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High-dimensional prediction with deep networks

Deep learning

@ Deep learning has raised many interesting new questions
o Efficient nonconvex optimization (empirical risk minimization with
nonlinearly parameterized functions)
e Good prediction despite overfitting and no explicit regularization

@ Optimization methodology affects statistical performance
e e.g., gradient flow motivates the study of minimum norm interpolation
e e.g., discrete time gradient descent and stochastic gradient descent as
gradient flow on penalized losses
e e.g., implicit regularization of gradient flow in neural networks
@ This talk: optimization for non-linear and high-dimensional prediction

© Benign overfitting in a non-linear setting
@ 'Sharpness-Aware Minimization'
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Overfitting in Deep Networks

@ Deep networks can be trained to zero
o training error (for regression loss)
00 @ ... with near state-of-the-art
£ oo performance
05

£ 04 e @ ... even for noisy problems.
0.3 o—o AlexNet . ..
02 — MLP 15512 ] o No tradeoff between fit to training data
0.1

00702 04 06 08 10 and complexity!

label corruption

v

@ Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)

3/40



Benign Overfitting

@ Benign overfitting prediction rule f decomposes as

f=fh+A.
1% = simple component useful for prediction.
A = spiky component useful for benign overfitting.

Classical statistical learning theory applies to ;‘[\).

A is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting

Linear Regression , , Lugosi, Tsigler, 2019), (B, Tsigler, 2020)

@ Benign overfitting prediction rule ;‘\decomposes as

f=fh+A.
° % = prediction component:
k*-dim subspace corresponding to A1, ..., Ag+.
o A = benign overfitting component:
orthogonal subspace. A is benign only if Re= > n.
Here,
A1, Ao, ... are the eigenvalues of the covariate covariance,

k* is defined in terms of an effective rank of the covariance in the
low-variance orthogonal subspace, and
Ry~ is another effective rank in that subspace.

6/40



Benign overfitting

@ Benign overfitting in classical settings:

o Kernel smoothing [Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018; Chhor, Sigalla,
Tsybakov, 2022; ...]

] Linear regression [Hastie, Montanari, Rosset, Tibshirani, 2019; Bartlett, Long, Lugosi, Tsigler, 2019;
Bartlett, Tsigler, 2020; Koehler, Zhou, Sutherland, Srebro, 2021; .. .]

o Kernel regression [Liang, Rakhlin, 2018; Belkin, Hsu, Mitra, 2018; Mei, Montanari, 2019; Liang,
Rakhlin, Zhai, 2020; Mei, Misiakiewicz, Montanari, 2021; ...]

° LOgiStiC regl’ession [Montanari, Ruan, Sohn, Yan, 2019; Liang, Sur, 2020; Chatterji, Long, 2021;
Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai, 2021; ...]
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Benign overfitting without linearity

Benign overfitting without linearity: neural network
classifiers trained by gradient descent for noisy linear
data. COLT 2022. arXiv:2202.05928

Spencer Frei Niladri Chatterji

@ Noisy classification with two-layer neural networks trained by GD

@ Benign overfitting

@ Proof ideas
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Goal and technical challenges

Understand how benign overfitting can occur in neural networks trained by
gradient descent to get insight into ‘modern’ ML.
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Goal and technical challenges

Understand how benign overfitting can occur in neural networks trained by
gradient descent to get insight into ‘modern’ ML.

Technical challenges:

° ‘ Understand non-convex learning dynamics‘ of neural network
training.

° ‘ Understand generalization of interpolating classifiers‘ for noisy data
when hypothesis class has unbounded capacity.
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Distributional setting

@ Mixture of two log-concave isotropic clusters:
o Cluster centered at +u € RP, clean label +1
o Cluster centered at —u € RP, clean label —1

@ Allow for constant fraction 7 of training labels to be flipped
(Par: ‘clean’ distribution, Ppg: ‘noisy’ distribution)
@ Assume ||u|| grows with dimension p.

