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What is Generalization?

log(1+ 2+ 3) = log(1) + log(2) + log(3)

log(1 + 1.5 +5) = log(1) + log(1.5) + log(5)
log(2 + 2) = log(2) + log(2)

log(1 + 1.25 +9) = log(1) + log(1.25) + log(9)
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Statistical Learning Theory

Aim: Predict an outcome y from some set ) of possible outcomes, on
the basis of some observation x from a feature space X.

Use data set of n pairs

S={(x,y1),-- -, (Xn, ¥n)}

to choose a function f : X — ) so that, for subsequent (x, y) pairs, f(x)
is a good prediction of y.
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Formulations of Prediction Problems

To define the notion of a ‘good prediction,’ we can define a loss function
0:YxY—R
£(9,y) is cost of predicting y when the outcome is y.

Aim: ((f(x),y) small.
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Formulations of Prediction Problems

Example

In pattern classification problems, the aim is to classify a pattern x into
one of a finite number of classes (that is, the label space ) is finite). If
all mistakes are equally bad, we could define

1 ify#y,
0 otherwise.

Uy,y) =Wy #y}= {

Example
In a regression problem, with ) = R, we might choose the quadratic loss
function, £(9,y) = (y — y)%.
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Probabilistic Assumptions

Assume:
» There is a probability distribution P on X' x ),

» The pairs (X1, Y1),...,(Xs, Ya), (X, Y) are chosen independently
according to P

The aim is to choose f with small risk:
L(f) = EL(f(X),Y).

For instance, in the pattern classification example, this is the
misclassification probability.

L(F) = Lu(F) = EHF(X) # Y} = Pr(F(X) £ V).
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Why not estimate the underlying distribution P (or Pyx) first?

This is in general a harder problem than prediction.
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Key difficulty: our goals are in terms of unknown quantities related to
unknown P. Have to use empirical data instead. Purview of statistics.

For instance, we can calculate the empirical loss of f : X — Y

01 = 7 3" (V. F(X)
i=1
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The function x — E,(x) = ﬁ,(x; X1, Y1,...,Xn, Yy,) is random, since it
depends on the random data § = (X1, Y1,..., X,, Ys). Thus, the risk

L(F) = E [((H(X), V)IS]

—E {e(?n(x;xl, i, X, o), Y)|3}

is a random variable. We might aim for EL(f,) small, or L(f,) small with
high probability (over the training data).
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Quiz: what is random here?

o~ N

Z(f) for a given fixed f

sH)

—~)
sh)

(a)

L(f)
L(f) for a given fixed f

sh)
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Theoretical analysis of performance is typically easier if f,, has closed form
(in terms of the training data).

E.g. ordinary least squares F,,(x) =x"(XTX)"IXTY.
Unfortunately, most ML and many statistical procedures are not explicitly
defined but arise as

» solutions to an optimization objective (e.g. logistic regression)

» as an iterative procedure without an immediately obvious objective
function (e.g. AdaBoost, Random Forests, etc)
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The Gold Standard

Within the framework we set up, the smallest expected loss is achieved
by the Bayes optimal function

f*=arg mfin L(f)

where the minimization is over all (measurable) prediction rules
f: X —=JY.

The value of the lowest expected loss is called the Bayes error:
L(f*) = ir}f L(f)

Of course, we cannot calculate any of these quantities since P is
unknown.
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Bayes Optimal Function

Bayes optimal function f* takes on the following forms in these two
particular cases:

» Binary classification (Y = {0,1}) with the indicator loss:

*(x) = Hn(x) > 1/2}, where n(x)=E[Y|X = x]

*(x) =n(x), where n(x)=E[Y|X =x]
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The big question: is there a way to construct a learning algorithm with a
guarantee that

~

L(fa) — L(F7)

is small for large enough sample size n?
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Consistency

An algorithm that ensures

lim L(f,,) = L(f*)  almost surely

n— o0

is called universally consistent. Consistency ensures that our algorithm is
approaching the best possible prediction performance as the sample size
increases.

The good news: consistency is possible to achieve.

» easy if X is a finite or countable set

> not too hard if X is infinite, and the underlying relationship between
x and y is “continuous”

17 /174



The bad news...

~

In general, we cannot prove anything quantitative about L(f,) — L(f*),
unless we make further assumptions (incorporate prior knowledge).
“No Free Lunch” Theorems: unless we posit assumptions,

» For any algorithm E any n and any € > 0, there exists a
distribution P such that L(f*) =0 and

— €

EL(f,) >

N~

» For any algorithm ?,, and any sequence a, that converges to 0, there
exists a probability distribution P such that L(f*) = 0 and for all n

EL(f) > an
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is this really “bad news"?

Not really. We always have some domain knowledge.

Two ways of incorporating prior knowledge:

» Direct way: assumptions on distribution P (e.g. margin, smoothness
of regression function, etc)

» Indirect way: redefine the goal to perform as well as a reference set
F of predictors:

L(f,) — inf L(f)

F encapsulates our inductive bias.

We often make both of these assumptions.
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Perceptron
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Perceptron

(x1,%1)s -5 (xToy1) € X x{£1l} (T may or may not be same as n)
Maintain a hypothesis w; € R? (initialize w; = 0).

On round t,
» Consider (x, yt)
» Form prediction y; = sign({w;, x;))

> If y; # y;, update
Wil = We + YiXe

else
Wiyl = We
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Perceptron

Tt
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For simplicity, suppose all data are in a unit ball, ||x|| < 1.
Margin with respect to (x1,)1),. .., (xT,y7):

min - (y; (w,x;)),

¥ = max
lwll=1 i€[T]

where (a); = max{0, a}.

Theorem (Novikoff '62). |

Perceptron makes at most 1/ mistakes (and corrections) on any
sequence of examples with margin ~.
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Proof: Let m be the number of mistakes after T iterations. If a mistake
is made on round t,

IWessll* = llwe + yexell* < [[well® + 2ye (we, xe) + 1< we* + 1.

Hence, ,
[wr||” < m.

For optimal hyperplane w*
Y S (W yexe) = (W Wepr — we)
Hence (adding and canceling),

my < (w*,wr) < |lwrl| < Vm.
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Recap

For any T and (x1,y1),.-., (xT,y7),

where v = y(x1.7, y1.7) is margin and D = D(x1.7, y1.7) = maxe ||x¢]|.

Let w* denote the max margin hyperplane, |

w*|| = 1.
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Consequence for i.i.d. data ()

Do one pass on i.i.d. sequence (X1, Y1),...,(Xn, Y,) (ie. T =n).

Claim: expected indicator loss of randomly picked function x — (w,, x)

(7 ~ unif(1,...,n)) is at most
1 2
n 72
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Proof: Take expectation on both sides:

. %il{mthr) go}l <E [Dz}

t=1 my?
Left-hand side can be written as (recall notation S = (Xj, Y;)"_;)
E-EsHY: (wr, X:) < 0}
Since w. is a function of Xy.,_1, Y1.-_1, above is
EsE-Ex,y{Y (wr, X) <0} = EsE; Ly (w;)
Claim follows.

