Benign Overfitting in Linear Prediction

Peter Bartlett CS and Statistics UC Berkeley

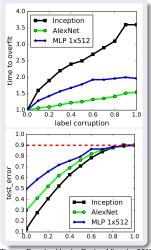
July 15, 2019

Phil Long

Gábor Lugosi

Alexander Tsigler

Overfitting in Deep Networks



(Zhang, Bengio, Hardt, Recht, Vinyals, 2017)

- Deep networks can be trained to zero training error (for *regression* loss)
- ... with near state-of-the-art performance
- ... even for noisy problems.
- No tradeoff between fit to training data and complexity!
- Benign overfitting.

also (Belkin, Hsu, Ma, Mandal, 2018)

A new statistical phenomenon

- An aside:
 - **(**) There is nothing mysterious about p > n ('overparameterization').
 - overparameterization = nonparametric
 There is nothing new about good prediction with zero training error for classification loss.
 margins analysis: regression loss vs complexity
- An unexplored statistical phenomenon: good prediction with zero *regression* loss on noisy training data.
- Statistical wisdom says a prediction rule should not fit too well.
- But deep networks can be trained to fit noisy data perfectly, and they predict well.

Progress on interpolating prediction

• Interpolating nearest neighbor rules and related methods

(Belkin, Hsu, Mitra, 2018)

- Kernel regression with kernels defined in terms of the Euclidean inner product (Liang and Rakhlin, 2018)
- Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)

- Linear regression with $p,n o\infty$, $p/n o\gamma$ (Hastie, Montanari, Rosset, Tibshirani, 2019)
- Linear regression with random features

(Belkin, Hsu and Xu, 2019)

Simple Prediction Setting: Linear Regression

- Covariate $x \in \mathbb{H}$ (Hilbert space); response $y \in \mathbb{R}$.
- (x, y) Gaussian, mean zero.

• Define:

$$\Sigma := \mathbb{E}xx^{\top} = \sum_{i} \lambda_{i} v_{i} v_{i}^{\top}, \quad (\text{assume } \lambda_{1} \ge \lambda_{2} \ge \cdots)$$
$$\theta^{*} := \arg\min_{\theta} \mathbb{E} \left(y - x^{\top} \theta \right)^{2},$$
$$\sigma^{2} := \mathbb{E} (y - x^{\top} \theta^{*})^{2}.$$

(or subgaussian, well-specified)

Definitions

Minimum norm estimator

- Data: $X \in \mathbb{H}^n$, $y \in \mathbb{R}^n$.
- Estimator $\hat{\theta} = \left(X^{\top}X\right)^{\dagger}X^{\top}y$, which solves

$$\min_{\theta \in \mathbb{H}} \qquad \|\theta\|^2 \\ \text{s.t.} \qquad \|X\theta - y\|^2 = \min_{\beta} \|X\beta - y\|^2 \,.$$

Excess prediction error:

(Σ and λ_i determine importance of parameter directions)

$$R(\hat{\theta}) := \mathbb{E}_{(x,y)} \left[\left(y - x^{\top} \hat{\theta} \right)^2 - \left(y - x^{\top} \theta^* \right)^2 \right] = \left(\hat{\theta} - \theta^* \right)^{\top} \Sigma \left(\hat{\theta} - \theta^* \right).$$

Overfitting regime

- We consider situations where $\min_{\beta} ||X\beta y||^2 = 0$.
- Hence, $y_1 = x_1^{\top} \hat{\theta}, \dots, y_n = x_n^{\top} \hat{\theta}$.
- When can the label noise be hidden in $\hat{\theta}$ without hurting predictive accuracy?

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}
ight)
ight), \ &\mathbb{E}R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}, 1
ight\}. \end{aligned}$$

Definition (Effective Ranks)

Recall that $\lambda_1 \ge \lambda_2 \ge \cdots$ are the eigenvalues of Σ . For $k \ge 0$, if $\lambda_{k+1} > 0$, define the effective ranks

 $r_k(\Sigma) = rac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}, \qquad \qquad R_k(\Sigma) = rac{\left(\sum_{i>k} \lambda_i\right)^2}{\sum_{i>k} \lambda_i^2}.$

