f| = Esup |EE'¢; — Eé,‘

feF feF
1
< ESUp — Z €t (Ef(X;7 Yt/) — gf(Xt, Yt))|
feF | N
< 2Esup |— 1 Zetﬁf(Xt, Yt)
feF

t

<2max\/Z€ (f(Xi, Y7))? ”ZIOQ‘F‘

2log | F|
P

<2




Key Points

For a finite function class

» If one is perfect (zero loss), minimizing empirical risk gives
per round regret of
In|F]|
n
» In any case, it gives per round regret of

o7,

just as in the adversarial setting.



Course Synopsis I

» A finite comparison class: A = {1,..., m}.
1. “Prediction with expert advice.”
2. With perfect predictions: log m regret.

3. Exponential weights strategy: 1/ nlog m regret.
4. Refinements and extensions.
5. Statistical prediction with a finite class.

» Converting online to batch.
» Online convex optimization.
» Log loss.

» Optimal regret.



