Optimization in High-Dimensional Prediction

Peter Bartlett Google Research and UC Berkeley

IHP October 6, 2022

Spencer Frei

Niladri Chatterji

Phil Long

Olivier Bousquet

Deep learning

• Deep learning has raised many interesting new questions

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance

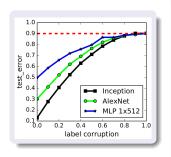
- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
 - e.g., gradient flow motivates the study of minimum norm interpolation

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
 - e.g., gradient flow motivates the study of minimum norm interpolation
 - e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
 - e.g., gradient flow motivates the study of minimum norm interpolation
 - e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses
 - e.g., implicit regularization of gradient flow in neural networks

- Deep learning has raised many interesting new questions
 - Efficient nonconvex optimization (empirical risk minimization with nonlinearly parameterized functions)
 - Good prediction despite overfitting and no explicit regularization
- Optimization methodology affects statistical performance
 - e.g., gradient flow motivates the study of minimum norm interpolation
 - e.g., discrete time gradient descent and stochastic gradient descent as gradient flow on penalized losses
 - e.g., implicit regularization of gradient flow in neural networks
- This talk: optimization for non-linear and high-dimensional prediction
 - Benign overfitting in a non-linear setting
 - Sharpness-Aware Minimization'

Overfitting in Deep Networks



- Deep networks can be trained to zero training error (for regression loss)
- ... with near state-of-the-art performance
- ... even for *noisy* problems.
- No tradeoff between fit to training data and complexity!
- Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017)

also (Belkin, Hsu, Ma, Mandal, 2018)

Benign Overfitting

Intuition

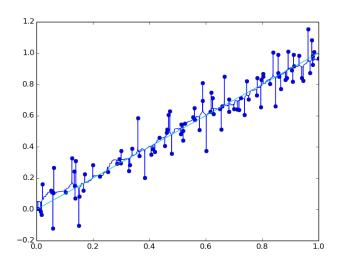
ullet Benign overfitting prediction rule \widehat{f} decomposes as

$$\widehat{f} = \widehat{f_0} + \Delta.$$

- $\hat{f_0} = \text{simple component useful for } prediction.$
- $\Delta =$ spiky component useful for *benign overfitting*.
- Classical statistical learning theory applies to \hat{f}_0 .
- \bullet Δ is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)

Benign Overfitting



Benign Overfitting

Linear Regression

(B, Long, Lugosi, Tsigler, 2019), (B, Tsigler, 2020)

ullet Benign overfitting prediction rule \widehat{f} decomposes as

$$\widehat{f} = \widehat{f_0} + \Delta.$$

- $\widehat{f_0} = prediction$ component: k^* -dim subspace corresponding to $\lambda_1, \dots, \lambda_{k^*}$.
- $\Delta = benign \ overfitting \ component:$ orthogonal subspace. Δ is benign only if $R_{k^*} \gg n$.

Here,

 $\lambda_1, \lambda_2, \ldots$ are the eigenvalues of the covariate covariance, k^* is defined in terms of an effective rank of the covariance in the low-variance orthogonal subspace, and R_{k^*} is another effective rank in that subspace.

Benign overfitting

Benign overfitting in classical settings:

- Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; . . .]
- Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019;
 Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; ...]
- Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; . . .]
- Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021;
 Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; . . .]

Benign overfitting

- Benign overfitting in classical settings:
 - Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; . . .]
 - Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019;
 Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; ...]
 - Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; . . .]
 - Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021;
 Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; ...]
- Benign overfitting in neural networks?
 (beyond the 'neural tangent kernel' approximation)

Benign overfitting

- Benign overfitting in classical settings:
 - Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla, Tsybakov, 2022; . . .]
 - Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019;
 Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; . . .]
 - Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang, Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; . . .]
 - Logistic regression [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021;
 Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; . . .]
- Benign overfitting in neural networks?
 (beyond the 'neural tangent kernel' approximation)

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Benign overfitting without linearity

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Outline

Noisy classification with two-layer neural networks trained by GD

Benign overfitting without linearity

Spencer Frei Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Outline

- Noisy classification with two-layer neural networks trained by GD
- Benign overfitting

Benign overfitting without linearity

Spencer Frei

Niladri Chatterji

Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. COLT 2022. arXiv:2202.05928

Outline

- Noisy classification with two-layer neural networks trained by GD
- Benign overfitting
- Proof ideas

Goal and technical challenges

Goal

Understand how benign overfitting can occur in *neural networks trained by* gradient descent to get insight into 'modern' ML.

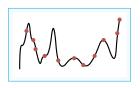
Goal and technical challenges

Goal

Understand how benign overfitting can occur in *neural networks trained by* gradient descent to get insight into 'modern' ML.

Technical challenges:





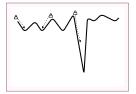
• Understand non-convex learning dynamics of neural network training.

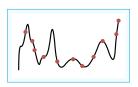
Goal and technical challenges

Goal

Understand how benign overfitting can occur in *neural networks trained by* gradient descent to get insight into 'modern' ML.

Technical challenges:





- Understand non-convex learning dynamics of neural network training.
- Understand generalization of interpolating classifiers for noisy data when hypothesis class has unbounded capacity.

Distributional setting

- Mixture of two log-concave isotropic clusters:
 - Cluster centered at $+\mu \in \mathbb{R}^p$, clean label +1
 - Cluster centered at $-\mu \in \mathbb{R}^p$, clean label -1
- Allow for constant fraction η of training labels to be flipped (\tilde{P}_{cl} : 'clean' distribution, P_{ns} : 'noisy' distribution)
- Assume $\|\mu\|$ grows with dimension p.