Lemma

$$1 \leq r_k(\Sigma) \leq R_k(\Sigma) \leq r_k^2(\Sigma).$$

Notions of Effective Rank

$$r_k(\Sigma) = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}},$$

$$R_k(\Sigma) = \frac{\left(\sum_{i>k} \lambda_i\right)^2}{\sum_{i>k} \lambda_i^2}.$$

Examples

•
$$r_0(I_p) = R_0(I_p) = p$$
.
• If $\operatorname{rank}(\Sigma) = p$, we can write

$$r_0(\Sigma) = \operatorname{rank}(\Sigma)s(\Sigma), \qquad R_0(\Sigma) = \operatorname{rank}(\Sigma)S(\Sigma),$$

with $s(\Sigma) = \frac{1/p\sum_{i=1}^p \lambda_i}{\lambda_1}, \qquad S(\Sigma) = \frac{\left(1/p\sum_{i=1}^p \lambda_i\right)^2}{1/p\sum_{i=1}^p \lambda_i^2}.$

Both s and S lie between 1/p ($\lambda_2 \approx 0$) and 1 (λ_i all equal).

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}
ight)
ight), \ &\mathbb{E}R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}, 1
ight\}. \end{aligned}$$

Intuition

- The mix of eigenvalues of Σ determines:
 - **(**) how the label noise is distributed in $\hat{\theta}$, and
 - 2 how errors in $\hat{\theta}$ affect prediction accuracy.
- To avoid harming prediction accuracy, the noise energy must be distributed across many unimportant directions.
- Overparameterization is essential for benign overfitting
 - Number of non-zero eigenvalues: large compared to n,
 - Their sum: small compared to n,
 - Number of 'small' eigenvalues: large compared to n,
 - Small eigenvalues: roughly equal (but they can be more assymmetric if there are many more than *n* of them).

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x^Tθ* and y - x^Tθ*)

 θ
 is a distorted version of θ*, because the sample x₁,..., x_n distorts our view of the covariance of x.

Not a problem, even in high dimensions (p > n). **2** $\hat{\theta}$ is corrupted by the noise in y_1, \ldots, y_n .

Problematic.

• When can the label noise be hidden in $\hat{\theta}$ without hurting predictive accuracy?

Bias-variance decomposition

Define the noise vector ϵ by $y = X\theta^* + \epsilon$.

Estimator:

Excess risk:

$$\begin{split} \hat{\theta} &= (X^{\top}X)^{\dagger}X^{\top}y = (X^{\top}X)^{\dagger}X^{\top}(X\theta^{*} + \epsilon), \\ R(\hat{\theta}) &= \left(\hat{\theta} - \theta^{*}\right)^{\top}\Sigma\left(\hat{\theta} - \theta^{*}\right) \\ &= \theta^{*\top}\left(I - \hat{\Sigma}\hat{\Sigma}^{\dagger}\right)\left(\Sigma - \hat{\Sigma}\right)\left(I - \hat{\Sigma}^{\dagger}\hat{\Sigma}\right)\theta^{*} \\ &+ \sigma^{2}\mathrm{tr}\left(\left(X^{\top}X\right)^{\dagger}\Sigma\right). \end{split}$$

Benign Overfitting: Proof Ideas

Standard normals

$$\operatorname{tr}\left(\left(X^{\top}X\right)^{\dagger}\Sigma\right) = \operatorname{tr}\left(\Sigma^{1/2}X^{\top}\left(XX^{\top}\right)^{-2}X\Sigma^{1/2}\right)$$
$$= \sum_{i=1}^{\infty}\lambda_{i}^{2}z_{i}^{\top}A^{-2}z_{i}$$
$$= \sum_{i=1}^{\infty}\frac{\lambda_{i}^{2}z_{i}^{\top}A_{-i}^{-2}z_{i}}{(1+\lambda_{i}z_{i}^{\top}A_{-i}^{-1}z_{i})^{2}},$$

where $z_i = X v_i / \sqrt{\lambda_i}$ for $\Sigma = \sum_j \lambda_j v_j v_j^{\top}$, and

$$A = \sum_{i=1}^{\infty} \lambda_i z_i z_i^{\top}, \qquad \qquad A_{-i} = \sum_{j \neq i} \lambda_j z_j z_j^{\top}.$$

Now $z_i \sim \mathcal{N}(0, I_n)$ and z_i and A_{-i} are independent.