NB: To ensure E[D?/4?] is not infinite, we assume margin 7 in P.
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Consequence for i.i.d. data (Il)

Now, rather than doing one pass, cycle through data
(Xla Y1)7 CE) (Xm Yn)
repeatedly until no more mistakes (i.e. T < n x (D?/+?)).

Then final hyperplane of Perceptron separates the data perfectly, i.e.
finds minimum Ly (wr) = 0 for

Lo(w) = %Z I{Y; (w, X;) <0}.

i=1

Empirical Risk Minimization with finite-time convergence. Can we say
anything about future performance of w7
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Consequence for i.i.d. data (Il)

Claim:

IN

1 D2
Ely(wr) < = E [72}
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Proof: Shortcuts: z = (x,y) and £(w,z) = {y (w,x) < 0}. Then

n+1
EsEzl(wr,Z) =Es 7, — ZE(W Z:)

where w(=1) is Perceptron’s final hyperplane after cycling through data
Zl) LRRE Zt—17 Zt+17 AR Zn+1-

That is, leave-one-out is unbiased estimate of expected loss.

Now consider cycling Perceptron on Zi,..., Z,+1 until no more errors.
Let i1, ..., in be indices on which Perceptron errs in any of the cycles.
We know m < D?/~2. However, if index t ¢ {i1,...,in}, then whether
or not Z; was included does not matter, and Z; is correctly classified by
w(=8)_ Claim follows.
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A few remarks

> Bayes error Ly, (f*) = 0 since we assume margin in the distribution
P (and, hence, in the data).

» Our assumption on P is not about its parametric or nonparametric
form, but rather on what happens at the boundary.

» Curiously, we beat the CLT rate of 1/y/n.
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Overparametrization and overfitting

The last lecture will discuss overparametrization and overfitting.

» dimension d never appears in the mistake bound of Perceptron.
Hence, we can even take d = c.

» Perceptron is 1-layer neural network (no hidden layer) with d
neurons.

» For d > n, any n points in general position can be separated (zero
empirical error).

Conclusions:

» More parameters than data does not necessarily contradict good
prediction performance ( “generalization”).

» Perfectly fitting the data does not necessarily contradict good
generalization (particularly with no noise).

» Complexity is subtle (e.g. number of parameters vs margin)

» .. however, margin is a strong assumption (more than just no noise)
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Relaxing the assumptions

We proved
ELm(WT) - Lm(f*) < O(l/n)

under the assumption that P is linearly separable with margin ~.

The assumption on the probability distribution implies that the Bayes
classifier is a linear separator (“realizable” setup).

We may relax the margin assumption, yet still hope to do well with linear
separators. That is, we would aim to minimize

ELm(WT) - L01(W*)

hoping that
Loy(w™) — Loy ()

is small, where w* is the best hyperplane classifier with respect to L.

35 /174



More generally, we will work with some class of functions F that we hope
captures well the relationship between X and Y. The choice of F gives
rise to a bias-variance decomposition.

Let fr € argmin L(f) be the function in F with smallest expected loss.
feF
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Bias-Variance Tradeoff

L(fa) = L(F*) = L(R) = nf L(F) +  inf L(F) ~ L(F")

fEF
—_— —_—
Estimation Error Approximation Error
I f
Q- ---------- (&]

Clearly, the two terms are at odds with each other:

» Making F larger means smaller approximation error but (as we will
see) larger estimation error

» Taking a larger sample n means smaller estimation error and has no
effect on the approximation error.

» Thus, it makes sense to trade off size of F and n (Structural Risk
Minimization, or Method of Sieves, or Model Selection).
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Bias-Variance Tradeoff

In simple problems (e.g. linearly separable data) we might get away with
having no bias-variance decomposition (e.g. as was done in the
Perceptron case).

However, for more complex problems, our assumptions on P often imply
that class containing ™ is too large and the estimation error cannot be
controlled. In such cases, we need to produce a “biased” solution in
hopes of reducing variance.

Finally, the bias-variance tradeoff need not be in the form we just
presented. We will consider a different decomposition in the last lecture.
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Consider the performance of empirical risk minimization:

Choose )?,, € F to minimize Z(f) where L is the empirical risk,
L(f) = Pae(f( Ze

For pattern classification, this is the proportion of training examples
misclassified.

How does the excess risk, L(f,) — L(fr) behave? We can write

o~ o~

L(R) — L(fr) = [L(R) — L(R)] + [L(R) = L) + [L(F) = L(F)]

Therefore,

o~

EL(F) - L(fr) < E [L(F) - L(F,)]

because second term is nonpositive and third is zero in expectation.
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~

The term L(f,) — Z(i/‘,\,) is not necessarily zero in expectation (check!). An
easy upper bound is

and this motivates the study of uniform laws of large numbers.

Roadmap: study the sup to
» understand when learning is possible,
» understand implications for sample complexity,

» design new algorithms (regularizer arises from upper bound on sup)
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Loss Class

In what follows, we will work with a function class G on Z, and for the
learning application, G = ¢ o F:

G={(x,y) = Uf(x),y): f e F}

and Z =& x ).
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Empirical Process Viewpoint

e all functions
g
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Uniform Laws of Large Numbers

For a class G of functions g : Z — [0, 1], suppose that Z3,...,Z,,Z are
i.i.d. on Z, and consider

1 n
U=sup|Eg(Z)—~ ) g(Z)| =sup|Pg— Pug|=:||P—P,llg-
g€g n ; gcg m

If U converges to 0, this is called a uniform law of large numbers.
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Glivenko-Cantelli Classes

G is a Glivenko-Cantelli class for P if |P, — P||g = 0.

» P is a distribution on Z,

» 7i,...,Z, are drawn i.i.d. from P,

» P, is the empirical distribution (mass 1/n at each of Z3,...,2,),
>

G is a set of measurable real-valued functions on Z with finite
expectation under P,

» P, — P is an empirical process, that is, a stochastic process
indexed by a class of functions G, and

v

[P = Plig = supgeg |[Png — Pel.
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Glivenko-Cantelli Classes
Why ‘Glivenko-Cantelli’? An example of a uniform law of large numbers.

Theorem (Glivenko-Cantell). |

IFa = Fllo = 0.

Here, F is a cumulative distribution function, F, is the empirical
cumulative distribution function,

n

Fa(t) = %ZI{Z,- < t},

i=1
where 71, ..., Z, are i.i.d. with distribution F, and
[F = Glloo = sup, |F(t) — G(2)].

Theorem (GIivenko—CanteIIi).}

|P,— Pllg 30, for G={z—1{z<0}:0 R}
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Glivenko-Cantelli Classes

Not all G are Glivenko-Cantelli classes. For instance,
G={{zeS}:SCR,|S| < x}.

Then for a continuous distribution P, Pg = 0 for any g € G, but

Supgeg Png =1 for all n. So although P,g = Pg for all g € G, this

convergence is not uniform over G. G is too large.

In general, how do we decide whether G is “too large”?
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Rademacher Averages

Given a set H C [—1,1]", measure its “size” by average length of
projection onto random direction.