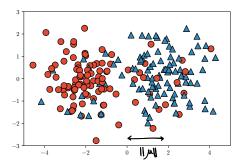


Figure: $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

• We consider γ -leaky, H-smooth activations ϕ , satisfying for all $z \in \mathbb{R}$,

$$0 < \gamma \le \phi'(z) \le 1, \quad |\phi''(z)| \le H.$$

Two-layer neural networks trained by GD

• We consider γ -leaky, H-smooth activations ϕ , satisfying for all $z \in \mathbb{R}$,

$$0 < \gamma \le \phi'(z) \le 1, \quad |\phi''(z)| \le H.$$

Two-layer neural networks trained by GD

• Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\{a_i\}_{i=1}^m$ (fixed at initialization),

$$f(x; W) := \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle).$$

• We consider γ -leaky, H-smooth activations ϕ , satisfying for all $z \in \mathbb{R}$,

$$0 < \gamma \le \phi'(z) \le 1, \quad |\phi''(z)| \le H.$$

Two-layer neural networks trained by GD

• Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\{a_i\}_{i=1}^m$ (fixed at initialization),

$$f(x; W) := \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle).$$

• Initialize $[W^{(0)}]_{r,s} \stackrel{\text{i.i.d.}}{\sim} N(0,\omega_{\text{init}}^2)$, $a_j \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\{1/\sqrt{m},-1/\sqrt{m}\})$.

• We consider γ -leaky, H-smooth activations ϕ , satisfying for all $z \in \mathbb{R}$,

$$0 < \gamma \le \phi'(z) \le 1, \quad |\phi''(z)| \le H.$$

Two-layer neural networks trained by GD

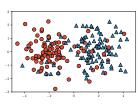
• Network with m neurons, first layer weights $W \in \mathbb{R}^{m \times p}$, second layer weights $\{a_i\}_{i=1}^m$ (fixed at initialization),

$$f(x; W) := \sum_{j=1}^{m} a_j \phi(\langle w_j, x \rangle).$$

- Initialize $[W^{(0)}]_{r,s} \stackrel{\text{i.i.d.}}{\sim} N(0,\omega_{\text{init}}^2)$, $a_j \stackrel{\text{i.i.d.}}{\sim} Unif(\{1/\sqrt{m},-1/\sqrt{m}\})$.
- For $\ell(z) = \log(1 + \exp(-z))$, data $\{(x_i, y_i)\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} P_{\text{ns}}$, $\alpha > 0$,

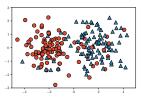
$$W^{(t+1)} = W^{(t)} - \alpha \nabla \widehat{L}(W^{(t)}) = W^{(t)} - \alpha \nabla \left(\frac{1}{n} \sum_{i=1}^{n} \ell(y_i f(x_i; W^{(t)}))\right).$$

For failure probability $\delta \in (0,1)$, large C > 1:



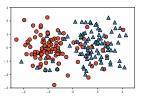
 $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

(A1) Number of samples $n \geq C \log(1/\delta)$.



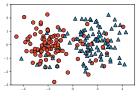
 $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

- (A1) Number of samples $n \geq C \log(1/\delta)$.
- (A2) Mean separation $\|\mu\| = \Theta(p^{\frac{1}{3}})$.
 - Holds for more general $\|\mu\| = \omega_p(1)$.



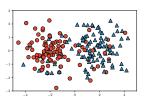
 $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

- (A1) Number of samples $n \ge C \log(1/\delta)$.
- (A2) Mean separation $\|\mu\| = \Theta(p^{\frac{1}{3}})$.
 - Holds for more general $\|\mu\| = \omega_p(1)$.
- (A3) Dimension $p \gtrsim n^3$.
 - Ensures all samples are \approx orthogonal.



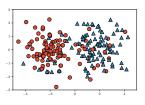
 $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

- (A1) Number of samples $n \geq C \log(1/\delta)$.
- (A2) Mean separation $\|\mu\| = \Theta(p^{\frac{1}{3}})$.
 - Holds for more general $\|\mu\| = \omega_p(1)$.
- (A3) Dimension $p \gtrsim n^3$.
 - Ensures all samples are pprox orthogonal.
- (A4) Noise rate $\eta \leq 1/C$.



 ${\sf P_{clust}} = {\sf N}(0, {\it I}_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

- (A1) Number of samples $n \geq C \log(1/\delta)$.
- (A2) Mean separation $\|\mu\| = \Theta(p^{\frac{1}{3}})$.
 - Holds for more general $\|\mu\| = \omega_p(1)$.
- (A3) Dimension $p \gtrsim n^3$.
 - Ensures all samples are pprox orthogonal.
- (A4) Noise rate $\eta \leq 1/C$.
- (A5) Large step-size relative to initialization: $\alpha \geq \omega_{\rm init} \sqrt{mp}$.
 - Ensures 'feature-learning' (non-NTK) after one step.



 $P_{\text{clust}} = N(0, I_2)$ with $\|\mu\| = 1.9$ and 15% of the labels flipped.

- (A1) Number of samples $n \geq C \log(1/\delta)$.
- (A2) Mean separation $\|\mu\| = \Theta(p^{\frac{1}{3}})$.
 - Holds for more general $\|\mu\| = \omega_p(1)$.
- (A3) Dimension $p \gtrsim n^3$.
 - Ensures all samples are pprox orthogonal.
- (A4) Noise rate $\eta \leq 1/C$.
- (A5) Large step-size relative to initialization: $\alpha \geq \omega_{\rm init} \sqrt{mp}$.
 - Ensures 'feature-learning' (non-NTK) after one step.
 - Networks of arbitrary width $m \ge 1$.

Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem

(Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with stepsize α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem

(Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with stepsize α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem

(Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with stepsize α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y\neq \mathrm{sgn}\big(f(x;W^{(T)})\big)\big]\leq \eta+\boxed{2\exp\left(-c\cdot np^{\frac{1}{3}}\right)}.$$

Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem

(Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with stepsize α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- 2 The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y \neq \mathrm{sgn}(f(x;W^{(T)}))\big] \leq \eta + \left[2\exp\left(-c\cdot np^{\frac{1}{3}}\right)\right].$$

• Training error is ≈ 0 with noisy labels (overfitting), yet still generalizing near Bayes-optimal (benign).

Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem

(Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with stepsize α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, with high probability over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y \neq \mathrm{sgn}(f(x;W^{(T)}))\big] \leq \eta + \boxed{2\exp\left(-c\cdot np^{\frac{1}{3}}\right)}.$$

- Training error is ≈ 0 with noisy labels (overfitting), yet still generalizing near Bayes-optimal (benign).
- Any width $m \ge 1$: no dependence on m (except $\alpha \ge \omega_{\text{init}} \sqrt{mp}$).

Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with l.r. α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- ② The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y\neq \mathrm{sgn}(f(x;W^{(T)}))\big]\leq \eta+\left|2\exp\left(-c\cdot np^{\frac{1}{3}}\right)\right|.$$

Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)

For $0<\varepsilon<1/2n$, by running GD with l.r. α , for $T\geq C\alpha^{-1}\varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- 2 The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y\neq \mathrm{sgn}(f(x;W^{(T)}))\big]\leq \eta+\left[2\exp\left(-c\cdot np^{\frac{1}{3}}\right)\right].$$

• As $\varepsilon \to 0$, $\|W^{(T)}\| \to \infty$.

Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)

For $0 < \varepsilon < 1/2n$, by running GD with l.r. α , for $T \ge C\alpha^{-1}\varepsilon^{-2}$ iterations, w.h.p. over the random initialization and sample:

- $y_i = \operatorname{sgn}(f(x_i; W^{(T)}))$ for all i with training loss $\widehat{L}(W^{(T)}) \leq \varepsilon$.
- The test error satisfies

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}\big[y \neq \mathrm{sgn}(f(x;W^{(T)}))\big] \leq \eta + \left[2\exp\left(-c\cdot np^{\frac{1}{3}}\right)\right].$$

- As $\varepsilon \to 0$, $\|W^{(T)}\| \to \infty$.
- Predictor has **unbounded norm**, neural net can be **arbitrarily wide**, achieves ≈ 0 training loss, generalizes near-optimally—Bayes error $> \eta = \Omega(1)$.
 - Many ways to overfit: $p\gg n$, width $\gg 1$, ...

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathbb{P}}_{cl}}[\tilde{y}f(x;W)] \geq 0$. Then there exists a universal constant c>0 such that

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}(y \neq \mathrm{sgn}(f(x;W))) \leq \eta + 2 \exp\left(-c\left(\frac{\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathsf{P}}_{\mathsf{cl}}}[\tilde{y}f(x;W)]}{\|W\|_{\mathsf{F}}}\right)^{2}\right)$$

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathbb{P}}_{cl}}[\tilde{y}f(x;W)] \geq 0$. Then there exists a universal constant c>0 such that

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}(y \neq \mathrm{sgn}(f(x;W))) \leq \eta + 2 \exp\left(-c\left(\frac{\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathsf{P}}_{\mathsf{cl}}}[\tilde{y}f(x;W)]}{\|W\|_{\mathsf{F}}}\right)^{2}\right)$$

- Benign overfitting occurs if we can show:
 - **1** Normalized margin on *clean* points is large:

$$\frac{\mathbb{E}_{(x,\tilde{y})\sim\tilde{\mathsf{P}}_{\mathsf{cl}}}[\tilde{y}f(x;W^{(T)})]}{\|W^{(T)}\|_{F}}\gg 0.$$

Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that $\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathbb{P}}_{cl}}[\tilde{y}f(x;W)] \geq 0$. Then there exists a universal constant c>0 such that

$$\mathbb{P}_{(x,y)\sim \mathsf{P}_{\mathsf{ns}}}(y \neq \mathrm{sgn}(f(x;W))) \leq \eta + 2 \exp\left(-c\left(\frac{\mathbb{E}_{(x,\tilde{y})\sim \tilde{\mathsf{P}}_{\mathsf{cl}}}[\tilde{y}f(x;W)]}{\|W\|_{\mathsf{F}}}\right)^{2}\right)$$

- Benign overfitting occurs if we can show:
 - 1 Normalized margin on clean points is large:

$$\frac{\mathbb{E}_{(x,\tilde{y})\sim\tilde{\mathsf{P}}_{\mathsf{cl}}}[\tilde{y}f(x;W^{(T)})]}{\|W^{(T)}\|_{F}}\gg 0.$$

2 Empirical risk can be driven to zero:

$$y_i = \mathrm{sgn}ig(f(x_i; W^{(T)})ig)$$
 for all i , and $\widehat{\mathcal{L}}(W^{(T)})pprox 0$.

Gradient descent ensures good generalization performance

Lemma

For any $t \ge 1$, for a step size large relative to random initialization,

$$\begin{split} \mathbb{E}_{(\mathsf{x},\tilde{y})\sim\tilde{\mathsf{P}}_{\mathsf{cl}}}\left[\frac{\tilde{y}f(\mathsf{x};W^{(t)})}{\|W^{(t)}\|_F}\right] \gtrsim \sqrt{np^{1/3}} \gg 0, \\ \mathbb{P}_{(\mathsf{x},y)\sim\mathsf{P}_{\mathsf{ns}}}\big(y \neq \mathrm{sgn}(f(\mathsf{x};W^{(t)}))\big) \leq \eta + 2\exp\left(-c \cdot np^{1/3}\right). \end{split}$$

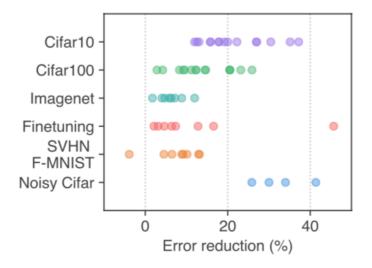
• Gradient descent produces a particular neural network which will classify well, regardless of $\|W^{(t)}\|_F$, with sub-polynomial samples.