A“A‘ AA
N W

- AA
53

2 O 0 “j&“ 2 1

Figure: Paust = N(O, o) with ||x]] = 1.9 and 15% of the labels flipped.
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Model and optimization definitions

o We consider ~y-leaky, H-smooth activations
¢, satisfying for all z € R,

0<y<¢(z) <1, [¢"(2)] < H.

Two-layer neural networks trained by GD
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Model and optimization definitions

o We consider ~y-leaky, H-smooth activations

¢, satisfying for all z € R, /
0<y<d(2) <1, |¢()| < H.

Two-layer neural networks trained by GD

@ Network with m neurons, first layer weights W € R™*P, second layer
weights {a;} ; (fixed at initialization),

Fxi W) == 3270 ajo((w), X))
o Initialize [W(©)], ¢ """ N(0,w2,,), a; <" Umf({l/\ﬁ —1//m}).

id.

e For ¢(z) = log(1 + exp(—2z)), data {(x;,yi)}7_; K Prss @ > 0,

Wt = w® _ v (w®) = w — aV(% > L(yif (; W(f>))).
=i

v
11/40




For failure probability 6 € (0, 1), large C > 1:

(A1) Number of samples n > Clog(1/9).

o" °

B

Peaust = N(0, k) with
||l = 1.9 and 15% of
the labels flipped.
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For failure probability 6 € (0, 1), large C > 1:

(A1) Number of samples n > Clog(1/9).
(A2) Mean separation ||u|| = @(p%).
“‘M s, o Holds for more general ||p|| = wp(1).
o %
,& '\%}ﬁ‘ (A3) Dimension p 2> n3.
Y v .&‘:.‘ L e Ensures all samples are ~ orthogonal.
S B (A4) Noise rate n < 1/C.
Peiust = N(0, /o) with (A5) Large step-size relative to initialization:
[pll = 1.9 and 15% of Q > Winit/Mp.
the labels flipped. e Ensures ‘feature-learning’ (non-NTK) after
one step.

@ Networks of arbitrary width m > 1.
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Benign overfitting in neural networks trained by GD

For C > 1 large enough under Assumptions (A1) through (A5):

Theorem (Frei, Chatterji, B, 2022)

For 0 < € < 1/2n, by running GD with stepsize o, for T > Ca~te™2
iterations, with high probability over the random initialization and sample:
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For C > 1 large enough under Assumptions (A1) through (A5):

Theorem (Frei, Chatterji, B, 2022)

For 0 < ¢ < 1/2n, by running GD with stepsize o, for T > Ca 172
iterations, with high probability over the random initialization and sample:

Q y; = sgn(f(x; W(T))) for all i with | training loss L(WMy<e|

@ The test error satisfies

Py )b [y 7 sg0(F(; WD) <+ 2exp (—c : np%) .

@ Training error is &~ 0 with noisy labels | (overfitting) |, yet still

generalizing near Bayes-optimal | (benign) |.

e Any width m > 1: no dependence on m (except & > wipit/mMp).
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Benign overfitting and uniform convergence

Theorem

(Frei, Chatterji, B, 2022)

For 0 < € < 1/2n, by running GD with Lr. a, for T > Ca~le?2
iterations, w.h.p. over the random initialization and sample:

0 yi = sgn(f(x; W(T)) for all i with

@ The test error satisfies

training loss Z( W) <e|

Plx,y)~Pus [y # sgn(f(x; W(T)))] <n+ 2exp (—C . np%> |
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Benign overfitting and uniform convergence

Theorem (Frei, Chatterji, B, 2022)

For 0 < € < 1/2n, by running GD with Lr. a, for T > Ca~le?2

iterations, w.h.p. over the random initialization and sample:
Q yi = sgn(f(x;; W(T))) for all /i with
@ The test error satisfies

training loss Z( W(T)) <e

P y)pas [¥ 7 sen(fO W))] <+

W=

2exp (—c - np

)}

0 Ase—0, | WM - .

@ Predictor has unbounded norm, neural net can be arbitrarily wide

, i optimally #Bayes error
>n=Q(1).

