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Benign Overfitting

Generalization theory for neural networks

VC theory Advances in Neural Information Processing Systems Volume 1

Overparameterization and large-margin classification
Advances in Neural Information Processing Systems Volume 9

Benign overfitting in deep learning
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Generalization in Neural Networks

Advances in Neural Information Processing Systems 1 (NIPS 1988)
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Probabilistic Formulations of Prediction Problems

Given data (x1, y1), . . . , (xn, yn) (observation xi ∈ X , outcome yi ∈ Y)
Assume: Independent (x1, y1), . . . , (xn, yn), (x , y) ∼ P

(P is a probability distribution on X × Y).
Choose f : X → Y
so that f (x) is a good prediction of y , in the sense that `(f (x), y) small.Aim: Small risk:
E`f `f := E`(f (x), y).

Example: Pattern classification

`01(ŷ , y) = 1[ŷ 6= y ] =

{
1 if ŷ 6= y ,

0 otherwise.

Example: Empirical risk minimization

Choose f ∈ F to minimize

ÊÊ`f :=
1

n

n∑
i=1

`(f (xi ), yi ).
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Classification in a Probabilistic Setting

Theorem (Vapnik and Chervonenkis, 1971)

Consider F ⊆ {−1, 1}X , Y = {±1}, ` = `01.
For every prob distribution P on X × {−1, 1},
with high probability over n iid examples (x1, y1), . . . , (xn, yn),

every f in F satisfies

E`f ≤ Ê`f + O

(√
dVC (F)dVC (F)

n

)
.

For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Advances in Neural Information Processing Systems 1 (NIPS 1988)
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network with L layers, p
parameters, and k computation units with the following nonlinearities:

1 Piecewise constant (linear threshold units): dVC (F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise polynomial: dVC (F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

3 Piecewise linear (ReLUs): dVC (F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

4 Sigmoid: dVC (F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

In all cases, dVC is (at least) linear in number of parameters p.
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Classification in a Probabilistic Setting

Theorem (Vapnik and Chervonenkis, 1971)

Consider F ⊆ {−1, 1}X , Y = {±1}, ` = `01.
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),

every f in F satisfies

E`f ≤ Ê`f + O

(√
dVC (F)

n

)
.

For neural networks, VC-dimension:
increases linearly with number of parameters need n� p?
depends on nonlinearity and depth

For uniform bounds (that is, for all distributions and all f ∈ F , proportions are close to
probabilities; also for near-optimal prediction with f ∈ F), this inequality is tight within a
constant factor.
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Some Experimental Observations

Neural networks (Steve Lawrence, Lee Giles, Ah Chung Tsoi, 1997)

Prediction accuracy improving with overparameterization.
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Neural Networks

Advances in Neural Information Processing Systems 9 (NIPS 1996)

10 / 50



Large-Margin Classification: Some Intuition

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
Minimizing a continuous loss, such as (f (x)− y)2.

For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

For large-margin classifiers, we might expect the fine-grained details of f (such as
dVC (F)) to be less important.

c.f. Support vector machines (Boser, Guyon, Vapnik, 1992)
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Large-Margin Classification with Two-Layer Networks

Theorem (B, 1996)

Consider the following class FB of two-layer neural networks defined on X = [−1, 1]d :

FB =

{
x 7→

k∑
i=1

wiσ
(
vTi x

)
: ‖w‖1 ≤ B, ‖vi‖1 ≤ B, k ≥ 1

}
,

where σ is 1-Lipschitz and bounded.
Then with high probability, for all f ∈ FB ,

E`01,f ≤ Ê`γ,f Ê`γ,f + Õ

(
B3

γ2

B3

γ2

√
log d

n

)
.

Here, `γ,f (x , y) := 1[yf (x) ≤ γ] penalizes margins that are less than γ.
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Generalization: Margins and Size of Parameters

A classification problem becomes a regression problem.

For regression, the complexity of a neural network can be controlled by the size of the
parameters, and can be independent of the number of parameters.