Rademacher process indexed by vector h € H:

= 1
Rn(h) = = (e, h
(h) = (e.h
where € = (€1, ..., €,) is vector of i.i.d. Rademacher random variables

(symmetric £1).

Rademacher averages: expected maximum of the process

o)

n

E. l/i;,, = [E sup

H heH
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Examples

If H = {ho},
E|R. = o2,
= 0()
If H=1{-1,1}",
E(ﬁn —1.
H
If v+ c{-1,1}" C H, then
E‘ﬁn >c— o1
, =2 c—o)

How about H = {—1,1} where 1 is a vector of 1's?
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Examples

If H is finite,
<ec log |H|

EH/?H
H n

for some constant c.

This bound can be loose, as it does not take into account
“overlaps” /correlations between vectors.
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Examples

Let Bg be a unit ball in R":
n l/p
By ={xeR": x|, <1}, |x|,= <Z |x,-|P> :
i=1

For H=Bj

1 1
—E max | (e, =—-El|¢|, =
JE max |(c.8)| = [E|cl,

1
Jn

On the other hand, Rademacher averages for Bf are %
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Rademacher Averages

What do these Rademacher averages have to do with our problem of
bounding uniform deviations?

Suppose we take

H=6(Z1) = {(g(41),..-,8(Zn)) g € G} CR”

g1
g2

Z1 Z2 Zn
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Rademacher Averages

Then, conditionally on Z7,

E. ||R,

H geg n

is a data-dependent quantity (hence the “"hat") that measures complexity
of G projected onto data.

Also define the Rademacher process R, (without the “hat")

R(g) = + > cia(Z),
i=1

and Rademacher complexity of G as

~

E[[Rullg = EzEc ||R,

g(27)
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Uniform Laws and Rademacher Complexity

We'll look at a proof of a uniform law of large numbers that involves two
steps:

1. Symmetrization, which bounds E||P — P,||g in terms of the
Rademacher complexity of F, E||R,|lg.

2. Both ||P — P,|lg and ||R,||g are concentrated about their
expectation.
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Uniform Laws and Rademacher Complexity

~— Theorem.

For any G,
EH'D_ 'Dan < 2E||Rn||g

If G € [0,1]%, then

1 log 2
SEIRlg — /o= <E|IP ~ Pyllg < 2E||Rylg,

and, with probability at least 1 — 2 exp(—2¢2n),
E[|P — Pnllg — € < ||P — Pallg <E||P — Pyllg +e.

Thus, E||R,||g — 0 iff ||[P — P,|lg = 0.

J

That is, the supremum of the empirical process P — P, is concentrated
about its expectation, and its expectation is about the same as the
expected sup of the Rademacher process R,.
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Uniform Laws and Rademacher Complexity

The first step is to symmetrize by replacing Pg by Plg = 1 1y rie(Z).
In particular, we have

1 n
E|[P — Pyllg = Esup |E lZ( (Z) —8(2))| 2
8€g ni=
<EE | sup Z(g )|zt
1 n
=Esup | > (g(Z) —g(Zi))‘ =E[|P, = Pallg-
86 |
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Uniform Laws and Rademacher Complexity

Another symmetrization: for any ¢; € {£1},

n

LS (6(Z) - 8(2)

]EHP;; — Pallg :]Eszg
g i=1

n

LS a(e(2) - e(2)

n <
i=1

= E sup
geg

)

This follows from the fact that Z; and Z/ are i.i.d., and so the
distribution of the supremum is unchanged when we swap them.

And so in particular the expectation of the supremum is unchanged.
And since this is true for any ¢;, we can take the expectation over any
random choice of the ¢;. We'll pick them independently and uniformly.
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Uniform Laws and Rademacher Complexity

1 n
Esup - 6,(g(Z,.’)—g(Z,))
g€g n i=1
R 1 o
<Esup|= ) eg(Z)| +sup|= ) eig(Z)
gcg |52 gc n;
1
= 2K sup Z €ig(Z))| = 2E|Ra|lg,
geg i—1

Rademacher complexity

where R, is the Rademacher process R,(g) = (1/n) >""_; €ig(Z;).
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Uniform Laws and Rademacher Complexity

The second inequality (desymmetrization) follows from:

n

1 — 1
EllRnllg <E 2 (8(Zi) — Eg(Z))|| +E . > €iEg(Z)
i=1 G i=1 g
1o , 1o
<E|- i (g(Z) —g(Z))|| +IPIGE ;Zﬂ
i=1 G i=1
1 n
=E|-~ (g(Z) —Eg(Z) +Eg(Z]) — g(Z)))
i=1 g
FIPIEES
¢ n i=1 i

2log?2
< 2E||P, — Plly + 1/ —2=.
n
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Uniform Laws and Rademacher Complexity

~— Theorem.

For any G,
EH'D_ 'Dan < 2E||Rn||g

If G € [0,1]%, then

1 log 2
SEIRlg — /o= <E|IP ~ Pyllg < 2E||Rylg,

and, with probability at least 1 — 2 exp(—2¢2n),
E[|P — Pnllg — € < ||P — Pallg <E||P — Pyllg +e.

Thus, E||R,||g — 0 iff ||[P — P,|lg = 0.

J

That is, the supremum of the empirical process P — P, is concentrated
about its expectation, and its expectation is about the same as the
expected sup of the Rademacher process R,.
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Back to the prediction problem

Recall: for prediction problem, we have G = ¢ o F for some loss function
¢ and a set of functions F.

We found that E ||P — P,||,, » can be related to E||R,|[,, . Question:
can we get E ||R,|| » instead?

For classification, this is easy. Suppose F C {+1}¥, Y € {1}, and
Uy,y) =Wy #y'} =(1—yy')/2. Then

o> et f(xf))‘

E[|Rnl| g r :Egg

n n

% > et % > —eiyif(x)
i1

i=1

1 1
<0 <ﬁ) + SElRall 5

Other loss functions?
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Rademacher Complexity: Structural Results

~—{ Theorem. N

Subsets F C G implies ||Rn|l7 < ||Rnllg-
Scaling |[Raller = [€ll| Rnll 7.
Plus Constant For |g(X)| <1,

[E[|Rall7+g — EllRall 7| < /2log2/n.
Convex Hull ||Ryllcor = ||Rnl| 7, where coF is the convex hull
of F.

