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Benign Overfitting

Generalization theory for neural networks

o VC theory Advances in Neural Information Processing Systems Volume 1

@ Overparameterization and large-margin classification

Advances in Neural Information Processing Systems Volume 9

@ Benign overfitting in deep learning
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ABSTRACT

We address the question of when a network can be expected to
generalize from m random training examples chosen from some ar-
bitrary probability distribution, assuming that future test examples
are drawn from the same distribution. Among our results are the
following bounds on appropriate sample vs network size. Assume
0 < € < 1/8. We show that if m > O( log ) random exam-
ples can be loaded on a feedforward network of linear threshold 3/50




Probabilistic Formulations of Prediction Problems

Given data (x1,y1),- - ., (xn, yn) (Observation x; € X, outcome y; € )))
Assume: Independent (x1,y1), ..., (Xn, ¥n), (x,¥) ~ P

(P is a probability distribution on X' x ).
Choose f : X — Y
so that f(x) is a good prediction of y, in the sense that ¢(f(x), y) small.Aim: Small risk:
Elels :=EL(f(x),y).

Example: Pattern classification

1 ifyg#y,
0 otherwise.

bor(9,y) =1y #yl = {

Example: Empirical risk minimization

Choose f € F to minimize 4/50



Classification in a Probabilistic Setting

Theorem (Vapnik and Chervonenkis, 1971)

Consider F C {~1,1}*, ¥ = {£1}, £ = {o;.
For every prob distribution P on &' x {—1,1},
with high probability over n iid examples (x1,y1), ..., (Xn, ¥n),

every f in F satisfies

n

2 Wd(f)d(f)) |

@ For neural networks, VC-dimension:

e increases with number of parameters
o depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network with L layers, p
parameters, and k computation units with the following nonlinearities:

@ Piecewise constant (linear threshold units): dvc(F) = 6 (p).
(Baum and Haussler, 1989)
@ Piecewise polynomial: dvc(F) = O (pL?).
(B., Maiorov, Meir, 1998)
@ Piecewise linear (ReLUs): dyc(F) =6 (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
@ Sigmoid: dyc(F) =0 (P?k?).
(Karpinsky and Maclntyre, 1994)

V.

In all cases, dyc is (at least) linear in number of parameters p.
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Classification in a Probabilistic Setting

Theorem (Vapnik and Chervonenkis, 1971)

Consider F C {~1,1}*, Y = {£1}, £ = {o1.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

n

Eefngeero( dVC(f)).

@ For neural networks, VC-dimension:
e increases linearly with number of parameters need n > p?
o depends on nonlinearity and depth

@ For uniform bounds (that is, for all distributions and all f € F, proportions are close to

probabilities; also for near-optimal prediction with f € F), this inequality is tight within a
constant factor.
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Some Experimental Observations

ral networks (Steve Lawrence, Lee Giles, Tsoi, 1997)

monly believed to be accurate. However, the stipulation
that the number of parameters must be less than the num-
ber of examples is typically believed to be true for common
datasets. The results here indicate that this is not always the
case.

Test Error %
g 8 2 2
—{I=

8 10 12
Number of Hidden Nodes

Figure 3. Face recognition example: the best generalizing net-
work has 364 times more parameters than training points (18210
parameters).

Prediction accuracy improving with overparameterization.
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Neural Networks

ral Information Processing Syste

For valid generalization, the size of the
weights is more important than the size
of the network

Peter L. Bartlett
Department of Systems Engineering
Research School of Information Sciences and Engineering
Australian National University
Canberra, 0200 Australia
Peter.Bartlett¢anu.edu.au

Abstract

This paper shows that if a large neural network is used for a pattern
classification problem, and the learning algorithm finds a network 10/50




Large-Margin Classification: Some Intuition

Consider a real-valued function f : X — R used for classification.
The prediction on x € X is sign(f(x)) € {—1,1}.
Minimizing a continuous loss, such as (f(x) — y)?.

For a pattern-label pair (x,y) € X x {—1,1},
if yf(x) > 0 then f classifies x correctly.