Concentration

If $r_k(\Sigma) \ge bn$, then in that subspace, the effect of the sum of the eigenvalues dominates the effect of the biggest eigenvalue. Hence,

$$\frac{1}{c}\lambda_{k+1}r_k(\Sigma) \leq \mu_n(A) \leq \mu_{k+1}(A) \leq c\lambda_{k+1}r_k(\Sigma),$$

where $\mu_1(A) \geq \cdots \geq \mu_n(A)$ are the eigenvalues of $A = \sum_i \lambda_i z_i z_i^{\top}$.

• Split the trace into "heavy" directions, which cost 1/n each, and "light" directions, which cost $n/R_k(\Sigma)$.

Lower bound

- The excess expected loss is at least as big as the same trace term, $\operatorname{tr}\left(\left(X^{\top}X\right)^{\dagger}\Sigma\right)$.
- When A and A_{-i} are concentrated, the same split gives a lower bound within a constant factor of the upper bound.
- And otherwise, the excess expected loss is at least a constant.

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}
ight)
ight), \ &\mathbb{E}R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}, 1
ight\}. \end{aligned}$$

We say Σ is asymptotically benign if

$$\lim_{n\to\infty}\left(\|\Sigma\|\sqrt{\frac{r_0(\Sigma)}{n}}+\frac{k_n^*}{n}+\frac{n}{R_{k_n^*}(\Sigma)}\right)=0,$$

where $k_n^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$.

Example

If $\lambda_i = i^{-\alpha} \ln^{-\beta}(i+1)$, then Σ is benign iff $\alpha = 1$ and $\beta > 1$.

The λ_i must be almost diverging!!?!?

What kinds of eigenvalues?

Example: Finite dimension, plus isotropic noise

$$\lambda_{k,n} = egin{cases} e^{-k} + \epsilon_n & ext{if } k \leq p_n, \ 0 & ext{otherwise}, \end{cases}$$

then \sum_{n} is benign iff

•
$$p_n = \omega(n)$$
,
• $\epsilon_n p_n = o(n)$ and $\epsilon_n p_n = \omega(ne^{-n})$.
($n \ge 40 \implies ne^{-n} < 2^{-52}$)
Furthermore, for $p_n = \Omega(n)$ and $\epsilon_n p_n = \omega(ne^{-n})$,

$$R(\hat{\theta}) = O\left(\frac{\epsilon_n p_n}{n} + \max\left\{\frac{1}{n}, \frac{n}{p_n}\right\}\right).$$

Universal phenomenon: fast converging λ_i , $p_n \gg n$, noise in all directions.

Neural networks versus linear prediction

Neural networks with

- width large compared to sample size,
- suitable random initialization,
- gradient descent with small step-size,

can be accurately approximated by linear functions in a certain randomly chosen Hilbert space.

(Li and Liang, 2018), (Du, Poczós, Zhai, Singh, 2018), (Du, Lee, Li, Wang, Zhai, 2018), (Arora, Du, Hu, Li, Wang, 2019).

- But what can we say about realistic deep networks?
- It seems unlikely that random features is the whole story.

Label noise appears in $\hat{\theta}$

We can find a unit norm Δ such that perturbing an input x by Δ changes the output enormously: even if $\Delta^{\top} \theta^* = 0$,

$$\left\| (x + \Delta)^\top \hat{\theta} - x^\top \hat{\theta} \right\|^2 \ge \frac{\sigma}{\sqrt{\lambda_{k^* + 1}}} \ge \sqrt{\frac{n}{\operatorname{tr}(\Sigma)}} \sigma$$

Benign overfitting leads to huge sensitivity.

- Can we extend these results to interpolating deep networks?
 - Beyond linear combinations of random features?
 - Benign overfitting with these nonlinear functions?
 - What is the analog of the minimum norm linear prediction rule?
 - What role does the optimization method play?
 - Implications for regularization methods?
 - Implications for robustness?

- Interpolation: far from the regime of a tradeoff between fit to training data and complexity.
- In linear regression, a long, flat tail of the covariance eigenvalues is necessary and sufficient for the minimum norm interpolant to predict well: The noise is hidden in many unimportant directions.
 - Relies on overparameterization
 - ... and lots of unimportant parameters
- But it leads to huge sensitivity to (adversarial) perturbations.