Outline

Optimization for high-dimensional prediction

- Benign overfitting in a non-linear setting
- Sharpness-Aware Minimization'

Sharpness-Aware Minimization: Prediction Performance



Sharpness-Aware Minimization for Efficiently Improving Generalization.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

• The story: For an empirical loss ℓ defined on a parameter space: $\min_{w} \max_{\|\epsilon\| < \rho} \ell(w + \epsilon)$.

Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

- The story: For an empirical loss ℓ defined on a parameter space: $\min_{w} \max_{\|\epsilon\| < \rho} \ell(w + \epsilon)$.
- The rationale:

$$\max_{\|\epsilon\| \le \rho} \ell(w + \epsilon) = \underbrace{\max_{\|\epsilon\| \le \rho} \ell(w + \epsilon) - \ell(w)}_{sharpness} + \ell(w).$$

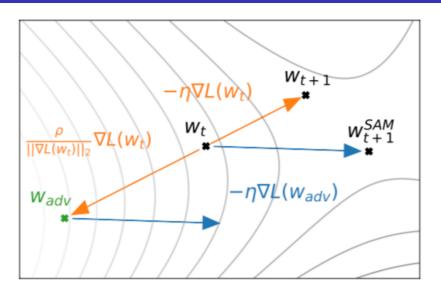
Sharpness-Aware Minimization for Efficiently Improving Generalization. Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

- The story: For an empirical loss ℓ defined on a parameter space: $\min_{w} \max_{\|\epsilon\| < \rho} \ell(w + \epsilon)$.
- The rationale:

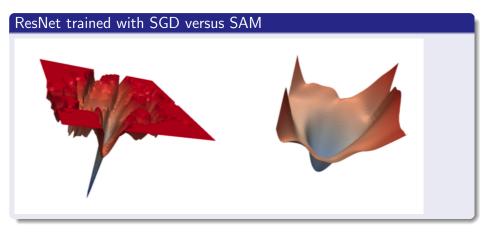
$$\max_{\|\epsilon\| \le \rho} \ell(w + \epsilon) = \underbrace{\max_{\|\epsilon\| \le \rho} \ell(w + \epsilon) - \ell(w)}_{\text{sharpness}} + \ell(w).$$

• The reality: First order simplification:

$$w_{t+1} = w_t - \eta \nabla \ell \left(w_t + \rho \frac{\nabla \ell(w_t)}{\|\nabla \ell(w_t)\|} \right).$$



Visualizing SAM Minima



Foret, Kleiner, Mobahi, Neyshabur. 2021

Phil Long

Olivier Bousquet

 The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Outline

wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

• The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards

Dutline

- SAM with a quadratic criterion: Bouncing across ravines
 - Stationary points
 - A non-convex gradient descent
 - SAM oscillates around minimum

• The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

Dutline

- SAM with a quadratic criterion: Bouncing across ravines
 - Stationary points
 - A non-convex gradient descent
 - SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
 - SAM near a smooth minimum
 - Descending the gradient of the spectral norm of the Hessian

wide minima. B., Long, Bousquet. arXiv:2210.xxxxx

• The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards

Dutline

- SAM with a quadratic criterion: Bouncing across ravines
 - Stationary points
 - A non-convex gradient descent
 - SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
 - SAM near a smooth minimum
 - Descending the gradient of the spectral norm of the Hessian
- Open questions

SAM

For a loss function $\ell : \mathbb{R}^d \to \mathbb{R}$, SAM starts with an initial parameter vector $w_0 \in \mathbb{R}^d$ and updates

$$w_{t+1} = w_t - \eta \nabla \ell \left(w_t + \rho \frac{\nabla \ell(w_t)}{\|\nabla \ell(w_t)\|} \right).$$

where $\eta, \rho > 0$ are step size parameters.

SAM

For a loss function $\ell : \mathbb{R}^d \to \mathbb{R}$, SAM starts with an initial parameter vector $w_0 \in \mathbb{R}^d$ and updates

$$w_{t+1} = w_t - \eta \nabla \ell \left(w_t + \rho \frac{\nabla \ell(w_t)}{\|\nabla \ell(w_t)\|} \right).$$

where $\eta, \rho > 0$ are step size parameters.

SAM with quadratic loss

Fix $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$ with $\lambda_1 \geq \dots \lambda_d \geq 0$ and consider loss

$$\ell(w) = \frac{1}{2} w^{\top} \Lambda w.$$

Then
$$\nabla \ell(w) = \Lambda w$$
 and $w_{t+1} = \left(I - \eta \Lambda - \frac{\eta \rho}{\|\Lambda w_t\|} \Lambda^2\right) w_t$.

Bouncing across ravines

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant c such that for any eigenvalues $\lambda_1>\lambda_2\geq ...\geq \lambda_d>0$, any neighborhood size $\rho>0$, and any step size $0<\eta<\frac{1}{2\lambda_1}$, for all small enough $\epsilon,\delta>0$, if w_0 is sampled from a continuous probability distribution over \mathbb{R}^d (density bounded above by A; $\|w_0\|$ not too big; $|w_{0,1}|$ not too small), then with probability $1-\delta$, for all t sufficiently large (polynomial in d, $1/(\eta\lambda_d)$, λ_1/λ_d and $1/(\lambda_1^2/\lambda_2^2-1)$, polylogarithmic in other parameters), for some

$$w^* \in \left\{ \pm \frac{\eta \rho \lambda_1}{2 - \eta \lambda_1} e_1 \right\}$$

and for all $s \geq t$, $||w_{2s} - w^*|| \leq \epsilon$ and $||w_{2s+1} + w^*|| \leq \epsilon$.