We have a tradeoff between the fit to the training data (margins) and the complexity
(size of parameters):

E`01,f ≤ Ê`γ,f + pn(f )

Even if Ê`01,f = 0, it might be worthwhile to suffer an increased complexity penalty,

pn(f ), to improve Ê`γ,f .
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Some Experimental Observations

AdaBoost (Rob Schapire, Yoav Freund, B, Wee Sun Lee, 1997)

Prediction accuracy improving with overparameterization.
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Some Experimental Observations

Neural networks (Neyshabur, Tomioka, Srebro, 2015)

Prediction accuracy improving with overparameterization.
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Overfitting in Deep Networks

Deep networks can be trained to zero training error
(for regression loss)

... with near state-of-the-art performance

... even for noisy problems.

No tradeoff between fit to training data and
complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, ICML 2018)
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Anomalies in Deep Learning Practice

Deep learning methods predict accurately, but...

They are overparameterized (p � n).
Can control complexity some other way, e.g., scale of parameters.

They minimize empirical risk with little or no explicit regularization.
Can regularize implicitly, e.g., early stopping in gradient methods.

e.g., Yuan Yao, Lorenzo Rosasco, Andrea Caponnetto. On Early Stopping in Gradient
Descent Learning. 2007.
e.g., B, Mikhail Traskin, AdaBoost is Consistent, Advances in Neural Information Processing
Systems 19, 2007.

They find a perfect fit to the data.
If f is not too complex and fits the data, i.e., Ê`f = 0, then E`f can be near zero too.

e.g., Leslie Valiant. A Theory of the Learnable. 1984.

Deep learning methods find a perfect fit to noisy data.
?????
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Statistical Wisdom and Overfitting

“... interpolating fits... [are] unlikely to predict

future data well at all.”

see also (B. and Rakhlin, Simons Institute, May 2019)
18 / 50



Benign Overfitting

A new statistical phenomenon:
good prediction with very small training error for regression loss

Statistical wisdom says a prediction rule should not fit too well.

But deep networks are trained to fit noisy data perfectly, and they predict well.

Belkin, Hsu and Mitra, 2018; Belkin, Rakhlin and Tsybakov, 2018; Liang and Rakhlin, 2018;

Belkin, Hsu, Ma and Mandal, 2019; Belkin, Hsu and Xu, 2019; Hastie, Montanari, Rosset and Tibshirani, 2019; Dereziński, Liang and Mahoney, 2019; Liang,
Rakhlin and Zhai, 2019; Mei and Montanari, 2019; Mitra, 2019; Muthukumar, Vodrahalli and Sahai, 2019; Nakkiran, 2019; Bunea, Strimas-Mackey, Wegkamp,
2020; Kobak, Lomond and Sanchez, 2020; Nakkiran, Venkat, Kakade and Ma, 2020; Hastie, Montanari, Rosset and Tibshirani, 2020; Mei, Misiakiewicz,
Montanari, 2021; Celentano, Misiakiewicz, Montanari, 2021; Zou, Wu, Braverman, Gu and Kakade, 2021; Li, Zhou, Gretton, 2021;

Deep learning: a statistical viewpoint. B., Andrea Montanari, Alexander Rakhlin. Acta
Numerica. 2021. arXiv:2103.09177
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Benign Overfitting

Intuition

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = simple component useful for prediction.

∆ = spiky component useful for benign overfitting.

Classical statistical learning theory applies to f̂0.

∆ is not useful for prediction, but it is benign.

(Deep learning: a statistical viewpoint. B., Montanari, Rakhlin. Acta Numerica. 2021)
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Benign Overfitting

Example: kernel smoothing with singular, compact kernels

f̂ (x) =
n∑

i=1

yiKh(x − xi )∑n
j=1 Kh(x − xj)

e.g., with Kh(x) =
1 [h‖x‖ ≤ 1]

h‖x‖α
.

Minimax rates (with suitable h). (Belkin, Rakhlin, Tsybakov, 2018), (Belkin, Hsu, Mitra, 2018)

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = simple component useful for prediction:
standard (e.g., constant) compact kernel

∆ = spiky component useful for benign overfitting:
spiky piece (with small norm in L2(P)).
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Benign Overfitting

Outline

Linear regression

Characterizing benign overfitting

Adversarial examples

Ridge regression

Model-dependent bounds
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Definitions

Simple Prediction Setting: Linear Regression

Covariate x ∈ H (Hilbert space); response y ∈ R.

