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Overfitting in Deep Networks

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)
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Statistical Wisdom and Overfitting

Classical approaches to prediction

Typically, we aim for a trade-off between

Fit to the training data, e.g.,

1

n

n∑
i=1

(
f̂ (xi )− yi

)2
,

Complexity of a prediction rule, e.g.,

Number of parameters
Norm of parameter vector
Norm of function in a reproducing kernel Hilbert space,
Bandwidth of smoothing kernel,
. . .

This is especially important for nonparametric methods, that is, those for
which the number of parameters grows with the sample size.
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Statistical Wisdom and Overfitting

“... interpolating fits... [are] unlikely to predict future

data well at all.”
see also (B. and Rakhlin, Simons Institute, May 2019)

4 / 33



Statistical Wisdom and Overfitting
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Benign Overfitting

A new statistical phenomenon:
good prediction with zero training error for regression loss

Statistical wisdom says a prediction rule should not fit too well.

But deep networks are trained to fit noisy data perfectly, and they
predict well.
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Progress on Interpolating Prediction Rules

Simplicial interpolation

(Belkin, Hsu, Mitra, 2018)

Kernel smoothing with singular, compact kernels

f̂ (x) =
n∑

i=1

yiKh(x − xi )∑n
i=1 Kh(x − xi )

with Kh(x) =
1[h‖x‖ ≤ 1

h‖x‖α
.

Minimax rates possible (with suitable h). (Belkin, Hsu, Mitra, 2018), (Belkin, Rakhlin, Tsybakov,

2018)

Linear regression with d � n

Kernels defined in terms of the Euclidean inner product
(Liang and Rakhlin, 2018)

Linear regression with d , n→∞, d/n→ γ (Hastie, Montanari, Rosset, Tibshirani, 2019)
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Outline

Linear regression

Characterizing benign overfitting

Deep learning

Adversarial examples
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Definitions

Simple Prediction Setting: Linear Regression

Covariate x ∈ H (Hilbert space); response y ∈ R.

(x , y) Gaussian, mean zero. (or subgaussian, well-specified)

Define:

Σ := Exx> =
∑
i

λiviv
>
i , (assume λ1 ≥ λ2 ≥ · · · )

θ∗ := arg min
θ

E
(
y − x>θ

)2
,

σ2 := E(y − x>θ∗)2.
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Definitions

Minimum norm estimator

Data: X ∈ Hn, y ∈ Rn.

Estimator θ̂ =
(
X>X

)†
X>y , which solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 .
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Definitions

Excess prediction error

R(θ̂) := E(x ,y)

(
y − x>θ̂

)2
−min

θ
E
(
y − x>θ

)2

︸ ︷︷ ︸
optimal prediction error

= E(x ,y)

[(
y − x>θ̂

)2
−
(
y − x>θ∗

)2
]

=
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.

So Σ determines the importance of parameter directions.

(Recall that Σ =
∑
i

λiviv
>
i for orthonormal vi , λ1 ≥ λ2 ≥ · · · .)
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Outline

Linear regression

Characterizing benign overfitting

Deep learning

Adversarial examples
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Interpolating Linear Regression

Overfitting regime

We consider situations where minβ ‖Xβ − y‖2 = 0.

Hence, y1 = x>1 θ̂, . . . , yn = x>n θ̂.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2‖Σ‖

√
r0(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.

Also,
r0(Σ)

ln(1 + r0(Σ))
≥ κn implies for some θ∗, Pr(R(θ̂) ≥ 1/c) ≥ 1/4.
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that λ1 ≥ λ2 ≥ · · · are the eigenvalues of Σ.
For k ≥ 0, if λk+1 > 0, define the effective ranks

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Lemma

1 ≤ rk(Σ) ≤ Rk(Σ) ≤ r2
k (Σ).
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Notions of Effective Rank

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Examples

1 r0(Ip) = R0(Ip) = p.

2 If rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =
1/p

∑p
i=1 λi

λ1
, S(Σ) =

(
1/p

∑p
i=1 λi

)2

1/p
∑p

i=1 λ
2
i

.

Both s and S lie between 1/p (λ2 ≈ 0) and 1 (λi all equal).
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2‖Σ‖

√
r0(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.

Also,
r0(Σ)

ln(1 + r0(Σ))
≥ κn implies for some θ∗, Pr(R(θ̂) ≥ 1/c) ≥ 1/4.
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Benign Overfitting: A Characterization

Intuition

The mix of eigenvalues of Σ determines:
1 how the label noise is distributed in θ̂, and
2 how errors in θ̂ affect prediction accuracy.

To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

Overparameterization is essential for benign overfitting

Number of non-zero eigenvalues: large compared to n,
Their sum: small compared to n,
Number of ‘small’ eigenvalues: large compared to n,
Small eigenvalues: roughly equal (but they can be more assymmetric if
there are many more than n of them).
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Benign Overfitting: Proof Ideas

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x>θ∗ and y − x>θ∗)

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).
2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector ε by y = Xθ∗ + ε.

Estimator: θ̂ = (X>X )†X>y = (X>X )†X>(Xθ∗ + ε),

Excess risk: R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
≈ θ∗>

(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗

+ σ2tr

((
X>X

)†
Σ

)
.
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Benign Overfitting: Proof Ideas

The excess risk

R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.