A reparameterization

Define $v_t = \nabla \ell(w_t) = \Lambda w_t$. Then

$$v_{t+1} = \left(I - \eta \Lambda - \frac{\eta \rho}{\|v_t\|} \Lambda^2\right) v_t,$$

A reparameterization

Define $v_t = \nabla \ell(w_t) = \Lambda w_t$. Then

$$v_{t+1} = \left(I - \eta \Lambda - \frac{\eta \rho}{\|v_t\|} \Lambda^2\right) v_t,$$

so, for all i and all t, we have

$$\begin{aligned} v_{t+1,i} &= \left(1 - \eta \lambda_i - \frac{\eta \rho \lambda_i^2}{\|v_t\|}\right) v_{t,i} \\ &= \left(1 - \eta \lambda_i\right) \left(1 - \frac{\gamma_i}{\|v_t\|}\right) v_{t,i}, \end{aligned}$$

where
$$\gamma_i := \frac{\eta \rho \lambda_i^2}{1 - \eta \lambda_i}$$
.

A reparameterization

Define $v_t = \nabla \ell(w_t) = \Lambda w_t$. Then

$$v_{t+1} = \left(I - \eta \Lambda - \frac{\eta \rho}{\|v_t\|} \Lambda^2\right) v_t,$$

so, for all i and all t, we have

$$\begin{aligned} v_{t+1,i} &= \left(1 - \eta \lambda_i - \frac{\eta \rho \lambda_i^2}{\|v_t\|}\right) v_{t,i} \\ &= \left(1 - \eta \lambda_i\right) \left(1 - \frac{\gamma_i}{\|v_t\|}\right) v_{t,i}, \end{aligned}$$

where $\gamma_i := \frac{\eta \rho \lambda_i^2}{1 - \eta \lambda_i}$.

Define
$$\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i} \gamma_i = \frac{\eta \rho \lambda_i^2}{2 - \eta \lambda_i}$$
.

Solutions are in the eigenvector directions, β_i from the minimum

The set of non-zero solutions (v_1^2, \dots, v_d^2) to $\forall i, v_{t+1,i}^2 = v_{t,i}^2$ is

$$\bigcup_{i=1}^d \operatorname{co}\{\beta_i^2 e_j : \beta_j = \beta_i\},\,$$

where co(S) denotes the convex hull of a set S and e_j is the jth basis vector in \mathbb{R}^d .

Define
$$\alpha_i = \frac{(1 - \eta \lambda_1)\gamma_1 + (1 - \eta \lambda_i)\gamma_i}{1 - \eta \lambda_1 + 1 - \eta \lambda_i}$$
.

Recall
$$\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i} \gamma_i$$
.

Define
$$\alpha_i = \frac{(1 - \eta \lambda_1)\gamma_1 + (1 - \eta \lambda_i)\gamma_i}{1 - \eta \lambda_1 + 1 - \eta \lambda_i}$$
. Recall $\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i}\gamma_i$.

If $\lambda_1 > \lambda_2$, then $\beta_d \leq \cdots \leq \beta_1 < \alpha_d \leq \cdots \alpha_2 \leq \alpha_1 = \gamma_1$.

Define
$$\alpha_i = \frac{(1 - \eta \lambda_1)\gamma_1 + (1 - \eta \lambda_i)\gamma_i}{1 - \eta \lambda_1 + 1 - \eta \lambda_i}$$
. Recall $\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i}\gamma_i$.

Norm of v versus β_i determines how components grow

If $\lambda_1 > \lambda_2$, then $\beta_d < \cdots < \beta_1 < \alpha_d < \cdots \alpha_2 < \alpha_1 = \gamma_1$.

$$||v_t|| > \beta_i \text{ iff } v_{t+1,i}^2 < v_{t,i}^2.$$

Define
$$\alpha_i = \frac{(1 - \eta \lambda_1)\gamma_1 + (1 - \eta \lambda_i)\gamma_i}{1 - \eta \lambda_1 + 1 - \eta \lambda_i}$$
.

Recall $\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i} \gamma_i$.

If $\lambda_1 > \lambda_2$, then $\beta_d \leq \cdots \leq \beta_1 < \alpha_d \leq \cdots \alpha_2 \leq \alpha_1 = \gamma_1$.

Norm of v versus β_i determines how components grow

$$||v_t|| > \beta_i \text{ iff } v_{t+1,i}^2 < v_{t,i}^2.$$

Norm of v versus α_i determines relative growth

If
$$\lambda_1 > \lambda_2$$
, then for $i \in \{2, \dots, d\}$, $||v_t|| < \alpha_i$ iff $\frac{v_{t+1,1}^2}{v_{t+1,i}^2} > \frac{v_{t,1}^2}{v_{t,i}^2}$.

Define
$$\alpha_i = \frac{(1 - \eta \lambda_1)\gamma_1 + (1 - \eta \lambda_i)\gamma_i}{1 - \eta \lambda_1 + 1 - \eta \lambda_i}$$
.

Recall
$$\beta_i = \frac{1 - \eta \lambda_i}{2 - \eta \lambda_i} \gamma_i$$
.

If $\lambda_1 > \lambda_2$, then $\beta_d \leq \cdots \leq \beta_1 < \alpha_d \leq \cdots \alpha_2 \leq \alpha_1 = \gamma_1$.