Assume: (x , y) subgaussian, mean zero, well-specified E[y|x] = x>θ∗

x satisfies a small ball condition ∃c > 0, Pr
(
‖x‖2 < cE‖x‖2

)
≤ δ.

Define:

Σ := Exx> =
∑
i

λiviv
>
i , (assume λ1 ≥ λ2 ≥ · · · )

θ∗ := arg min
θ

E
(
y − x>θ

)2
,

σ2 := E(y − x>θ∗)2.
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Definitions

Minimum norm estimator

Data: X ∈ Hn, y ∈ Rn.

Estimator θ̂ =
(
X>X

)†
X>y , which solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 .

X =


x>1
x>2
...

x>n

 y =


y1

y2

...

yn



Notice that gradient flow, initialized at 0:

θ0 = 0, θ̇t = −∇θ‖Xθ − y‖2

converges to the minimum norm solution.
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Definitions

Excess prediction error

R(θ̂) := E(x ,y)

(
y − x>θ̂

)2
−min

θ
E
(
y − x>θ

)2

︸ ︷︷ ︸
optimal prediction error

= E(x ,y)

[(
y − x>θ̂

)2
−
(
y − x>θ∗

)2
]

=
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.

So Σ determines the importance of parameter directions.

(Recall that Σ =
∑
i

λiviv
>
i for orthonormal vi , λ1 ≥ λ2 ≥ · · · .)
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From regularization to overfitting

Regularized linear regression

ridge regression: min λ‖θ‖2 +
1

n
‖Xθ − y‖2 ,

norm constrained: min
1

n
‖Xθ − y‖2

s.t. ‖θ‖ ≤ b,

fit constrained: min ‖θ‖

s.t.
1

n
‖Xθ − y‖2 ≤ c .

The overfitting regime: c � minθ E
(
y − x>θ

)2
.
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Interpolating Linear Regression

Overfitting regime

We consider situations where minβ ‖Xβ − y‖2 = 0.

Estimator θ̂ =
(
X>X

)†
X>y solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 = 0.

Hence, y1 = x>1 θ̂, . . . , yn = x>n θ̂.

When can the label noise be hidden in θ̂ without hurting predictive accuracy?
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Benign Overfitting: A Characterization

Theorem (B., Long, Lugosi, Tsigler, 2019), (Tsigler, B., 2020)

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn} (effective dimension),

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 If X = Σ1/2Z where Z has independent components and θ∗ is symmetrized (random sign
flips of components),

ER(θ̂) ≥ 1

c

(
bias(θ∗,Σ, n) + σ2 min

{
k∗

n
+

n

Rk∗(Σ)
, 1

})
.

Here, bias(θ∗,Σ, n) = ‖θ∗k+1:∞‖
2
Σk+1:∞

+ ‖θ∗1:k‖
2

Σ
−1
1:k

(∑
i>k λi
n

)2
.
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Effective Rank

Recall that λ1 ≥ λ2 ≥ · · · are the eigenvalues of Σ.
For k ≥ 0, if λk+1 > 0, define the effective ranks

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Examples

(1) r0(Ip) = R0(Ip) = p. (2) If rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =
1/p

∑p
i=1 λi

λ1
, S(Σ) =

(
1/p

∑p
i=1 λi

)2

1/p
∑p

i=1 λ
2
i

.

Both s and S lie between 1/p (λ2 ≈ 0) and 1 (λi all equal).
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn} (effective dimensioneffective dimension),

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2σ2

(
k∗

n

k∗

n
+

n

Rk∗(Σ)

))
,

2 With some independence properties, ER(θ̂) ≥ 1

c

(
bias(θ∗,Σ, n) + σ2σ2 min

{
k∗

n

k∗

n
+

n

Rk∗(Σ)
, 1

})
.

bias(θ∗,Σ, n) = ‖θ∗k+1:∞‖2
Σk+1:∞

+ ‖θ∗1:k‖2
Σ−1

1:k

(∑
i>k λi
n

)2
.
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Benign Overfitting

Benign overfitting prediction rule f̂ decomposes as

f̂ = f̂0 + ∆.

f̂0 = prediction component:
k∗-dim subspace corresponding to λ1, . . . , λk∗ .