e Many ways to overfit: p > n, width > 1, ...
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Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that B, o) s [yf(x; W)] > 0. Then there exists a universal
constant ¢ > 0 such that

E( gy, 770 W\ ®
]P)(X’Y)ans(y # Sgn(f(x; W))) < 7]—|—2 exp | —c¢ < (x.9) ﬁil/v”,:
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Proof outline

By strong log-concavity, suffices to derive normalized margin bound:

Lemma

Suppose that E, o) s [f(x; W)] = 0. Then there exists a universal
constant ¢ > 0 such that

E 5y, 7F (6 W) 2
]P’(X’y)ans (y # sgn(f(x; W))) <n+2exp | —c < (x.7) EC\I/VHF

@ Benign overfitting occurs if we can show:
© Normalized margin on clean points is large:

E . p)opa V(X W)

0.
(W[ =

© Empirical risk can be driven to zero:
yi = sgn(f(x,-; W(T))) for all i, and Z(W(T)) ~ 0.
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Gradient descent ensures good generalization performance

For any t > 1, for a step size large relative to random initialization,

npl/3 >0,

~y

oWy |
IE(x,)"/)NPd [ ”W(t)“F

Py )b (¥ 7 sg0(F(x; WD) <1+ 2exp (—c : np1/3) .

o Gradient descent produces a particular neural network which will
classify well, regardless of ||[W()| £, with sub-polynomial samples.
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Optimization for high-dimensional prediction

© Benign overfitting in a non-linear setting

@ ‘Sharpness-Aware Minimization’
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Sharpness-Aware Minimization: Prediction Performance

Cifar10 1 oG- ©
Cifar100 A D @®e o
Imagenet - ol

Finetuning 1 IR
SVHN |
F-MNIST

Noisy Cifar -

T T T

0 20 40
Error reduction (%)

Foret, Kleiner, Mobahi, Neyshabur. 2021
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Sharpness-Aware Minimization

Sharpness-Aware Minimization for Efficiently Improving Generalization.
Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.
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Sharpness-Aware Minimization for Efficiently Improving Generalization.
Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur. ICLR21.

@ The story: For an empirical loss ¢ defined on a parameter space:
min,, max|e||<p E(W + 6).
@ The rationale:

max {(w + €) = max {(w + €) — {(w) +L(w).
llell<p llell<p

-~

sharpness

@ The reality: First order simplification:

Vei(w,
Wep1 = wy — VL <Wt + pHVEEWi;H> .
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Sharpness-Aware Minimization

N\ Wei1
'.
i SAM
L W: \ Wi
x
WadvA : _UVL(Wadv)
4 .

Foret, Kleiner, Mobahi, Neyshabur. 2021
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Visualizing SAM Minima

ResNet trained with SGD versus SAM

™ &

Foret, Kleiner, Mobahi, Neyshabur. 2021

v
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Convergence of Sharpness-Aware Minimization

@ The dynamics of sharpness-aware minimization:
bouncing across ravines and drifting towards
wide minima. B., Long, Bousquet.

Phil Long Olivier Bousquet arXiv:2210.xxxxx J

Outline

N, |
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Convergence of Sharpness-Aware Minimization

@ The dynamics of sharpness-aware minimization:
bouncing across ravines and drifting towards
wide minima. B., Long, Bousquet.

Phil Long Olivier Bousquet arXiv:2210.xxxxx J

@ SAM with a quadratic criterion: Bouncing across ravines
e Stationary points
e A non-convex gradient descent
o SAM oscillates around minimum

@ Beyond quadratic: Drifting towards wide minima

e SAM near a smooth minimum
o Descending the gradient of the spectral norm of the Hessian

@ Open questions
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SAM with a quadratic criterion

SAM

For a loss function ¢ : RY — R, SAM starts with an initial parameter
vector wg € RY and updates

Vi(wt) )

W1 = Wt_nVE (Wt_‘_pva( )H

where 1, p > 0 are step size parameters.
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SAM with a quadratic criterion