We call yf(x) the margin of f on x.

For large-margin classifiers, we might expect the fine-grained details of f (such as
dyc(F)) to be less important.

4

c.f. Support vector machines (Boser, Guyon, Vapnik, 1992)
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Large-Margin Classification with Two-Layer Networks

Theorem

(B, 1996)

Consider the following class Fp of two-layer neural networks defined on X' = [—1, 1]

k
Fg = {x > ZW,‘O’ (v,-Tx> Swlls < B, |lvilli < B, k> 1},
i=1

where o is 1-Lipschitz and bounded.
Then with high probability, for all f € Fg,

B*B® flogd
Eloy s < B, B+ 0 | = —51/—— |-
'Y i n

Here, £, ¢(x, y) := 1[yf(x) < 7] penalizes margins that are less than ~.
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Generalization: Margins and Size of Parameters

@ A classification problem becomes a regression problem.
@ For regression, the complexity of a neural network can be controlled by the size of the
parameters, and can be independent of the number of parameters.

@ We have a tradeoff between the fit to the training data (margins) and the complexity
(size of parameters):
Elor,r < Ely s + pn(f)

e Even if ]EEOM = 0, it might be worthwhile to suffer an increased complexity penalty,
pn(f), to improve IAEK%f.
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Some Experimental Observations

AdaBoost (Rob Schapire, Yoav Freund, B, Wee Sun Lee, 1997)
§ 1.0:
=
.'9
—_ 3t
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g
=
Q
10 100 1000 -1 05
# classifiers margin

Prediction accuracy improving with overparameterization.
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Some Experimental Observations

Neural networks

MNIST

=——Training
0.09 —e—Test (at convergence)
—A—Test (early stopping)
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(Neyshabur, Tomioka, Srebro, 20

CIFAR-10

= Training
—e—Test (at convergence)
—A—Test (early stopping)
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Prediction accuracy improving with overparameterization.
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Overfitting in Deep Networks

4.0
=—a |nception

35 o—0 AlexNet
E 30|/ MLP1x512
g
o . ..
2% @ Deep networks can be trained to zero training error
@ .
£20) (for regression loss)

15 n

@ ... with near state-of-the-art performance
90 o0z 02 o6 08 Lo .
label corruption @ ... even for noisy problems.

1.0 T o - .

P @ No tradeoff between fit to training data and

0.8 H |
a1 complexity!
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@ Benign overfitting.
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v

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, ICML 2018)
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Anomalies in Deep Learning Practice

Deep learning methods predict accurately, but...

@ They are overparameterized (p > n).
Can control complexity some other way, e.g., scale of parameters.

@ They minimize empirical risk with little or no explicit regularization.
Can regularize implicitly, e.g., early stopping in gradient methods.

e e.g., Yuan Yao, Lorenzo Rosasco, Andrea Caponnetto. On Early Stopping in Gradient
Descent Learning. 2007.

e e.g., B, Mikhail Traskin, AdaBoost is Consistent, Advances in Neural Information Processing
Systems 19, 2007.
@ They find a perfect fit to the data.
If f is not too complex and fits the data, i.e., &0y = 0, then E{s can be near zero too.
e e.g., Leslie Valiant. A Theory of the Learnable. 1984.

@ Deep learning methods find a perfect fit to noisy data.



Statistical Wisdom and Overfitting

interpolating fits... [are] unlikely to predict
future data well at all.”

T Hase
RobeThshicai

22 2. How to Construct Nonparametric Regression Estimates?
Data Mining, Inference,and Prediction

>/ v

Figure 2.3. The estimate on the right seems to be more reasonable than the R eytak e

estimate on the left, which interpolates the data.

over F,,. Least squares estimates are defined by minimizing the empirical
L, risk over a general set of functions F,, (instead of (2.7)). Observe that
it doesn’t make sense to minimize (2.9) over all (measurable) functions f, &
because this may lead to a function which interpolates the data and hence is —
not a reasonable estimate. Thus one has to restrict the set of functions over

see also (B. and Rakhlin, Simons Institute, May 2&1?)50



Benign Overfitting

A new statistical phenomenon:
good prediction with very small training error for regression loss

@ Statistical wisdom says a prediction rule should not fit too well.
@ But deep networks are trained to fit noisy data perfectly, and they predict well.