∆ = benign overfitting component:
orthogonal subspace. ∆ is benign only if Rk∗ � n.
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Benign Overfitting: A Characterization

Intuition

The mix of eigenvalues of Σ determines:
1 how the label noise is distributed in θ̂, and
2 how errors in θ̂ affect prediction accuracy.

To avoid harming prediction accuracy, the noise energy must be distributed across many
unimportant directions.

Overparameterization is essential for benign overfitting

Number of non-zero eigenvalues: large compared to n,
Number of ‘small’ eigenvalues: large compared to n,
Small eigenvalues: roughly equal (but they can be more assymmetric if there are many more
than n of them).
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Benign Overfitting: What kinds of eigenvalues?

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
bias(θ∗,Σ, n) + σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 With some independence properties, ER(θ̂) ≥ 1

c

(
bias(θ∗,Σ, n) + σ2 min

{
k∗

n
+

n

Rk∗(Σ)
, 1

})
.
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What kinds of eigenvalues?

We say {Σn} is asymptotically benign if

lim
n→∞

(
‖Σn‖

√
r0(Σn)

n
+

k∗n
n

+
n

Rk∗n (Σn)

)
= 0,

where k∗n = min {k ≥ 0 : rk(Σn) ≥ bn}.

Example

If λi = i−α ln−β(i + 1),
Σ is benign iff α = 1 and β > 1.

The
∑

i λi must almost diverge!!?!
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What kinds of eigenvalues?

Example: Finite dimension, fast λi decay, plus isotropic noise

If
λk,n =

{
e−k + εn if k ≤ pn,

0 otherwise,

then Σn is benign iff

pn = ω(n),

εnpn = o(n) and εnpn = ω(ne−n).

Furthermore, for pn = Ω(n) and εnpn = ω(ne−n),

R(θ̂) = O

(
εnpn
n

+ max

{
1

n
,
n

pn

})
.

Generic phenomenon: quickly converging λi plus noise in all directions, pn � n. 36 / 50
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Adversarial Examples in Deep Networks

Intriguing properties of neural networks. Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow and Fergus. ICLR2014

“Panda” or “Gibbon”?

(Goodfellow, Shlens and Szegedy, ICLR2015)
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Implications for adversarial examples in linear regression

Label noise appears in θ̂

We can find a unit norm ∆ ∆∝X>(XX>)−1ε

such that perturbing an input x by ∆ changes the output enormously:
even if ∆>θ∗ = 0, if R(θ̂) ≤ α,(

(x + ∆)>θ̂ − x>θ̂
)2
≥ c

σ2(n − k∗)∑
i>k∗ λi

≥ c
σ2‖θ∗1:k∗‖√

λ1

1− α√
α
.

Benign overfitting leads to huge sensitivity.

∆ = benign overfitting component is spiky:
‖∆‖L∞ large; ‖∆‖L2(P) small.
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Ridge Regression

Minimum norm ridge regression

θ̂λ = X>
(
XX> + λI

)−1
y = arg min ‖θ‖

s.t. θ ∈ arg min
β

{
‖Xβ − y‖2 + λ‖β‖2

2

}
Covers the range of solutions, from overfitting to regularized.

Tight bounds on bias and variance for λ ∈ R.

Effective ranks, rk and Rk , replaced by

rλk (Σ) =
λ+

∑
i>k λi

λk+1
, Rλk (Σ) =

(
λ+

∑
i>k λi

)2∑
i>k λ

2
i

.

In some cases (rk∗(Σ)� n), the optimal λ is negative: this decreases bias without
significantly affecting variance.
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Ridge Regression

Theorem (Tsigler and B., 2020)

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min

{
k ≥ 0 : rλk (Σ) ≥ bn

}
, the ridge regression estimate θ̂λ satisfies

1 With high probability,

R(θ̂λ) ≤ c

(
bias(θ∗,Σ, n, λ) + σ2

(
k∗

n
+

n

Rλk∗(Σ)

))
,

2 If X = Σ1/2Z where Z has independent components and the components of θ∗ are
subject to random sign flips,

ER(θ̂λ) ≥ 1

c

(
bias(θ∗,Σ, n, λ) + σ2 min

{
k∗

n
+

n

Rλk∗(Σ)
, 1

})
.