Contraction If £: R x R — [—1,1] has § — £(y,y) 1-Lipschitz
for all y, then for £ o F = {(x, y) — £(f(x),y)}
E[|Ralleor < 2E[|Rnll7 + C/ﬁ
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Deep Networks

Deep compositions of nonlinear functions

h=hnohy 10---0h

hi : x = r(Wix)

r(v); = max{0, v;}
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Rademacher Complexity of Sigmoid Networks

~{ Theorem. \

Consider the following class Fpg 4 of two-layer neural networks on
RY:

K
Fed = {x — ZW,‘U (v,-TX) wl < B, ||villi £ B, k> 1} ,

i=1

where B > 0 and the nonlinear function o : R — R satisfies the
Lipschitz condition, |o(a) —o(b)| < |a—b|, and o(0) = 0. Suppose
that the distribution is such that || X||o < 1 a.s. Then

2log?2
Rl , < 2872822,

where d is the dimension of the input space, X = RY.
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Rademacher Complexity of Sigmoid Networks: Proof

Define G ={(x1,....,xa) = x;: 1 <j<d},
d
Vg = {Xl—> vix v = Z|v,-| < B}
i=1
= Bco(GU-G),

k
with co(F) = {Za;f,- : k217a,-20,|a||1—1,f,-€.7:}.

i=1

k K
Then FBd = {x — Z wio(vi(x)) | k > 1, Z w; < B, v e VB}

i=1 i=1
= Bco(ocoVpU—00Vg).
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Rademacher Complexity of Sigmoid Networks: Proof

E|Rall 75,4 = EllRnllBeo(ooveu—cove)
= B]E”RHHCO(G'OVBU—UOVB)
= BE|Rulloovsu—covs
< BE||Rulloovs + BE[|Rnl|—cove
= 2BEHRn||UOVB
< 2BE|[|Rn[[ve
= 2BE| Rnllgeo(gu-g)
= 2B%E||Rullgu-g
2log (2d)

<2B?y /228
n
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Rademacher Complexity of Sigmoid Networks: Proof

The final step involved the following result.

~{Lemma. N

For f € F satisfying |f(x)| <1,

2log(2|F (X7
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Rademacher Complexity of ReLU Networks

Using the positive homogeneity property of the ReLU nonlinearity (that
is, for all @ > 0 and x € R, o(ax) = ao(x)) gives a simple argument to
bound the Rademacher complexity.

~{ Theorem. N

For a training set (X1, Y1),..., (Xs, Ya) € X x{£1} with || X;|| <1

a.s., (QB)L
E HRHH}'F,B S \/ﬁ )

where f € F¢ g is an L-layer network of the form
]:F’B = WLO'(WL_l oo 'O'(WlX) e ),

o is 1-Lipschitz, positive homogeneous (that is, for all & > 0
and x € R, o(ax) = ao(x)), and applied componentwise, and
[IWillr < B. (W, is a row vector.)
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RelLU Networks: Proof

(Write E, as the conditional expectation given the data.)

~— Lemma. \

n

> eio(WF(X:))

=1

n

> eif(X)

=1

1
E. sup - < 2BE, sup — .
feF IWle< 1 el

2

2

Iterating this and using Jensen's inequality proves the theorem.
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RelLU Networks: Proof

For WT = (w; --- wg), we use positive homogeneity:

=3 (St 1) )

Jj=1

2

z”: eio(WF(x))
i=1
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RelLU Networks: Proof

Wil ,5}”””“2 <Z<H wl )>>

:HW;H Llja H1<BQZa (Z K f(X,))>

i=1

= B? sup <Ze,~a (WTf(X,'))> ,

Iwll=1 \ 7=

then apply (Contraction) and Cauchy-Schwartz inequalities.
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Rademacher Complexity and Covering Numbers

~—{ Definition. \

An e-cover of a subset T of a metric space (S, d) is a set TcT
such that for each t € T thereis a £ € T such that d(t,f) < e.
The e-covering number of T is

N(e, T,d) = min{|T|: T is an e-cover of T}.

\ J

Intuition: A k-dimensional set T has N (e, T, k) = O(1/).
Example: ([0, 1]%, [.).
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Rademacher Complexity and Covering Numbers

~— Theorem. N

For any F and any Xi,..., X,

~ < JInN (e, F(X), ¢
EfHR"”]:(XI”) S C/ \/ ( ( 1) 2) d€.
0

n

and

\/In/\f(a, F(XP), £2) '

]E€||R,,||]:(X1,.) > n

sup «
clogn 4>0
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Covering numbers and smoothly parameterized functions

~{ Lemma. N

Let F be a parameterized class of functions,
F ={f(6,-):0 € ©}.

Let || - |lo be a norm on © and let || - || # be a norm on F. Suppose
that the mapping 6 — f(6,-) is L-Lipschitz, that is,

1£(0,-) = £(0', )ll= < L|O = 'e-

Then N(€,]:, || . ||]-') < N(G/Laev || : ||@)
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Covering numbers and smoothly parameterized functions

A Lipschitz parameterization allows us to translate a cover of the
parameter space into a cover of the function space.

Example: If F is smoothly parameterized by (a compact set of) k
parameters, then N (e, F) = O(1/¢").
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Recap

e all functions
g
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Recap

E[P — Pyl < E||Rull £

Advantage of dealing with Rademacher process:
» often easier to analyze

» can work conditionally on the data

Example: F = {x — (w,x) : |

n

% ZG,’ <W,X,'>

i=1

3

E. l?,, =E. sup

7 lwl[<1

=E. sup
lwll<1

1
(w350

, 1||Xl|| «/ r(XXT)

which is equal to

E €iX;
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Classification and Rademacher Complexity

Recall:

For F C {+1}¥, Y e {1}, and U(y,y) =Wy #y'} = (1 —yy')/2,

1 1
EllRolor < SE IR +0(2).

How do we get a handle on Rademacher complexity of a set F of
classifiers? Recall that we are looking at “size” of F projected onto data:

FO) = {(F(x), ..., F(xn)) s f € F} C {~1,1}"
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Controlling Rademacher Complexity: Growth Function

Example: For the class of step functions, F = {x — {x < a} : o € R},
the set of restrictions,

F(x)=A{(f(x1),...,f(xy)): f € F}

is always small: |F(x)| < n+ 1. So E||R,||r < /22l

n

Example: If F is parameterized by k bits,

F={xwf(x,0):0 € {0,1}*} for some f : X x {0,1}* — [0, 1],
[F O < 25,

2(k+1)log2

n

E[[Rall 7 <
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Growth Function

Definition.

For a class F C {0,1}, the growth function is

Nz(n) = max{|F(x{")| : x1,...,xn € X}.

>[R[l < /2600, IE||P—P,,||;:0( Ig(nfw)

> Mx(n) < |F|, limp oo Nr(n) = [Fl.
» Mx(n) < 2" (But then this gives no useful bound on E||R,||#.)
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Vapnik-Chervonenkis Dimension

~—{ Definition. N

A class F C {0,1}* shatters {xi,...,xs} C X means that
| F(x7)| = 29. The Vapnik-Chervonenkis dimension of F is

dvc(F) = max{d : some xi,...,xq € X is shattered by F}
max {d : Mx(d) =29} .
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Vapnik-Chervonenkis Dimension: “Sauer’'s Lemma”

,—(Theorem (Vapnik-Chervonen kis).} |

dvc(F) < d implies

Mr(n) < Z:; ('I’)

. d
If n> d, the latter sum is no more than ()",

So the VC-dimension d is a single integer summary of the growth

function:
=2" ifn<d
n <d,
#(n) {g (e/d)? n? i n>d.
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Vapnik-Chervonenkis Dimension: “Sauer’'s Lemma”

Thus, for dyc(F) < d and n > d,

dlog(n/d
sup B[P = Pnllz = O( g,(7/)>

And there is a matching lower bound.