Norm of ν versus β_i determines how components grow

$$||v_t|| > \beta_i \text{ iff } v_{t+1,i}^2 < v_{t,i}^2.$$

Norm of v versus α_i determines relative growth

If
$$\lambda_1 > \lambda_2$$
, then for $i \in \{2, \dots, d\}$, $||v_t|| < \alpha_i$ iff $\frac{v_{t+1,1}^2}{v_{t+1,i}^2} > \frac{v_{t,1}^2}{v_{t}^2}$.

Define
$$b = (1 - \eta \lambda_1) \gamma_1$$
.

$$\|v_t\| \le b$$
 implies $\|v_{t+1}\| \le b$ (and the decay to b is exponentially fast).

A non-convex gradient descent

Lemma

For $u_t := (-1)^t w_t$, if $||w_t|| > 0$,

$$u_{t+1} = u_t - \eta \rho \nabla J(u_t),$$

A non-convex gradient descent

Lemma

For $u_t := (-1)^t w_t$, if $||w_t|| > 0$,

$$u_{t+1} = u_t - \eta \rho \nabla J(u_t),$$

where

$$J(u) = \frac{1}{2} u^{\top} C u - \|\Lambda u\|, \qquad C = \operatorname{diag}\left(\frac{\lambda_1^2}{\beta_1}, \dots, \frac{\lambda_d^2}{\beta_d}\right).$$

A non-convex gradient descent

Lemma

For $u_t := (-1)^t w_t$, if $||w_t|| > 0$,

$$u_{t+1} = u_t - \eta \rho \nabla J(u_t),$$

where

$$J(u) = \frac{1}{2}u^{\top}Cu - \|\Lambda u\|, \qquad C = \operatorname{diag}\left(\frac{\lambda_1^2}{\beta_1}, \dots, \frac{\lambda_d^2}{\beta_d}\right).$$

Also,

$$J(u_{t+1})-J(u_t) \leq -\frac{1}{2\rho}\sum_{i=1}^d u_{t,i}^2 \left(1-\frac{\beta_i}{\|\Lambda u_t\|}\right)^2 (2-\eta\lambda_i)^2\lambda_i.$$

Properties of J

 $\nabla J(u) = 0$ iff for some i, $||u|| = \beta_i/\lambda_i$ and $u \in \operatorname{span}\{e_j : \beta_j = \beta_i\}$.

Properties of J

 $\nabla J(u) = 0$ iff for some i, $||u|| = \beta_i/\lambda_i$ and $u \in \operatorname{span}\{e_j : \beta_j = \beta_i\}$. For unit norm \widehat{u} satisfying $\nabla J(\beta_i/\lambda_i\widehat{u}) = 0$,

$$\nabla^2 J\left(\frac{\beta_i}{\lambda_i}\widehat{u}\right) = \Lambda^2 \left(\sum_{j:\beta_j \neq \beta_i} \left(\frac{1}{\beta_j} - \frac{1}{\beta_i}\right) e_j e_j^\top + \frac{1}{\beta_i} \widehat{u} \widehat{u}^\top\right),\,$$

which has $|\{j:\beta_j<\beta_i\}|+1$ positive eigenvalues, $|\{j:\beta_j>\beta_i\}|$ negative eigenvalues, and $|\{j:\beta_j=\beta_i\}|-1$ zero eigenvalues.

Properties of J

 $\nabla J(u) = 0$ iff for some i, $||u|| = \beta_i/\lambda_i$ and $u \in \operatorname{span}\{e_j : \beta_j = \beta_i\}$. For unit norm \widehat{u} satisfying $\nabla J(\beta_i/\lambda_i\widehat{u}) = 0$,

$$\nabla^2 J\left(\frac{\beta_i}{\lambda_i}\widehat{u}\right) = \Lambda^2 \left(\sum_{j:\beta_j \neq \beta_i} \left(\frac{1}{\beta_j} - \frac{1}{\beta_i}\right) e_j e_j^\top + \frac{1}{\beta_i} \widehat{u} \widehat{u}^\top\right),$$

which has $|\{j: \beta_j < \beta_i\}| + 1$ positive eigenvalues, $|\{j: \beta_j > \beta_i\}|$ negative eigenvalues, and $|\{j: \beta_j = \beta_i\}| - 1$ zero eigenvalues.

The set of all stationary points with only non-negative eigenvalues is

$$M = \left\{ u \in \mathbb{R}^d : ||u|| = \frac{\beta_1}{\lambda_1}, \ u \in \operatorname{span}\{e_j : \beta_j = \beta_1\} \right\},\,$$

and this is the set of global minima. There are no other local minima.

Lemma

For $\epsilon > 0$, and $||v_{T_0}|| \le b$,

$$\begin{split} \left| \left\{ t \geq T_0 : \| v_t \| \geq (1 + \epsilon) \beta_1 \right\} \right| &\leq \frac{2}{\eta \epsilon^2 \lambda_1 \beta_1} \left(\max_{\| \Lambda w \| \leq b} J(w) - \min_w J(w) \right) \\ &\leq \frac{3\beta_1}{\eta \epsilon^2 \lambda_1 \beta_d}. \end{split}$$

Recall:

- $\beta_d \leq \cdots \leq \beta_1 < \alpha_d \leq \cdots \alpha_2 \leq \alpha_1 = \gamma_1$,
- Norm of v versus β_i determines how components grow, and
- Norm of v versus α_i determines relative growth compared to the leading component.