SAM

For a loss function ¢ : RY — R, SAM starts with an initial parameter
vector wg € RY and updates

VY
Wiyl = Wi — UVE (Wt +pHv£EWt§H>

where 7, p > 0 are step size parameters.

v

SAM with quadratic loss

Fix A = diag(A1, ..., A\g) with Ay > -+ Ay > 0 and consider loss

Then V{(w) = Aw and we 1 = </ Py — L /\2) we.
[[Awe]
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Bouncing across ravines

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant ¢ such that for any eigenvalues

A1 > A2 > ... > Ay > 0, any neighborhood size p > 0, and any step size
0<n< 2%1 for all small enough €, > 0, if wy is sampled from a
continuous probability distribution over R? (density bounded above by A;
||wo|| not too big; |wp 1| not too small), then with probability 1 — ¢, for all
t sufficiently large (polynomial in d, 1/(n\g), A1/Ag and 1/(A2/)3 — 1),
polylogarithmic in other parameters), for some

npA1
Sl
{ Ale}

and for all s > t, ||was — w*|| < € and ||wast1 + w|| <.
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SAM with a quadratic criterion

A reparameterization

Define v; = V{(w;) = Awg. Then

Ver1 = (/—n/\— w /\2> Ve,

[[vell
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SAM with a quadratic criterion

A reparameterization
Define v; = V{(w;) = Awg. Then

= <’ — A= ||npuA2>
1.‘

so, for all / and all t, we have

\2
Verri = (1—nh— 220
[l vell

i
=(1-1n\) (1 - ) Ve i,
Ivell )
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SAM with a quadratic criterion

A reparameterization

Define v; = V{(w;) = Awg. Then

Ver1 = </—n/\— w /\2> Ve,
[ vl

so, for all / and all t, we have

22
Vitl,i = 1—n\i— P2 Vit,i
[|vell

i
=(1-1n\) (1 - ) Ve i,
Ivell )

)2
where 7 := i

Nonlinear recurrence, but coupled only by ||v¢||.
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SAM with a quadratic criterion

L—n\i X
2= x| T 2N

Define 5; =

Solutions are in the eigenvector directions, 3; from the minimum

: 2 2 F2 2
The set of non-zero solutions (vi,...,vg) to Vi, vi,; ;= vi; is

d

U CO{/Bl?ej : ﬁj = 61'}’

i=1

where co(S) denotes the convex hull of a set S and ¢; is the jth basis
vector in RY. )
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SAM with a quadratic criterion

. 1—nA + (1 —nX)v; 1—n\;
Define o; = ( 177_ ln):\yll n § — Uzi ')7'. Recall 5; = 2_72/\:7;.
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Define o; = ( 177_ 1?7);/11 n i — Uzi ')7'. Recall 5; = 2_72/\:7;.

If A&1 > Ao, then By < - < f1 <ag <-ax <ap=m7.

Norm of v versus [3; determines how components grow
|vell > B; iff v2

t+1,i
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SAM with a quadratic criterion

. 1—n\ + (1 —nA)v; 1—n\;
Define o; = ( 117_117):\}/11 n i — nzi')%. Recall 5; = 5 on Z/\:_fy,-.

If A&1 > Ao, then By < - < f1 <ag <-ax <ap=m7.

Norm of v versus [3; determines how components grow

lvel| > B iff vt2+17l- < Vi

| A\

Norm of v versus «; determines relative growth

2 2
If A1 > Ao, then for i € {2,....d}, ||vel| < o iff 522 > 551
t+1,i t,i
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SAM with a quadratic criterion

. 1—n\ + (1 —nA)v; 1—n\;
Define o; = ( 117_117):\}/11 n i — nzi')’y'. Recall 5; = 5 on z/\:fy,-.

If A&1 > Ao, then By < - < f1 <ag <-ax <ap=m7.

Norm of v versus [3; determines how components grow

lvel| > B iff vt2+17l- < Vi

Norm of v versus «; determines relative growth

N
\

2
If A1 > Xo, then for i € {2,....d}, ||vel| < o iff 521 >
t4+1,i

Vii
2 .
Vti

Define b = (1 — nA1)m.