Uniform convergence uniformly over probability distributions is equivalent
to finiteness of the VC-dimension.
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VC-dimension Bounds for Parameterized Families

Consider a parameterized class of binary-valued functions,
F={xr f(x,0):0 R},
where f : X x RP — {£1}.

Suppose that for each x, 6 — f(x,0) can be computed using no more
than t operations of the following kinds:

1. arithmetic (+, —, X, /),

2. comparisons (>, =, <),

3. output 1.

Theorem (Goldberg and Jerrum).}

dvc(F) < 4p(t+2).
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VC-Dimension of Neural Networks

~{ Theorem. N

Consider the class F of {—1,1}-valued functions computed by a
network with L layers, p parameters, and k computation units with
the following nonlinearities:

1. Piecewise constant (linear threshold units): y
VCdim(F) = © (p).
(Baum and Haussler, 1989)

2. Piecewise linear (ReLUs): VCdim(F) = © (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3. Piecewise polynomial: VCdim(F) = O (pL?).
(B., Maiorov, Meir, 1998)

4. Sigmoid: VCdim(F) = O (P?k?).

(Karpinsky and Maclntyre, 1994)
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Some Experimental Observations

Bagging

Boosting
20- -
z15 :
\‘5/ : H
g10: :
o E 7
SL« 5
10 100 10 100 1000

# classifiers

(Schapire, Freund, B, Lee, 1997)
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Some Experimental Observations

Bagging
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Some Experimental Observations

monly believed to be accurate. However, the stipulation
that the number of parameters must be less than the num-
ber of examples is typically believed to be true for common
datasets. The results here indicate that this is not always the
case.

Test Error %
28 8 3
—{I=

8 10 12
Number of Hidden Nodes

Figure 3. Face recognition example: the best generalizing net-
work has 364 times more parameters than training points (18210
parameters).
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Some Experimental Observations

MNIST
01
— Training
0.09 —e—Test (at convergence)
——Test (early stopping)
0.08

(at convergence)
(early stopping)

4 8 16 32 64 128 256 512 1K 2K 4K
H

(Neyshabur, Tomioka, Srebro, 2015)

8 16 32 64 128 256 512 1K 2K 4K
H
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Large-Margin Classifiers

vV v v v Y

Consider a real-valued function f : X — R used for classification.
The prediction on x € X is sign(f(x)) € {—1,1}.

If yf(x) > 0 then f classifies x correctly.

We call yf(x) the margin of f on x. (c.f. the perceptron)

We can view a larger margin as a more confident correct
classification.

Minimizing a continuous loss, such as

STF(X) =Y or Zexp —~Yif(X)),

i=1
encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.
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Recall

Contraction property:

If £is y — £(9,y) 1-Lipschitz for all y and |¢] < 1, then
E|lRollior < 2|l + ¢/

Unfortunately, classification loss is not Lipschitz. By writing classification
loss as (1 — yy’)/2, we did show that

EHRnHEosign(}') < 2E||Rn||sign(]-') + C/\/E

but we want E|| R, =.
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Rademacher Complexity for Lipschitz Loss

Consider the 1/~-Lipschitz surrogate loss

1 if « <0,
dla)y=¢1l—a/y fO<a<y,
0 if a > 1.
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Rademacher Complexity for Lipschitz Loss

Large margin loss is an upper bound and classification loss is a lower
bound:

H{YF(X) <0} < o(YF(X)) < HYF(X) <7}

So if we can relate the Lipschitz risk Po(Yf(X)) to the Lipschitz
empirical risk P,¢(Yf(X)), we have a large margin bound:

PI{YF(X) < 0} < Po(YF(X)) cf. Pad(YF(X)) < Pl{YF(X) < 7).
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Rademacher Complexity for Lipschitz Loss

With high probability, for all f € F,
Lo(f) = PI{YF(X) <0}

< Po(Yf(X))

)

< Po(YF(X)) + §E|\Rnuf +0(1/v/n)

< PAYAX) <7} + ZE|[Rll= + O(1/v)

Notice that we've turned a classification problem into a regression
problem.

The VC-dimension (which captures arbitrarily fine-grained properties of
the function class) is no longer important.
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Example: Linear Classifiers

Let F = {x — (w,x) : [|[w|] < 1}. Then, since E||R,| » < n~%/2,

1¢ 11
La(f) S - gl{v,-f(x,-) N

Compare to Perceptron.
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Risk versus surrogate risk

In general, these margin bounds are upper bounds only.

But for any surrogate loss ¢, we can define a transform 1) that gives a
tight relationship between the excess 0 — 1 risk (over the Bayes risk) to
the excess ¢-risk:

~{ Theorem. \

L. Forany Pand f, ¢ (Lu(f)— Ly,) < Ly(f) — L.
2. For |X| >2,e>0and 6 €[0,1], there is a P and an f with

Lu(f) — L5 =0
P(0) < Lo(F) = Lg < 9(0) + e
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Generalization: Margins and Size of Parameters

» A classification problem becomes a regression problem if we use a
loss function that doesn't vary too quickly.

» For regression, the complexity of a neural network is controlled by
the size of the parameters, and can be independent of the number
of parameters.

» We have a tradeoff between the fit to the training data (margins)
and the complexity (size of parameters):

n

Pr(sign(F(X) # Y) < 5 0(Vif (X)) + po(7)

» Even if the training set is classified correctly, it might be worthwhile
to increase the complexity, to improve this loss function.
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In the next few sections, we show that
E [L(h) — L(7)]
can be small if the learning algorithm ?,, has certain properties.

Keep in mind that this is an interesting quantity for two reasons:

» it upper bounds the excess expected loss of ERM, as we showed
before.

» can be written as an a-posteriori bound
L(fa) < L(f) + ...

regardless of whether f, minimized empirical loss.
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Compression Set

Let us use the shortened notation for data: S = {Z;,...,Z,}, and let us
make the dependence of the algorithm ?,, on the training set explicit:

f, = f,[S]. As before, denote G = {(x, y) — £(f(x),y) : f € F}, and
write Z,(-) = £(F(-), ). Let us write g,[S](-) to emphasize the
dependence.

Suppose there exists a “compression function” C, which selects from any
dataset S of size n a subset of k examples Cx(S) C S such that

f[S] = A [C(S)]

That is, the learning algorithm produces the same function when given S
or its subset Cy(S).

One can keep in mind the example of support vectors in SVMs.
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.....

where S is the subset indexed by /.
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Since gx[S)] only depends on k out of n points, the empirical average is
“mostly out of sample”. Adding and subtracting loss functions for an
additional set of i.i.d. random variables W = {Z], ..., Z/} results in an
upper bound

= 1 ~ , (b—a)k
Ig{l,.m,i)}(,mgk {Egk[S,](Z) T h Z,EE:SI 8lsil(Z )} L —

where [a, b] is the range of functions in G and &’ is obtained from S by
replacing S; with the corresponding subset W;.
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For each fixed /, the random variable
~ 1 ~
Eg[sil(2) -~ > alsiz)
Z'eS’

is zero mean with standard deviation O((b — a)/+/n). Hence, the
expected maximum over | with respect to S, W is at most

C\/(b — a)k log(en/k)

n

since log (}) < klog(en/k).
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Conclusion: compression-style argument limits the bias

E [L(h) -] <0 ( k'°g”> ,

n
which is non-vacuous if k = o(n/ log n).
Recall that this term was the upper bound (up to log) on expected excess

loss of ERM if class has VC dimension k. However, a possible equivalence
between compression and VC dimension is still being investigated.
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Example: Classification with Thresholds in 1D

> x=10,1], Y ={0,1}
> F={fp: fy(x)=1{x>0},0 €[0,1]}
> U(fy(x),y) = {fy(x) # y}

fn

o—o—0-8-0-0-0—ocof—o—

0 1

For any set of data (x1,y1),- .., (Xn, ¥n), the ERM solution 7. has the
property that the first occurrence x; on the left of the threshold has label
y; = 0, while first occurrence x, on the right — label y, = 1.