Foundations of Machine Learning

—
'|I:I: SIMONS M I Jan. 10— May 12, 2017
1 INSTITUTE
This program aims to extend the reach and impact of CS theory within machine

—
learning, by formalizing basic questions in developing areas of practice,

advancing the algorithmic frontier of machine learning, and putting widely-used
heuristics on a firm theoretical foundation

for the Theory of Computing

Belkin, Hsu and Mitra, 2018; Belkin, Rakhlin and Tsybakov, 2018; Liang and Rakhlin, 2018;

Belkin, Hsu, Ma and Mandal, 2019; Belkin, Hsu and Xu, 2019; Hastie, Montanari, Rosset and Tibshirani, 2019; Derezinski, Liang and Mahoney, 2019; Liang,
Rakhlin and Zhai, 2019; Mei and Montanari, 2019; Mitra, 2019; Muthukumar, Vodrahalli and Sahai, 2019; Nakkiran, 2019; Bunea, Strimas-Mackey, Wegkamp,
2020; Kobak, Lomond and Sanchez, 2020; Nakkiran, Venkat, Kakade and Ma, 2020; Hastie, Montanari, Rosset and Tibshirani, 2020; Mei, Misiakiewicz,

Montanari, 2021; Celentano, Misiakiewicz, Montanari, 2021; Zou, Wu, Braverman, Gu and Kakade, 2021; Li, Zhou, Gretton, 2021; 19/50



Benign Overfitting

@ Benign overfitting prediction rule fdecomposes as

f=fh+A.
o fy = simple component useful for prediction.
@ A = spiky component useful for benign overfitting.

o Classical statistical learning theory applies to fo.

@ A is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting

Example: kernel smoothing with singular, compact kernels

Kn(x — 1[h <1
Z VKX =X)L o ith Ky = SIXIS T
« 3= Knl(x = xj) hl|x]]
Mlnlmax rates (Wlth suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

3.0
2.59

é 151
0.5 4
S 05 00 05 10
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Benign Overfitting

@ Linear regression

o Characterizing benign overfitting
@ Adversarial examples

@ Ridge regression

@ Model-dependent bounds
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Definitions

Simple Prediction Setting: Linear Regression

o Covariate x € H (Hilbert space); response y € R.

@ Assume: (x,y) subgaussian, mean zero, well-specified Ely|x] = x T 0*
x satisfies a small ball condition 3¢ > 0, Pr (IIxII? < cElx]1?) < 4.
@ Define:

Y = Exx' = Z/\,-v,-v,-T, (assume Ay > Ap > --+)
i

T2
0* ::argmeinIE(y—x 9) ,

02 :=E(y — x' 6"




Definitions

Minimum norm estimator

o Data: X ¢ H", y € R".
A T
o Estimator & = (X" X)" XTy, which solves Xy Yt
XgT Y2
min [16]2 X=1 . y =
0cH : :
st. [ X0—y|?= mﬁin IX8—y|?. xT Vo

Notice that gradient flow, initialized at 0:

0o=0, 0r=—Vy|X0—y|?

converges to the minimum norm solution.
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Definitions

Excess prediction error

R(é) = E(xy) (y — XTé>2 —minE (y — XT0>2

0

(&

vV
optimal prediction error

So ¥ determines the importance of parameter directions.
(Recall that X = Z)\,-v;v,-T for orthonormal vj, Ay > A\p > -+ )

]

W
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Benign Overfitting

@ Linear regression

o Characterizing benign overfitting
@ Adversarial examples

@ Ridge regression

@ Model-dependent bounds
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From regularization to overfitting

Regularized linear regression

. . . 1
ridge regression: min A|6)1% + = 11X6 — y?,

n

. : 1 2
norm constrained: min —||1X0 —y||
n
s.t. 16| < b,

fit constrained: min 10]]

1
st —|x0-ylP<e.