[[vell < b implies |ve1]| < b (and the decay to b is exponentially fast). |
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A non-convex gradient descent

For uy := (—1)'w, if ||we] >0,

urr1 = ur — npVJI(uy),
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A non-convex gradient descent

For uy := (—1)'w, if ||we] >0,

urr1 = ur — npVJI(uy),

where

1 z A2
Jo) = 5u™ Cu— [[Au]. £ = g (giﬁ:)

Also,

1 B\’
Huesr) — J(u <_Zu2,(1_') 2~ AL
( t+1) ( t) = 2p — t, ”AutH ( n )
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A non-convex gradient descent

Properties of J

VJ(u) = 0 iff for some i, ||u|| = Bi/A; and u € span{e; : B; = Si}.
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A non-convex gradient descent

Properties of J

VJ(u) = 0 iff for some i, ||u|| = Bi/A; and u € span{e; : B; = Si}.
For unit norm © satisfying VJ(53;/\;u) = 0,

w(3) (15, (3 2)os 1)
: ] i i

J:Bi#Bi

which has |{j : 5; < Bi}| + 1 positive eigenvalues, |{j : §; > [3;}| negative
eigenvalues, and |{j : 5; = Bi}| — 1 zero eigenvalues.
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A non-convex gradient descent

Properties of J
VJ(u) = 0 iff for some i, ||u|| = Bi/A; and u € span{e; : B; = Si}.
For unit norm © satisfying VJ(53;/\;u) = 0,

= 1 1
v(5)=n = (5-5)9d + 57 )
ip#s N :
which has |{j : 5; < Bi}| + 1 positive eigenvalues, |{j : §; > [3;}| negative
eigenvalues, and |{j : 5; = Bi}| — 1 zero eigenvalues.
The set of all stationary points with only non-negative eigenvalues is

M = {u eRY: ||ul| = fj‘l, u € span{ej : f3; zﬁl}},

and this is the set of global minima. There are no other local minima.
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A non-convex gradient descent

Lemma

For € > 0, and ||vr,|| < b,

2 .
{e2 7otz @+ 9} < a2 max, Sw) — minw)

361
~ ne2\ifq

Recall:
0 3y < <Bi<ag<-ap<ar =,
@ Norm of v versus 3; determines how components grow, and

@ Norm of v versus «; determines relative growth compared to the
leading component.
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Bouncing across ravines

Theorem (B., Long, Bousquet, 2022)

There is an absolute constant ¢ such that for any eigenvalues

A1 > A2 > ... > Ay > 0, any neighborhood size p > 0, and any step size
0<n< 2%1 for all small enough €, > 0, if wy is sampled from a
continuous probability distribution over R? (density bounded above by A;
||wo|| not too big; |wp 1| not too small), then with probability 1 — ¢, for all
t sufficiently large (polynomial in d, 1/(n\g), A1/Ag and 1/(A2/)3 — 1),
polylogarithmic in other parameters), for some

npA1
Sl
{ Ale}

and for all s > t, ||was — w*|| < € and ||wast1 + w|| <.
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Bouncing across ravines

SAM'’s asymptotic behavior

For some 5
* npA1
e t——F ,
" { 2—nA el}

and for all s > t, wos & w* and wos1 1 &~ —w™.
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Bouncing across ravines

SAM'’s asymptotic behavior

For some 5
* npA1
e t——F ,
" { 2—nA el}

and for all s > t, wos & w* and wos1 1 &~ —w™.

@ This is not the solution to the motivating minimax optimization
problem: for /(w) = w'Aw/2,

arg min max ¢(w + €) = 0.
W lell<p
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Bouncing across ravines

SAM'’s asymptotic behavior

For some 5
* npA1
e t——F ,
" { 2—nA el}

and for all s > t, wos & w* and wos1 1 &~ —w™.