Enough to take k = 2 and define £,[S] = f[(x/,0), (x,, 1)].

114 /174



Further examples/observations:
> Compression of size d for hyperplanes (realizable case)
» Compression of size 1/~ for margin case

» Bernstein bound gives 1/n rate rather than 1/,/n rate on realizable
data (zero empirical error).
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Algorithmic Stability

Recall that compression was a way to upper bound E [L(ﬁ,) - Z(;/‘,\q)}
Algorithmic stability is another path to the same goal.

Compare:
» Compression: ﬁ depends only on a subset of k datapoints.

> Stability: f, does not depend on any of the datapoints too strongly.

As before, let's write shorthand g =¢of and g, =/ o )?,,
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Algorithmic Stability

We now write

Esl(f,) =Ez,..2.2{ &lZ,....Z)(2) }

Again, the meaning of g,[Z1, ..., Z,](Z): train on Zy,...,Z, and test on
Z.

On the other hand,
o 1<
EsL(f,) =Ez, ..z, { - ;gn[zla o Za)(Zh) }

:%ZJEzl,...,zn{ glZi. ... Z)(Z) }

= IEZl,...,Z,, { En[zlv BN} Zn](Zl) }

where the last step holds for symmetric algorithms (wrt permutation of
training data). Of course, instead of Z; we can take any Z;.
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Now comes the renaming trick. It takes a minute to get used to, if you
haven't seen it.

Note that Z3,...,Z,, Z are i.i.d. Hence,

~

EsL(fy) =Bz, . .z,z{ &lZ1,...,Z)(Z) }
=Kz, . z2.2{ 8lZ,2,...,2,)(Z1) }

Therefore,

E{LF) - L)} =Fz..z22{ &lZ 2. ZN2) - &2, - ZN(2) }
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Of course, we haven't really done much except re-writing expectation.
But the difference

&nlZ, 2o, ..., Z,)(Z1) — 8nl2a, - - ., Z0)(Z1)

has a “stability” interpretation. If it holds that the output of the
algorithm “does not change much” when one datapoint is replaced with

another, then the gap E {L(f,,) - Z(ﬁ,)} is small.

Moreover, since everything we've written is an equality, this stability is
equivalent to having small gap E {L(?,,) - Z(E)}

120 /174



NB: our aim of ensuring small E {L(?,,) - Z(E)} only makes sense if

Z(E,) is small (e.g. on average). That is, the analysis only makes sense
for those methods that explicitly or implicitly minimize empirical loss (or
a regularized variant of it).

It's not enough to be stable. Consider a learning mechanism that ignores
the data and outputs f, = fy, a constant function. Then

E {L()?n) - /L\(E,)} = 0 and the algorithm is very stable. However, it does
not do anything interesting.
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Uniform Stability

Rather than the average notion we just discussed, let's consider a much
stronger notion:

We say that algorithm is § uniformly stable if

Vieln,z, ...z 2z |8nlS(2) — B[S 1(2)| < B

.y
— /
where §"% ={z,...,z-1,2',zi11,. .., Zn}
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Uniform Stability

Clearly, for any realization of Z3,...,2,,Z,
EH[Z'/ 227 RN} Zn](Zl) - é\n[zl7 SERE) Zn](Zl) < ﬁ7

and so expected loss of a S-uniformly-stable ERM is (-close to its
empirical error (in expectation). See recent work by Feldman and
Vondrak for sharp high probability statements.

Of course, it is unclear at this point whether a -uniformly-stable ERM
(or near-ERM) exists.
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Kernel Ridge Regression

Consider .,
~ . 1 5
f, = argmin — (X)) =Y+ \|IF
gmin o ,-§=1( (Xi) —Yi) 1 1l%

in RKHS H corresponding to kernel K.

Assume K(x,x) < k2 for any x.

Kernel Ridge Regression is S-uniformly stable with 8 = O (%)
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Proof (stability of Kernel Ridge Regression)

To prove this, first recall the definition of a o-strongly convex function ¢
on convex domain W:

Vv €W, g(u) > o(v) + (Vo(v),u—v) + 2 [lu—vI.

Suppose ¢, ¢' are both o-strongly convex. Suppose w, w’ satisfy
Vo(w) =V¢'(w') =0. Then

! o !

¢(w') 2 o(w) + 5 [lw — 'l
and o ,
F(w) 2 (W) + 5w -]

As a trivial consequence,

alw—w'|? < [p(w') — &' ()] + [¢(w) — d(w)]
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Proof (stability of Kernel Ridge Regression)

Now take 1
o(f) = D (F0a) =yl + Al
ieS
and 1
¢'(F) ==Y (F(x) =yl + AIfllk
ieS’

where S and &’ differ in one element: (x;, y;) is replaced with (x/,y/).

Let 7/5\1, f,,/ be the minimizers of ¢, @', respectively. Then

~,

07 ~ o' () < - ((File) — 30 — (Fxt) — y1)?)

n

and

o~

S (7)—0(7) < 1 ((R04) ~ i) — () — )

NB: we have been operating with f as vectors. To be precise, one needs
to define the notion of strong convexity over H. Let us sweep it under
the rug and say that ¢, ¢’ are 2)\-strongly convex with respect to ||-||.
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Proof (stability of Kernel Ridge Regression)

2

Then 7/‘,\, — 7" is at most

n

-~

o (00 = 30 = () = 3 + () — 1 — (BL) — 1))

~

which is at most

1
—C

o7
2\n moon

oo
where C = 4(1+ ¢) if |Y;| < 1 and |f(x)| < c.
On the other hand, for any x

Fx) = {F, K < IFllic 1K = Il v/ (K Ko = (I llic VK (3 x) < w (Il

and so
1flloo < &Il
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Proof (stability of Kernel Ridge Regression)

Putting everything together,

2 N wC N
f=holl, < 2/\n ~hll = 2ra lif =l
Hence,
fo— F! KS%C f—f wg%cn
To finish the claim,
(ROR) -y~ () -y < C|h—F|_<wC|f-F Kgogn)
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We consider “local” procedures such as k-Nearest-Neighbors or local
smoothing. They have a different bias-variance decomposition (we do not
fix a class F).

Analysis will rely on local similarity (e.g. Lipschitz-ness) of regression
function f*.