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant c such that for any eigenvalues $\lambda_1 > \lambda_2 \geq ... \geq \lambda_d > 0$, any neighborhood size $\rho > 0$, and any step size $0 < \eta < \frac{1}{2\lambda_1}$, for all small enough $\epsilon, \delta > 0$, if w_0 is sampled from a continuous probability distribution over \mathbb{R}^d (density bounded above by A; $\|w_0\|$ not too big; $|w_{0,1}|$ not too small), then with probability $1 - \delta$, for all t sufficiently large (polynomial in d, $1/(\eta \lambda_d)$, λ_1/λ_d and $1/(\lambda_1^2/\lambda_2^2 - 1)$, polylogarithmic in other parameters), for some

$$w^* \in \left\{ \pm \frac{\eta \rho \lambda_1}{2 - \eta \lambda_1} e_1 \right\}$$

and for all $s \geq t$, $||w_{2s} - w^*|| \leq \epsilon$ and $||w_{2s+1} + w^*|| \leq \epsilon$.

SAM's asymptotic behavior

For some

$$w^* \in \left\{ \pm \frac{\eta \rho \lambda_1}{2 - \eta \lambda_1} e_1 \right\},$$

and for all $s \ge t$, $w_{2s} \approx w^*$ and $w_{2s+1} \approx -w^*$.

SAM's asymptotic behavior

For some

$$w^* \in \left\{\pm \frac{\eta \rho \lambda_1}{2 - \eta \lambda_1} e_1 \right\},$$

and for all $s \geq t$, $w_{2s} \approx w^*$ and $w_{2s+1} \approx -w^*$.

• This is not the solution to the motivating minimax optimization problem: for $\ell(w) = w^{\top} \Lambda w / 2$,

$$\arg\min_{w}\max_{\|\epsilon\|\leq \rho}\ell(w+\epsilon)=0.$$

SAM's asymptotic behavior

For some

$$w^* \in \left\{\pm rac{\eta
ho \lambda_1}{2 - \eta \lambda_1} e_1
ight\},$$

and for all $s \ge t$, $w_{2s} \approx w^*$ and $w_{2s+1} \approx -w^*$.

• This is not the solution to the motivating minimax optimization problem: for $\ell(w) = w^{\top} \Lambda w / 2$,

$$\arg\min_{w}\max_{\|\epsilon\|\leq\rho}\ell(w+\epsilon)=0.$$

 SAM's gradient-based approach leads to oscillations around the minimum.

These oscillations have an impact for a non-quadratic loss.

Outline

- SAM with a quadratic criterion: Bouncing across ravines
 - Stationary points
 - A non-convex gradient descent
 - SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
 - SAM near a smooth minimum
 - Descending the gradient of the spectral norm of the Hessian
- Open questions

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (*B*-Lipschitz) third derivative:

$$||D^3\ell(w)-D^3\ell(w')|| \le B||w-w'||.$$

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (*B*-Lipschitz) third derivative:

$$||D^3\ell(w) - D^3\ell(w')|| \le B||w - w'||.$$

Consider a local minimum $w_z \in \mathbb{R}^d$:

$$\nabla \ell(w_z) = 0, \qquad H := \nabla^2 \ell(w_z) = \operatorname{diag}(\lambda_1, \dots, \lambda_d),$$

with $\lambda_1 \geq \cdots \geq \lambda_d \geq 0$.

Locally quadratic objective function

Consider a smooth objective ℓ with a slowly varying (*B*-Lipschitz) third derivative:

$$||D^3\ell(w) - D^3\ell(w')|| \le B||w - w'||.$$

Consider a local minimum $w_z \in \mathbb{R}^d$:

$$\nabla \ell(w_z) = 0, \qquad H := \nabla^2 \ell(w_z) = \operatorname{diag}(\lambda_1, \dots, \lambda_d),$$

with $\lambda_1 \geq \cdots \geq \lambda_d \geq 0$.

Near w_z , ℓ is close to

$$\ell_q(w) = \ell(w_z) + \frac{1}{2}(w - w_z)^{\top} H(w - w_z).$$

Locally quadratic objective function

Consider an overparameterized setting, with

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_k > \lambda_{k+1} = \cdots = \lambda_d = 0 \text{ for } k > 1.$$

Suppose

- w_0 satisfies $e_i^{\top}(w_0 w_z) = 0$ for $i = k + 1, \dots, d$,
- ullet SAM is initialized at w_0 and applied to the quadratic objective ℓ_q .

Then for all t, the condition $e_i^{\top}(w_t - w_z) = 0$ for i > k continues to hold, and SAM converges to the set

$$\left\{w_z \pm \frac{\beta_1}{\lambda_1} e_1\right\}.$$

Locally quadratic objective function

Consider an overparameterized setting, with

$$\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_k > \lambda_{k+1} = \cdots = \lambda_d = 0 \text{ for } k > 1.$$

Suppose

- w_0 satisfies $e_i^\top (w_0 w_z) = 0$ for $i = k + 1, \dots, d$,
- ullet SAM is initialized at w_0 and applied to the quadratic objective ℓ_q .

Then for all t, the condition $e_i^{\top}(w_t - w_z) = 0$ for i > k continues to hold, and SAM converges to the set

$$\left\{w_z \pm \frac{\beta_1}{\lambda_1} e_1\right\}.$$

• What is the impact of bouncing over the ravine?

