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Overfitting in Deep Networks

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)
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Benign Overfitting

A new statistical phenomenon

An aside:
1 There is nothing mysterious about p > n (‘overparameterization’).

overparameterization = nonparametric
2 There is nothing new about good prediction with zero training error for

classification loss. margins analysis: regression loss vs complexity

An unexplored statistical phenomenon:
good prediction with zero regression loss on noisy training data.

Statistical wisdom says a prediction rule should not fit too well.

But deep networks can be trained to fit noisy data perfectly, and they
predict well.
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Interpolating Prediction Rules

Progress on interpolating prediction

Interpolating nearest neighbor rules in high dimensions
(Belkin, Hsu, Mitra, 2018)

Kernel regression with polynomial kernels (Liang and Rakhlin, 2018)

Kernel smoothing with singular kernels (Belkin, Rakhlin, Tsybakov, 2018)

Linear regression with p, n→∞, p/n→ γ (Hastie, Montanari, Rosset, Tibshirani, 2019)

Linear regression with random features (Belkin, Hsu and Xu, 2019)
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Definitions

Simple Prediction Setting: Linear Regression

Covariate x ∈ H (Hilbert space); response y ∈ R.

(x , y) Gaussian, mean zero.

Define:

Σ := Exx> =
∑
i

λiviv
>
i , (assume λ1 ≥ λ2 ≥ · · · )

θ∗ := arg min
θ

E
(
y − x>θ

)2
,

σ2 := E(y − x>θ∗)2.
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Definitions

Minimum norm estimator

Data: X ∈ Hn, y ∈ Rn.

Estimator θ̂ =
(
X>X

)†
X>y , which solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 .

Excess prediction error: (Σ and λi determine importance of parameter directions)

R(θ̂) := E(x ,y)

[(
y − x>θ̂

)2
−
(
y − x>θ∗

)2
]

=
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.
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Interpolating Linear Regression

Overfitting regime

We consider situations where minβ ‖Xβ − y‖2 = 0.

Hence, y1 = x>1 θ̂, . . . , yn = x>n θ̂.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that λ1 ≥ λ2 ≥ · · · are the eigenvalues of Σ.
For k ≥ 0, if λk+1 > 0, define the effective ranks

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Lemma

1 ≤ rk(Σ) ≤ Rk(Σ) ≤ r2
k (Σ).
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Notions of Effective Rank

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Examples

1 r0(Ip) = R0(Ip) = p.

2 If rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =
1/p

∑p
i=1 λi

λ1
, S(Σ) =

(
1/p

∑p
i=1 λi

)2

1/p
∑p

i=1 λ
2
i

.

Both s and S lie between 1/p (λ2 ≈ 0) and 1 (λi all equal).
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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Benign Overfitting: A Characterization

Intuition

The mix of eigenvalues of Σ determines:
1 how the label noise is distributed in θ̂, and
2 how errors in θ̂ affect prediction accuracy.

To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

Overparameterization is essential for benign overfitting

Number of non-zero eigenvalues: large compared to n,
Their sum: small compared to n,
Number of ‘small’ eigenvalues: large compared to n,
Small eigenvalues: roughly equal (but they can be more assymmetric if
there are many more than n of them).
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Benign Overfitting: Proof Ideas

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x>θ∗ and y − x>θ∗)

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).
2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector ε by y = Xθ∗ + ε.

Estimator: θ̂ = (X>X )†X>y = (X>X )†X>(Xθ∗ + ε),

Excess risk: R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
= θ∗>

(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗

+ σ2tr

((
X>X

)†
Σ

)
.

14 / 1



Benign Overfitting: Proof Ideas

Standard normals

tr

((
X>X

)†
Σ

)
= tr

(
Σ1/2X>

(
XX>

)−2
XΣ1/2

)
=
∞∑
i=1

λ2
i z
>
i A−2zi

=
∞∑
i=1

λ2
i z
>
i A−2
−i zi

(1 + λiz>i A−1
−i zi )

2
,

where zi = Xvi/
√
λi for Σ =

∑
j λjvjv

>
j , and

A =
∞∑
i=1

λiziz
>
i , A−i =

∑
j 6=i

λjzjz
>
j .

Now zi ∼ N (0, In) and zi and A−i are independent.
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Benign Overfitting: Proof Ideas

Concentration

If rk(Σ) ≥ bn, then

1

c
λk+1rk(Σ) ≤ µn (A) ≤ µk+1(A) ≤ cλk+1rk(Σ),

where µ1(A) ≥ · · · ≥ µn(A) are the eigenvalues of A =
∑

i λiziz
>
i .

Split the trace into “heavy” directions, which cost 1/n each, and
“light” directions, which cost n/Rk∗(Σ).
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Benign Overfitting: Proof Ideas

Lower bound

The excess expected loss is at least as big as the same trace term,

tr
((

X>X
)†

Σ
)

.

When A and A−i are concentrated, the same split gives a lower bound
within a constant factor of the upper bound.

And otherwise, the excess expected loss is at least a constant.
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Benign Overfitting: A Characterization

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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What kinds of eigenvalues?

We say Σ is asymptotically benign if

lim
n→∞

(
‖Σ‖

√
r0(Σ)

n
+

k∗n
n

+
n

Rk∗n (Σ)

)
= 0,

where k∗n = min {k ≥ 0 : rk(Σ) ≥ bn}.

Example

If λi = i−α ln−β(i + 1), then Σ is benign iff α = 1 and β > 1.

The λi must be almost diverging!!?!?
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What kinds of eigenvalues?

Example: Finite dimension, plus isotropic noise

If

λk,n =

{
e−k + εn if k ≤ pn,

0 otherwise,

then Σn is benign iff

pn = ω(n),

εnpn = o(n) and εnpn = ω(ne−n). (n ≥ 40 =⇒ ne−n < 2−52)

Furthermore, for pn = Ω(n) and εnpn = ω(ne−n),

R(θ̂) = O

(
εnpn
n

+ max

{
1

n
,
n

pn

})
.

Universal phenomenon: fast converging λi , pn � n, noise in all directions.
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Implications for deep learning

Neural networks versus linear prediction

Neural networks with

width large compared to sample size,

suitable random initialization,

gradient descent with small step-size,

can be accurately approximated by linear functions in a certain randomly
chosen Hilbert space.

(Li and Liang, 2018), (Du, Poczós, Zhai, Singh, 2018), (Du, Lee, Li, Wang, Zhai, 2018), (Arora, Du, Hu, Li, Wang, 2019).

But what can we say about realistic deep network architectures?

It seems unlikely that random features is the whole story.
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Implications for adversarial examples

Label noise appears in θ̂

We can find a unit norm ∆ ∆∝X>(XX>)−1ε

such that perturbing an input x by ∆ changes the output enormously:
even if ∆>θ∗ = 0,∥∥∥(x + ∆)>θ̂ − x>θ̂

∥∥∥2
≥ σ√

λk∗+1

≥
√

n

tr(Σ)
σ.

Benign overfitting leads to huge sensitivity.
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Interpolating prediction

Can we extend these results to interpolating deep networks?

Beyond linear combinations of random features?
Benign overfitting with these nonlinear functions?
What is the analog of the minimum norm linear prediction rule?
What role does the optimization method play?
Implications for regularization methods?
Implications for robustness?
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Benign Overfitting in Linear Regression

Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict
well: The noise is hidden in many unimportant directions.

Relies on overparameterization
... and lots of unimportant parameters

But it leads to huge sensitivity to (adversarial) perturbations.
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