Idea: to predict y at a given x, look up in the dataset those Y; for which
X; is “close” to x.
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Bias-Variance

It's time to revisit the bias-variance picture. Recall that our goal was to
ensure that

EL(f,) — L(f*)

decreases with data size n, where f* gives smallest possible L.

For “simple problems” (that is, strong assumptions on P), one can
ensure this without the bias-variance decomposition. Examples:
Perceptron, linear regression in d < n regime, etc.

However, for more interesting problems, we cannot get this difference to
be small without introducing bias, because otherwise the variance
(fluctuation of the stochastic part) is too large.

Our approach so far was to split this term into an
estimation-approximation error with respect to some class F:

~

EL(f)) — L(f) + L(fr) — L(f7)
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Bias-Variance

Now we'll study a different bias-variance decomposition, typically used in
nonparametric statistics. We will only work with square loss.

Rather than fixing F that controli the estimation error, we fix an
algorithm (procedure/estimator) f, that has some tunable parameter.

By definition E[Y|X = x] = f*(x). Then we write

EL(f,) — L(F*) = E(f,
F(X) = F(X) + F5(X) = Y)2 = E(F*(X) = Y)?
£ F*(X))>

because the cross term vanishes (check!)
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Bias-Variance

Before proceeding, let us discuss the last expression.

BR(X) ~ F(0) = Es [ ()~ F(x)?P(0)

=/®aﬂn—#vﬁmw)

We will often analyze Eg(f,(x) — £*(x))? for fixed x and then integrate.

The integral is a measure of distance between two functions:

IF =l ey = [ (F0) ~ )P,
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Bias-Variance

Let us drop Ly(P) from notation for brevity. The bias-variance
decomposition can be written as

~ 2 —~ —~ —~ 2
Es|f— |  =Es||f —Ev, [f]+Ev. [f] - F*
S L(P) S Yl.n[ ] + Yl.n[ ]
~ —~ 112 —~ 2
= ES fn - Eyl.n[fn] + EXl:n Eylzn[fn] - f* )

because the cross term is zero in expectation.

The first term is variance, the second is squared bias. One typically
increases with the parameter, the other decreases.

Parameter is chosen either (a) theoretically or (b) by cross-validation
(this is the usual case in practice).
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k-Nearest Neighbors

As before, we are given (X1, Y1),...,(Xy, Y,) ii.d. from P. To make a
prediction of Y at a given x, we sort points according to distance
HX, — X|| Let

(X Y): - (X Yim)

be the sorted list (remember this depends on x).

The k-NN estimate is defined as

1k
X) = 5 2 Yor
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Variance: Given x,

fa(x) = Ev,, [fa(x

k
Z i — (X))

which is on the order of 1/v/k. Then variance is of the order %

- \

Bias: a bit more complicated. For a given x,

k
Ev,, [fa(x)] = £ (x Z (F (X)) = F(x))-

x- \

Suppose f* is 1-Lipschitz. Then the square of above is

2

1< 1<
<kz(f*(x(f>)—f* )Skz g’

i=1

So, the bias is governed by how close the closest k random points are to
X.
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Claim: enough to know the upper bound on the closest point to x among
n points.

Argument: for simplicity assume that n/k is an integer. Divide the
original (unsorted) dataset into k blocks, n/k size each. Let X' be the
closest point to x in ith block. Then the collection X!, ..., X a
k-subset which is no closer than the set of k nearest neighbors. That is,

Z|\X<>—xr| kzux' x|

Taking expectation (with respect to dataset), the bias term is at most

1< ; 2 2
213 -l -l |
i=1

which is expected squared distance from x to the closest point in a
random set of n/k points.
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If support of X is bounded and d > 3, then one can estimate
E X — Xl < 02/

That is, we expect the closest neighbor of a random point X to be no
further than n=/? away from one of n randomly drawn points.

Thus, the bias (which is the expected squared distance from x to the
closest point in a random set of n/k points) is at most

(n/k)~2/°.
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Putting everything together, the bias-variance decomposition yields

1 k 2/d
kT ()

Optimal choice is k ~ nzr@ and the overall rate of estimation at a given
point x is

2
n- 7,
Since the result holds for any x, the integrated risk is also

~ *2 e
E|fp— | Sn 7.
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Summary

» We sketched the proof that k-Nearest-Neighbors has sample
complexity guarantees for prediction or estimation problems with
square loss if k is chosen appropriately.

» Analysis is very different from “empirical process” approach for
ERM.

» Truly nonparametric!

» No assumptions on underlying density (in d > 3) beyond compact
support. Additional assumptions needed for d < 3.
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Local Kernel Regression: Nadaraya-Watson

Fix a kernel K : R? — R>q. Assume K is zero outside unit Euclidean ball
at origin (not true for e =%, but close enough).

K(x) = Ija <1y K(z) = (1-2?); K(x)=e
| e e—
1 1
i i
. .
x T

Figure 5.1. Examples for univariate kernels.

(figure from Gyorfi et al)

Let Kn(x) = K(x/h), and so Kp(x — x’) is zero if ||[x — x'|| > h.
h is "bandwidth” — tunable parameter.

Assume K(x) > cl{]|x|| < 1} for some ¢ > 0. This is important for the
“averaging effect” to kick in.
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Nadaraya-Watson estimator:
fo(x) =D YiWi(x)
i=1

with
VV,(X) Kh(X — X,)

(Note: >, W; =1).

T Ka(x — X))
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Unlike the k-NN example, bias is easier to estimate.

Bias: for a given x,

Ey,,[f2(x)] = Ev,,

3 y,-vv,-(x)] = F(X)Wi(x)
i=1 i=1

and so
n

Evyi, [0] = £*(x) = D _(F(X;) — £ (x)) Wilx)

i=1

Suppose * is 1-Lipschitz. Since K}, is zero outside the h-radius ball,

By, [fa(x)] = £ (x)* < 1.
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Variance: we have

n

Fo(x) = By, [l ()] = > (Y = £ (X)) Wi(x)

i=1

Expectation of square of this difference is at most

E

> (Y- f*(Xi))2Wf(X)2]

i=1

since cross terms are zero (fix X's, take expectation with respect to the
Y's).

We are left analyzing

n Kh(X— X1)2
. {(27_1 Kn(x x,-))2]

Under some assumptions on density of X, the denominator is at least
(nh)? with high prob, whereas EKj(x — X1)? = O(h?) assuming

[ K? < co. This gives an overall variance of O(1/(nh?)). Many details
skipped here (e.g. problems at the boundary, assumptions, etc)
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. . . I
Overall, bias and variance with h ~ n~ 7 vyield

h2+%:n_2+%
n
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Summary

> Analyzed smoothing methods with kernels. As with nearest
neighbors, slow (nonparametric) rates in large d.