Theorem

(B., Long, Bousquet, 2022)

For
$$s_t \in \{-1,1\}$$
, consider the point $w_t = w_z + \frac{s_t \beta_1}{\lambda_1} e_1$

Then, if $B\eta\rho\leq 1$, SAM's update on ℓ gives

(for some
$$\|\zeta\| \leq 1$$
)

$$w_{t+1} - w_t = -2\frac{\eta\rho\lambda_1 s_t}{2 - \eta\lambda_1} e_1 - \frac{\eta\rho^2}{2} \left(1 + \frac{\eta\lambda_1}{2 - \eta\lambda_1} \right)^2 \nabla \lambda_{\mathsf{max}} (\nabla^2 \ell(w_z)) + \eta\rho^2 \left(\frac{(1 + \eta\lambda_1)^3 \rho}{6} + 2(2\lambda_1 + B\rho)\eta \right) B\zeta.$$

Theorem (B., Long, Bousquet, 2022)

For
$$s_t \in \{-1,1\}$$
, consider the point $w_t = w_z + \frac{s_t \beta_1}{\lambda_1} e_1 = w_z + \frac{\eta \rho \lambda_1 s_t}{2 - \eta \lambda_1} e_1$.

$$\begin{aligned} w_{t+1} - w_t &= -2\frac{\eta \rho \lambda_1 s_t}{2 - \eta \lambda_1} e_1 - \frac{\eta \rho^2}{2} \left(1 + \frac{\eta \lambda_1}{2 - \eta \lambda_1} \right)^2 \nabla \lambda_{\mathsf{max}} (\nabla^2 \ell(w_z)) \\ &+ \eta \rho^2 \left(\frac{(1 + \eta \lambda_1)^3 \rho}{6} + 2(2\lambda_1 + B\rho) \eta \right) B\zeta. \end{aligned}$$

The gradient steps have:

ullet A component that maintains the oscillation in the e_1 direction,

Theorem (B., Long, Bousquet, 2022)

For
$$s_t \in \{-1,1\}$$
, consider the point $w_t = w_z + \frac{s_t \beta_1}{\lambda_1} e_1 = w_z + \frac{\eta \rho \lambda_1 s_t}{2 - \eta \lambda_1} e_1$.

Then, if $B\eta\rho \leq 1$, SAM's update on ℓ gives

$$\begin{aligned} w_{t+1} - w_t &= -2\frac{\eta \rho \lambda_1 s_t}{2 - \eta \lambda_1} e_1 - \frac{\eta \rho^2}{2} \left(1 + \frac{\eta \lambda_1}{2 - \eta \lambda_1} \right)^2 \nabla \lambda_{\mathsf{max}} (\nabla^2 \ell(w_z)) \\ &+ \eta \rho^2 \left(\frac{(1 + \eta \lambda_1)^3 \rho}{6} + 2(2\lambda_1 + B\rho) \eta \right) B\zeta. \end{aligned}$$

The gradient steps have:

- A component that maintains the oscillation in the e_1 direction,
- A component pointing downhill in the spectral norm of the Hessian,

(for some $\|\zeta\| < 1$)

Theorem (B., Long, Bousquet, 2022)

For
$$s_t \in \{-1,1\}$$
, consider the point $w_t = w_z + \frac{s_t \beta_1}{\lambda_1} e_1 = w_z + \frac{\eta \rho \lambda_1 s_t}{2 - \eta \lambda_1} e_1$.

$$w_{t+1} - w_t = -2\frac{\eta\rho\lambda_1 s_t}{2 - \eta\lambda_1} e_1 - \frac{\eta\rho^2}{2} \left(1 + \frac{\eta\lambda_1}{2 - \eta\lambda_1} \right)^2 \nabla \lambda_{\mathsf{max}}(\nabla^2 \ell(w_z)) + \frac{\eta\rho^2}{6} \left(\frac{(1 + \eta\lambda_1)^3 \rho}{6} + 2(2\lambda_1 + B\rho) \eta \right) B\zeta.$$

The gradient steps have:

- A component that maintains the oscillation in the e_1 direction,
- A component pointing downhill in the spectral norm of the Hessian,
- For small stepsize parameters $\eta, \rho > 0$, a smaller component reflecting the change of third derivative.

SAM versus gradient descent

Far from a minimum, GD and SAM descend the gradient of the objective

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.
- SAM uses one additional gradient measurement per iteration to compute a specific third derivative: the gradient of the second derivative in the leading eigenvector direction.

SAM versus gradient descent

- Far from a minimum, GD and SAM descend the gradient of the objective
- Near a minimum, SAM descends the gradient of the spectral norm of the Hessian.
- SAM uses one additional gradient measurement per iteration to compute a specific third derivative: the gradient of the second derivative in the leading eigenvector direction.
- Statistical benefits of wide global minima of empirical risk?

Wide global minima of empirical risk?

Coding/information theory:

- Hinton and van Camp. Keeping the neural networks simple by minimizing the description length of the weights. COLT93.
- Hochreiter and Schmidhuber. Flat minima. Neural Comput. 1997.
- Negrea, Haghifam, Dziugaite, Khisti, Roy. Information-theoretic generalization bounds for SGLD via data-dependent estimates. NeurIPS 2019.
- Neu, Dziugaite, Haghifam, Roy. Information-theoretic generalization bounds for stochastic gradient descent. COLT 2021.

Wide global minima of empirical risk?

PAC-Bayes:

- Langford and Caruana. (Not) bounding the true error. NIPS 2002.
- Dziugaite, Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. UAI 2017.

Nonequilibrium statistical physics:

- Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, and Zecchina. Unreasonable effectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes. PNAS 2016.
- Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes, Sagun, and Zecchina. Entropy-SGD: Biasing gradient descent into wide valleys. ICLR 2017.

Outline

- SAM with a quadratic criterion: Bouncing across ravines
 - Stationary points
 - A non-convex gradient descent
 - SAM oscillates around minimum
- Beyond quadratic: Drifting towards wide minima
 - SAM near a smooth minimum
 - Descending the gradient of the spectral norm of the Hessian
- Open questions

Optimization in High-Dimensional Prediction

Olivier Bousquet

Niladri Chatterji

Spencer Frei

Phil Long

- Benign overfitting without linearity: neural network classifiers trained by gradient descent for noisy linear data. Frei, Chatterji, B. COLT 2022 arXiv:2202.05928
- The dynamics of sharpness-aware minimization: bouncing across ravines and drifting towards wide minima. B., Long, Bousquet. arXiv:2210.01513