@ This is not the solution to the motivating minimax optimization
problem: for /(w) = w'Aw/2,

arg min max ¢(w + €) = 0.
W lell<p

@ SAM'’s gradient-based approach leads to oscillations around the
minimum.
These oscillations have an impact for a non-quadratic loss.
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Convergence of Sharpness-Aware Minimization

@ SAM with a quadratic criterion: Bouncing across ravines
e Stationary points
e A non-convex gradient descent
o SAM oscillates around minimum

@ Beyond quadratic: Drifting towards wide minima

o SAM near a smooth minimum
o Descending the gradient of the spectral norm of the Hessian

@ Open questions
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ¢ with a slowly varying (B-Lipschitz) third
derivative:

HD3€(W) - D3€(W')H < Bllw — w/|.

33/40



SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ¢ with a slowly varying (B-Lipschitz) third
derivative:

HD3€(W) - D3€(W')H < Bllw — w/|.
Consider a local minimum w, € R?:

Vi(w,) =0,  H:=V2%(w,)=diag(\,...,\),

with A\ > --- > Ay > 0.
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider a smooth objective ¢ with a slowly varying (B-Lipschitz) third
derivative:

HD3€(W) - D3€(W')H < Bllw — w/|.
Consider a local minimum w, € R?:
Vi(w,) =0,  H:=V%(w,) = diag(\1, ..., \d),

with A\ > --- > Ay > 0.
Near wy, £ is close to

lo(w) = €(w,) + %(W o) B — )
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider an overparameterized setting, with

)\1>A22"~2)\k>)\k+1:'~-:)\d:0f0rk>1.
Suppose
@ Wy satisfies e,-T(Wo—Wz):Ofor i=k+1,....d,

@ SAM is initialized at wp and applied to the quadratic objective /.

Then for all ¢, the condition e, (w; — w;,) = 0 for i > k continues to hold,

i

and SAM converges to the set
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SAM: Beyond Quadratic

Locally quadratic objective function

Consider an overparameterized setting, with

)\1>A22"~2)\k>)\k+1:'~-:)\d:0f0rk>1.
Suppose
@ Wy satisfies e,-T(Wo—Wz):Ofor i=k+1,....d,

@ SAM is initialized at wp and applied to the quadratic objective /.
Then for all t, the condition e, (w; — w,) = 0 for i > k continues to hold,

and SAM converges to the set
{Wz Sl fiel} .

@ What is the impact of bouncing over the ravine?
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SAM: Drifting Towards Wide Minima

Theorem (B., Long, Bousquet, 2022)
. . s

For s; € {—1,1}, consider the point wy = w, + ;\ﬁl

1

€1

Then, if Bnp < 1, SAM’s update on /¢ gives (for some ||¢|| < 1)

2
NPA1St np2 N1 5
—wp = =2 ——— (14 V Amax(Vl(w,
Wil — We 2 — i €1 5 ( 5 77)\1) ax(Vol(wz))

1+7))3
+np? ((7761);7 220 + Bp)n> BC.
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SAM: Drifting Towards Wide Minima

Theorem (B., Long, Bousquet, 2022)

) . st 1PA1St

For s; € {—1,1}, consider the point wy = w, + e = w, + e1.
A1 2—-nh

(for some ||¢|| < 1)

Then, if Bnp <1, SAM's update on ¢ gives

NPALSE np? o\’ 2
= -2 0 ( Amax(V2E(w,
Wil — Wi 2—7]/\161 5 ( +2—77)\1) V Amax(V=€(wz))

1+7n))3
+np? (“’61)” 220 + Bp)n> BC.

The gradient steps have:

@ A component that maintains the oscillation in the e; direction,
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Theorem (B., Long, Bousquet, 2022)

) . st 1PA1St

For s; € {—1,1}, consider the point wy = w, + e = w, + e1.
A1 2—-nh

(for some ||C|| < 1)

Then, if Bnp <1, SAM's update on ¢ gives

2
7PA1St np2 N1 5
—wy = =2 ——— (14 V Amax(Vl(w,
Wil — Wt 2 — i €1 5 ( 5 77)\1) ax(Vol(wz))

1+7n))3
+np? (“’61)” 220 + Bp)n> BC.