@ The overfitting regime: c K< mingE (y = XT9)2.

o
27750




Interpolating Linear Regression

Overfitting regime

@ We consider situations where ming || X3 — y|? =o0.

o Estimator § = (XTX)TXTy solves

min 162
OcH
2 . 2
st. [ X0—y|*= min X8 —y|?=0.
@ Hence, ylleTGA,..., ,,:x,THA.

@ When can the label noise be hidden in 6 without hurting predictive accuracy?
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Benign Overfitting: A Characterization

(B., Long, Lugosi, Tsigler, 2019), (Tsigler, B., 2020)

For universal constants b, c, and any linear regression problem (6*, 02, ¥)
with A, > 0, if k* =min{k > 0: r(X) > bn} (effective dimension),

@ With high probability,

R(0) < c (bias(e*, ¥, n) + o <kn + R,J(Z))) :

Q@ If X = /27 where Z has independent components and 6* is symmetrized (random sign

flips of components),
n

~ ]. . * 2 . k*
> - — = }
ER(0) > c <b|a5(9 ,X,n) + o min { Re ()’ 1})

n

. Sior A )2
Here, bias(o®, %, m = 107,100 1, . + 10702y (EZE2)
. 1:k
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Effective Rank

Recall that Ay > A\ > --- are the eigenvalues of X.
For k > 0, if Ag11 > 0, define the effective ranks

Zi>k Ai

n(¥) = oot

v

(1) ro(lp) = Ro(l,) = p. (2) If rank(X) = p, we can write

r(X) = rank(X)s(X), Ro(X) = rank(X)S(X),
P , P N2
with s(T) = Wiil—ﬂ S(r) = (11//;:%,;_13,2)'

Both s and S lie between 1/p (A2 =~ 0) and 1 (\; all equal).
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Benign Overfitting: A Characterization

Theorem

For universal constants b, ¢, and any linear regression problem (6%, 02, ¥)

with A, > 0, if k* = min{k > 0: re(X) > bn} (effective dimensioneffective dimension),
@ With high probability,

- k* k* n
< . * 22" "
R(H)_c(blas(H ,X,n)+ o0 <n p +Rk*(2)>>’

1

A k* k*
e With some independence properties, ER(G) Z c <bias(0*, Z, n) —+ 0'2(72 min { n 7 —+ I?k*L(Z)? 1}) .

n

. * * * Zi >\i 2
bias(0". X, ) = 07 1. [, .+ 10720 (Z5)
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Benign Overfitting

@ Benign overfitting prediction rule fdecomposes as
f=f+A.

° fo = prediction component:
k*-dim subspace corresponding to A1,..., Agx.

e A = benign overfitting component:
orthogonal subspace. A is benign only if Rg« > n.
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Benign Overfitting: A Characterization

@ The mix of eigenvalues of ¥ determines:
@ how the label poise is distributed in 6, and
@ how errors in 6§ affect prediction accuracy.
@ To avoid harming prediction accuracy, the noise energy must be distributed across many
unimportant directions.
o Overparameterization is essential for benign overfitting

e Number of non-zero eigenvalues: large compared to n,

o Number of ‘small’ eigenvalues: large compared to n,
o Small eigenvalues: roughly equal (but they can be more assymmetric if there are many more

than n of them).
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Benign Overfitting: What kinds of eigenvalues?

Theorem

For universal constants b, c, and any linear regression problem (6%, 02, ¥)
with A, > 0, if k* =min{k > 0: r(X) > bn},

@ With high probability,

R(0) < c (bias(ﬁ*, ¥, n) +o? (kn - R,J(Z))) ;

A 1 k*
e With some independence properties, ER(Q) Z E <bIaS(0*, z’ n) “I— 02 min {n + I?k%(z), 1}) o

34/50



What kinds of eigenvalues?