Write Σ =
∑

i λiviv
>
i .

Split the vi into “heavy” directions (corresponding to λ1 ≥ · · · ≥ λk)
and “light” ones (corresponding to λk+1, . . .).

If rk(Σ) ≥ n, the smallest positive ((k + 1)-th to n-th) eigenvalues of
X>X are all concentrated (around ρ :=

∑
i>k λi ).

So XX> � ρI . θ̂ =
(
X>X

)†
X>y

c.f. ridge regression: θ̂ =
(
X>X + ρI

)−1
X>y .
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Benign Overfitting: Proof Ideas

The minimum norm estimator

θ̂ = (X>X )†X>y = (X>X )†X>ε+ · · · . R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.

Where does the energy from the noise go?

A direction vi sees noise energy (from X>ε) proportional to nλi .

This is scaled by no more than ρ−2.

Its impact on the prediction error is scaled by another factor of λi .

Bound on prediction error: nλ2
i ρ
−2.

(We can do better in the “heavy” directions: ≤ 1/n.)

Total prediction error bound:
k

n
+ n

∑
i>k

λ2
i ρ
−2 =

k

n
+

n

Rk(Σ)
.
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Benign Overfitting: Proof Ideas

Lower bound

The excess expected loss is at least as big as the same trace term,

tr
((

X>X
)†

Σ
)

.

When the eigenvalues of XX> are concentrated, the same split gives
a lower bound within a constant factor of the upper bound.

And otherwise, the excess expected loss is at least a constant.
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2‖Σ‖

√
r0(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2 ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.

Also,
r0(Σ)

ln(1 + r0(Σ))
≥ κn implies for some θ∗, Pr(R(θ̂) ≥ 1/c) ≥ 1/4.
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What kinds of eigenvalues?

We say Σ is asymptotically benign if

lim
n→∞

(
‖Σ‖

√
r0(Σ)

n
+

k∗n
n

+
n

Rk∗n (Σ)

)
= 0,

where k∗n = min {k ≥ 0 : rk(Σ) ≥ bn}.

Example

If λi = i−α ln−β(i + 1), then Σ is benign iff α = 1 and β > 1.

The λi must be almost diverging!!?!?
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What kinds of eigenvalues?

Example: Finite dimension, plus isotropic noise

If

λk,n =

{
e−k + εn if k ≤ pn,

0 otherwise,

then Σn is benign iff

pn = ω(n),

εnpn = o(n) and εnpn = ω(ne−n). (n ≥ 40 =⇒ ne−n < 2−52)

Furthermore, for pn = Ω(n) and εnpn = ω(ne−n),

R(θ̂) = O

(
εnpn
n

+ max

{
1

n
,
n

pn

})
.

Universal phenomenon: fast converging λi , pn � n, noise in all directions.
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Extensions

Beyond Gaussian

1 Linear model: E[y |x ] = x>θ∗.

2 Noise is subgaussian:
E
[
exp

(
λ
(
y − x>θ∗

))
|x
]
≤ exp

(
σ2
yλ

2/2
)
.

3 Components of Σ−1/2x are independent subgaussian:
E
[
exp(λ>Σ−1/2x)

]
≤ exp

(
σ2
x‖λ‖2/2

)
.

Open questions

Misspecified?

Less independence? e.g., k(x , ·) ∈ H?

e.g., see (Rakhlin and Zhai, 2018)
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Implications for deep learning

Neural networks versus linear prediction

For wide enough randomly initialized neural networks, gradient descent
dynamics quickly converge to (approximately) a min-norm interpolating
solution with respect to a certain kernel.
For example, for

f (x) =
1√
m

m∑
i=1

aiσ (〈wi , x〉) ,

the corresponding (random) kernel is

Km(x , xj) :=
1

m

m∑
i=1

a2
i σ
′ (〈wi , x〉)σ′ (〈wi , xj〉) 〈x , xj〉.

(Xie, Liang, Song, ’16), (Jacot, Gabriel, Hongler ’18), (Li and Liang, 2018), (Du, Poczós, Zhai, Singh, 2018), (Du, Lee, Li,

Wang, Zhai, 2018), (Arora, Du, Hu, Li, Wang, 2019).

(Generalization results in these papers: only no noise.)
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Implications for deep learning

Neural networks versus linear prediction

What can we say about realistic deep networks?

The characterization of benign overfitting in linear regression requires
x = Σ1/2z for a vector z with independent components.
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Implications for adversarial examples

Label noise appears in θ̂

We can find a unit norm ∆ ∆∝X>(XX>)−1ε

such that perturbing an input x by ∆ changes the output enormously:
even if ∆>θ∗ = 0,∥∥∥(x + ∆)>θ̂ − x>θ̂

∥∥∥2
≥ σ√

λk∗+1

≥
√

n

tr(Σ)
σ.

Benign overfitting leads to huge sensitivity.
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Interpolating prediction: Future directions

Between interpolation and regularization?

Can we extend these results to interpolating deep networks?

What is the analog of the minimum norm linear prediction rule?
What role does the optimization method play?
Implications for regularization methods?
Implications for robustness?
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Benign Overfitting in Linear Regression

Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict
well: The noise is hidden in many unimportant directions.

Relies on many (roughly equally) unimportant parameters

But it leads to huge sensitivity to (adversarial) perturbations.
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