The gradient steps have:

@ A component that maintains the oscillation in the e; direction,

@ A component pointing downbhill in the spectral norm of the Hessian,
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SAM: Drifting Towards Wide Minima

Theorem

(B., Long, Bousquet, 2022)

. . S A1S

For s; € {—1,1}, consider the point wy = w, + 1 e = w, + pALSE e1.
A1 2—-nh

(for some ||C|| < 1)

Then, if Bnp <1, SAM's update on ¢ gives

npAise np o\’ )
Wy =—2 _ 17 {4 Amax (V20( W,
Wil — Wi 2—7]/\161 5 ( +2—77)\1) V Amax(V=€(wz))

14 nAr)3
+ np? <(7761)P +2(2)\ + Bp)n) B¢.

The gradient steps have:

@ A component that maintains the oscillation in the e; direction,
@ A component pointing downbhill in the spectral norm of the Hessian,

@ For small stepsize parameters 77, p > 0, a smaller component reflecting
the change of third derivative.

3574



Convergence of Sharpness-Aware Minimization

SAM versus gradient descent
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Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

@ Far from a minimum, GD and SAM descend the gradient of the
objective

@ Near a minimum, SAM descends the gradient of the spectral norm of
the Hessian.

@ SAM uses one additional gradient measurement per iteration to
compute a specific third derivative: the gradient of the second
derivative in the leading eigenvector direction.
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Convergence of Sharpness-Aware Minimization

SAM versus gradient descent

@ Far from a minimum, GD and SAM descend the gradient of the
objective

@ Near a minimum, SAM descends the gradient of the spectral norm of
the Hessian.

@ SAM uses one additional gradient measurement per iteration to
compute a specific third derivative: the gradient of the second
derivative in the leading eigenvector direction.

@ Statistical benefits of wide global minima of empirical risk? J
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Wide global minima of empirical risk?

Coding/information theory:

@ Hinton and van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. COLT93.

@ Hochreiter and Schmidhuber. Flat minima. Neural Comput. 1997.

o Negrea, Haghifam, Dziugaite, Khisti, Roy. Information-theoretic
generalization bounds for SGLD via data-dependent estimates.
NeurlPS 2019.

@ Neu, Dziugaite, Haghifam, Roy. Information-theoretic generalization
bounds for stochastic gradient descent. COLT 2021.
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Wide global minima of empirical risk?

PAC-Bayes:
e Langford and Caruana. (Not) bounding the true error. NIPS 2002.

@ Dziugaite, Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than
training data. UAI 2017.

Nonequilibrium statistical physics:

e Baldassi, Borgs, Chayes, Ingrosso, Lucibello, Saglietti, and Zecchina.
Unreasonable effectiveness of learning neural networks: From
accessible states and robust ensembles to basic algorithmic schemes.
PNAS 2016.

@ Chaudhari, Choromanska, Soatto, LeCun, Baldassi, Borgs, Chayes,
Sagun, and Zecchina. Entropy-SGD: Biasing gradient descent into
wide valleys. ICLR 2017.
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Convergence of Sharpness-Aware Minimization

@ SAM with a quadratic criterion: Bouncing across ravines
e Stationary points
e A non-convex gradient descent
o SAM oscillates around minimum

@ Beyond quadratic: Drifting towards wide minima

o SAM near a smooth minimum
o Descending the gradient of the spectral norm of the Hessian

@ Open questions
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Optimization in High-Dimensional Prediction

& 2

Olivier Bousquet Niladri Chatterji

Spencer Frei Phil Long

@ Benign overfitting without linearity: neural network classifiers trained by

gradient descent for noisy linear data. Frei, Chatterji, B. COLT 2022
arXiv:2202.05928

@ The dynamics of sharpness-aware minimization: bouncing across ravines and
drifting towards wide minima. B., Long, Bousquet. arXiv:2210.01513
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