We say {¥,} is asymptotically benign if

lim <\Z I
n—o00

where k' = min{k > 0: r(X,) > bn}.

eigenvalues
0.020

0.015 4

If X\ = i~*In=P(i + 1),
Y is benign iff a =1 and 5 > 1. <

0.010

0.005 4

The >, A; must almost diverge!!?! J 00001

0 25 50 75 100 125 150 175 200
; 35/50



What kinds of eigenvalues?

Example: Finite dimension, fast \; decay, plus isotropic noise

eigenvalues

If e k+e, ifk<pp,
)‘k,n — . 0.08
0 otherwise,
then ¥, is benign iff .
° pn — w(n), 0.04
@ €,pp = o(n) and € p, = w(ne™"). ooz

Furthermore, for p, = Q(n) and e p, = w(ne™"),

R() = 0O <6npn + max{l,n}) .
n n’ pn

Generic phenomenon: quickly converging A; plus noise in all directions, p, > n. 3,5




Benign Overfitting

@ Linear regression

o Characterizing benign overfitting
Adversarial examples

o
@ Ridge regression
o

Model-dependent bounds
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Adversarial Examples in Deep Networks

Intriguing properties of neural networks. Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow and Fergus. ICLR2014

nda” or “Gibbon”?

. €T +
@ sign(VeJ(0,2.0)  ign(v,.(0,,y)
“panda” “gibbon”
57.7% confidence 99.3 % confidence

(Goodfellow, Shlens and Szegedy, ICLR2015)

o
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Implications for adversarial examples in linear regression

Label noise appears in 0

We can find a unit norm A AocX T (xxT)~le
such that perturbing an input x by A changes the output enormously:
even if AT9* =0, if R(9) < «,

on— k) _ o?fiell 1o

>c .
Y Vi va

((x +A)'6— XTé>2 >c

Benign overfitting leads to huge sensitivity. J
A = benign overfitting component is spiky:
I1A[ L. large; [[A][,(py small. J
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Benign Overfitting

@ Linear regression

o Characterizing benign overfitting
@ Adversarial examples

@ Ridge regression

@ Model-dependent bounds
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Ridge Regression

Minimum norm ridge regression

. =il
0, =XT (XXT+21) "y =argmin 6]
s.t. 9eargmﬁin{HXﬁ—YHZJF/\H/BH%}

@ Covers the range of solutions, from overfitting to regularized.
@ Tight bounds on bias and variance for A € R.

o Effective ranks, ry and Ry, replaced by

A Y
/\(Z) _ + Zl>k

Mk ) Rli\(z) = (
Ak+1

@ In some cases (rg«(X) > n), the optimal ) is negative: this decreases bias without
significantly affecting variance.

4
41 /50



Ridge Regression

Theorem

(Tsigler and B., 2020)
For universal constants b, ¢, and any linear regression problem (6*, o2 Y)

with A\, > 0, if k* = min {k > 0: r,'(¥) > bn}, the ridge regression estimate 0, satisfies
© With high probability,

. * 2
R < e (B0 200 07 (T4 20 ) )

Q If X = ¥1/27 where Z has independent components and the components of 6* are
subject to random sign flips,

ER(,) > % <b|as(9 .0, )\) + o2 mln{k* RAn(Z) 1})

* AD i 2
Here, bias(6*,%,n, \) = H0k+100HZk+1;oo + |03 k” (ﬂ) '

n

y
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Benign Overfitting

@ Linear regression

o Characterizing benign overfitting
@ Adversarial examples

@ Ridge regression

@ Model-dependent bounds
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Model-Dependent Bounds and Benign Overfitting

Model-dependent bounds

@ Suppose an algorithm returns a prediction rule f that

o has IAEéf small, and
o is simple (e.g., small spectral norms/approx rank of parameters/etc).

@ When does this ensure that Elr < €(f, n)?

@ e.g., via uniform deviation bounds: supscg ‘IAE& - Eﬁf‘ < e(F,n).