Here, bias(θ∗,Σ, n, λ) = ‖θ∗k+1:∞‖2
Σk+1:∞

+ ‖θ∗1:k‖2
Σ−1

1:k

(
λ+

∑
i>k λi
n

)2
.
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Model-Dependent Bounds and Benign Overfitting

Model-dependent bounds

Suppose an algorithm returns a prediction rule f that

has Ê`f small, and
is simple (e.g., small spectral norms/approx rank of parameters/etc).

When does this ensure that E`f ≤ ε(f , n)?

e.g., via uniform deviation bounds: supf ∈F

∣∣∣Ê`f − E`f
∣∣∣ ≤ ε(F , n).

Limitations of uniform convergence (Nagarajan and Kolter, 2019)

Sometimes uniform deviation bounds can’t help.

For a certain classification problem:

One gradient descent step gives an f with Ê`f = 0 ... and f predicts accurately,
And symmetry of the data distribution implies that any uniform deviation bound for an F
containing f must be large.
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Model-Dependent Bounds and Benign Overfitting

Definitions

Consider the minimum norm estimator θ̂ in a linear regression problem.

1 A uniform model-dependent bound ε satisfies, for all sample sizes n and all mean-zero
1-subgaussian distributions P, with high probability

R(θ̂) ≤ ε(θ̂, n)

2 It is bounded-antimonotonic if, for n1 ≤ n2 ≤ 2n1, ε(h, n2) ≤ cε(h, n1).

3 A set B ⊂ N includes “most n” if it is strongly (1− δ)-dense beyond n0, that is, s2 ≥ n0

implies
|B ∩ {s2, ..., (s + 1)2 − 1}|

2s + 1
≥ 1− δ.
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Model-Dependent Bounds and Benign Overfitting

Theorem (B. and Long, 2020)

There are distributions Dn on Rdn × R (X gaussian, y subgaussian) s.t.
if ε is a bounded-antimonotonic, uniform model-dependent bound,
then with high probability the minimum norm estimator θ̂ satisfies

R(θ̂) .
1√
n

but nonetheless, for most n,
Pr

S∼Dn
n

(
ε(θ̂, n) > c

)
≥ 1

2
.

Natural joint distributions on training examples,

Any ε that does not increase too quickly with n must sometimes be very loose: it needs
more information about the distribution.
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Model-Dependent Bounds and Benign Overfitting

Proof idea

Interpolating prediction rules are bad estimates on the training sample:

x>i θ̂ = yi , so E[(x>i θ̂ − x>i θ
∗)2] = σ2,

A Poissonization approach shows that two situations are essentially indistinguishable:

1 The training sample forms a significant fraction of the support of the distribution.

2 A benign overfitting situation, where the training sample has measure zero.

A bound that is valid in both cases must be loose in the second case.
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Benign Overfitting

Far from the regime of a tradeoff between fit to training data and complexity.

In linear regression, a long, flat tail of the covariance eigenvalues is necessary and
sufficient for the minimum norm interpolant to predict well: The noise is hidden in many
unimportant directions.

Linear prediction splits into a simple (k∗-dim) component and a benign overfitting component
Relies on many (roughly equally) unimportant parameter directions
Finite dimensional data is important:
infinite dimension requires specific eigenvalue decay;
it is a generic phenomenon for truncated slow decay.

But it leads to huge sensitivity to (adversarial) perturbations.

From interpolation to ridge regression

Limitations of model-dependent bounds
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Benign Overfitting

Next steps → beyond linear

Linear regression: with two-layer linear networks
(Niladri Chatterji, Phil Long, B, 2021)

building on implicit bias results of (Azulay et al, 2021)

Linear regression: beyond minimum Euclidean norm
(Freddie Koehler, Lijia Zhou, Danica Sutherland and Nati Srebro, NeurIPS 2021)

Neural networks as linear function classes:
neural tangent kernels, random feature models

(Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai, 2020)

(Song Mei, Theodor Misiakiewicz, and Andrea Montanari, 2021)

Benign overfitting in deep networks. f̂ = f̂0 + ∆?
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