Limitations of uniform convergence (Nagarajan and Kolter, 2019)

@ Sometimes uniform deviation bounds can't help.
@ For a certain classification problem:

o One gradient descent step gives an f with [i¢s = 0 ... and f predicts accurately,
o And symmetry of the data distribution implies that any uniform deviation bound for an F
containing f must be large.
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Model-Dependent Bounds and Benign Overfitting

Consider the minimum norm estimator 6 in a linear regression problem.

@ A uniform model-dependent bound e satisfies, for all sample sizes n and all mean-zero
1-subgaussian distributions P, with high probability

R(0) < €@, n)

@ It is bounded-antimonotonic if, for ny < np < 2ny, €(h, n2) < ce(h, ny).
© A set B C Nincludes “most n" if it is strongly (1 — §)-dense beyond nq, that is, s> > ng
implies
IBN{s?,....,(s +1)2 -1}
2s+1

>1-6.
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Model-Dependent Bounds and Benign Overfitting

Theorem

There are distributions D, on R% x R (X gaussian, y subgaussian) s.t.

if € is a bounded-antimonotonic, uniform model-dependent bound,
then with high probability the minimum norm estimator 6 satisfies

()N\[

Pr (e(é, n) > c) >

S~Dp

but nonetheless, for most n,

N =

(B. and Long, 2020)

@ Natural joint distributions on training examples,

@ Any € that does not increase too quickly with n must sometimes be very loose: it needs

more information about the distribution.
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Model-Dependent Bounds and Benign Overfitting

Proof idea
Interpolating prediction rules are bad estimates on the training sample:

Xi—ré =VYi, SO ]E[(Xl—ré — XITQ*)2] = 027

A Poissonization approach shows that two situations are essentially indistinguishable:
@ The training sample forms a significant fraction of the support of the distribution.

@ A benign overfitting situation, where the training sample has measure zero.

A bound that is valid in both cases must be loose in the second case.
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Benign Overfitting

o Far from the regime of a tradeoff between fit to training data and complexity.

@ In linear regression, a long, flat tail of the covariance eigenvalues is necessary and
sufficient for the minimum norm interpolant to predict well:  The noise is hidden in many
unimportant directions.

o Linear prediction splits into a simple (k*-dim) component and a benign overfitting component
o Relies on many (roughly equally) unimportant parameter directions
o Finite dimensional data is important:

infinite dimension requires specific eigenvalue decay;

it is a generic phenomenon for truncated slow decay.

@ But it leads to huge sensitivity to (adversarial) perturbations.

@ From interpolation to ridge regression

o Limitations of model-dependent bounds
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Benign Overfitting

Next steps — beyond linear

@ Linear regression: with two-layer linear networks
(Niladri Chatterji, Phil Long, B, 2021)
building on implicit bias results of (Azulay et al, 2021)

@ Linear regression: beyond minimum Euclidean norm
(Freddie Koehler, Lijia Zhou, Danica Sutherland and Nati Srebro, NeurlPS 2021)

@ Neural networks as linear function classes:
neural tangent kernels, random feature models
(Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai, 2020)
(Song Mei, Theodor Misiakiewicz, and Andrea Montanari, 2021)

@ Benign overfitting in deep networks. f= fB + A7?
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Benign Overfitting

e Alexander

SIMONS FOUNDATION Niladri . . :
Chatterji Phil Long Gabor Lugosi Andrea Montanari Alexander Rakhlin Tsigler

@ Benign overfitting in linear regression. B., Long, Lugosi, Tsigler.

PNAS 117(48):30063-30070, 2020. arXiv:1906.11300
@ Benign overfitting in ridge regression. Tsigler, B. arXiv:2009.14286
@ Failures of model-dependent generalization bounds for least-norm interpolation. B., Long.

JMLR 22(204):1-15, 2021. arXiv:2010.08479
@ Deep learning: a statistical viewpoint. B., Montanari, Rakhlin.

Acta Numerica 30:87-201, 2021. arXiv:2103.09177
@ The interplay between implicit bias and benign overfitting in two-layer linear networks. Chatterji,

Long, B. arXiv:2108.11489
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