» Same bias-variance decomposition approach as k-NN.
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Overfitting in Deep Networks

4.0
.s w—a |nception
‘ , .
£l Moo » Deep networks can be trained to zero
5 L .
S s training error (for regression loss)
o .
£2° » ... with near state-of-the-art
1 performa nce (Ruslan Salakhutdinov,
1.0
0.0 0.2 0.4 0.6 0.8 1.0 B B B
label corruption Simons Machine Learning Boot Camp, January 2017)
1.0 .
PO » .. even for noisy problems.
0.8
507 » No tradeoff between fit to training
%'0‘5 data and complexity!
=04 =—a Inception . _
o3 oo AlexNet » Benign overfitting.
02 #=—+ MLP 1x512

b0 0z o4 06 08 10
(Zhang, Bengio, Hardt, Recht, Vinyals, 2017)
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Overfitting in Deep Networks

Not surprising:

> More parameters than sample size. (That's called 'nonparametric.’)

» Good performance with zero classification loss on training data.
(c.f. Margins analysis: trade-off between (regression) fit and
complexity.)

» Good performance with zero regression loss on training data when
the Bayes risk is zero. (c.f. Perceptron)
Surprising:

» Good performance with zero regression loss on noisy training data.

» All the label noise is making its way into the parameters, but it isn’t
hurting prediction accuracy!
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Overfitting

High Bias Low Bias
Low Variance High Variance
-~ -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

FIGURE 2.11. Test and training error as a function of model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In

interpolating fits... [are] unlikely to predict future data well at all.”

“Elements of Statistical Learning,” Hastie, Tibshirani, Friedman, 2001
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Overfitting

22 2. How to Construct Nonparametric Regression Estimates?

AININE

Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.

over F,,. Least squares estimates are defined by minimizing the empirical
L, risk over a general set of functions F,, (instead of (2.7)). Observe that
it doesn’t make sense to minimize (2.9) over all (measurable) functions f,
because this may lead to a function which interpolates the data and hence is
not a reasonable estimate. Thus one has to restrict the set of functions over
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Benign Overfitting

A new statistical phenomenon:
good prediction with zero training error for regression loss

» Statistical wisdom says a prediction rule should not fit too well.

» But deep networks are trained to fit noisy data perfectly, and they
predict well.
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Not an Isolated Phenomenon

Kernel Regression on MNIST

10—1 4
digits pair [i,j]
—o— [2,5]
¥ [2,9]
—A— [3,6]
—
—>—

log(error)

[3.8]
[4,7]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
lambda

A = 0: the interpolated solution, perfect fit on training data.
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Not an Isolated Phenomenon

To Understand Deep Learning We Need to Understand
Kernel Learning

Mikhail Belkin, Siyuan Ma, Soumik Mandal
Department of Computer Science and Engineering
Ohio State Universi
(mbelkin, masi] @cse.ohio-state.edu, mandal.32@osu.edu
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Simplicial interpolation (Belkin-Hsu-Mitra)

Observe: 1-Nearest Neighbor is interpolating. However, one cannot
guarantee EL( n) — L(f*) small.

Cover-Hart '67:
lim EL(,) < 2L(f*)

n— oo
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Simplicial interpolation (Belkin-Hsu-Mitra)

Under regularity conditions, simplicial interpolation ﬁ,

—~ 2 2
limsupE||f, — || < ——=E(f*(X) — Y)?
Ty &1

Nearest neighbor Simplicial interpolation

Blessing of high dimensionality!
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Nadaraya-Watson estimator (Belkin-R.-Tsybakov)

Consider the Nadaraya-Watson estimator. Take a kernel that approaches
a large value 7 at 0, e.g.

K(x) = min{1/[|x]|*, 7}
Note that large 7 means F,,(X,-) ~ Y; since the weight W;(X;) is large.

If 7 = oo, we get interpolation E(X,-) =Y; of all training data. VYet,
earlier proof still goes through. Hence, “memorizing the data” (governed
by parameter 7) is completely decoupled from the bias-variance trade-off
(as given by parameter h).

Minimax rates are possible (with a suitable choice of h).
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Min-norm interpolation in RKHS

Min-norm interpolation:

~

fp:=argmin ||f|ly, st f(x) =y, Yi<n.
feH

Closed-form solution:

f.(x) = K(x, X)K(X, X)"1Y

Note: GD/SGD started from 0 converges to this minimum-norm solution.

Difficulty in analyzing bias/variance of f,: it is not clear how the random
matrix K1 “aggregates” Y's between data points.
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Min-norm interpolation in R? with d < n

(Hastie, Montanari, Rosset, Tibshirani, 2019)
Linear regression with p, n — oo, p/n — ~, empirical spectral distribution
of X (the discrete measure on its set of eigenvalues) converges to a fixed
measure.
Apply random matrix theory to explore the asymptotics of the excess
prediction error as <, the noise variance, and the eigenvalue distribution
vary.
Also study the asymptotics of a model involving random nonlinear
features.
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Implicit regularization in regime d < n

(Liang and R., 2018)

Informal Theorem: Geometric properties of the data design X, high
dimensionality, and curvature of the kernel = interpolated solution
generalizes.

Bias bounded in terms of effective dimension
A (XX
dim(xxT) =3 —— (%) .
7 e (%))

where v > 0 is due to implicit regularization due to curvature of kernel
and high dimensionality.

Compare with regularized least squares as low pass filter:

dim(XX ") = ZM
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Implicit regularization in regime d < n

Test error (y-axis) as a function of how quickly spectrum decays. Best
performance if spectrum decays but not too quickly.

loglerror)
log(error)

-20 -15 -10 -05 00 05 10 15 20 -20 -15 -10 -05 00 05 10 15 20
log(kappa) log(kappa)
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Lower Bounds

(R. and Zhai, 2018)

Min-norm solution for Laplace kernel
Ko(x,X') = 0% exp{— ||x = x| o}

is not consistent if d is low:

Theorem.

Theorem: for odd dimension d, with probability 1 — O(n~/2), for
any choice of o,

—~ 2
E||f, — || > Qq(1).

Conclusion: need high dimensionality of data.
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Connection to neural networks

For wide enough randomly initialized neural networks, GD dynamics
quickly converge to (approximately) min-norm interpolating solution with
respect to a certain kernel.

For square loss and relu o,

gvt,- B %% > (F) = v)aio! ((wis X))

Jj=1

GD in continuous time:

o=
Thus
2 ) i (2069 ' (%) i (T (i x) ' = j;mx_
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Connection to neural networks

(Xie, Liang, Song, '16), (Jacot, Gabriel, Hongler '18), (Du, Zhai, Poczos, Singh '18),
etc.

K™ (x,x1) = E[(x, x;) {(w, x) > 0, (w,x;) > 0}]

See Jason's talk.
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Linear

vy

Regression

(B., Long, Lugosi, Tsigler, 2019)

(x,y) Gaussian, mean zero.
Define:
Y = Exx' = ZA,-V,-V,-T, (assume A; > Ay > --+)
i

* L . N T 2
0 .—argmeln]E(y X 9) ,

o2 :=E(y — x"0").

Estimator 0 = (XTX)TXTy, which solves
min ||¢9H2
0
st X0 y| = min| X3 —y|*= 0.

When can the label noise be hidden in 8 without hurting predictive
accuracy?
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Linear Regression

Excess prediction error:

L(d) — L* :==E,) {(y - XT9A>2 —(y— XTG*)z} = (9 - 0*)T Y (é - 9*) .

Y determines how estimation error in different parameter directions affect
prediction accuracy.
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Linear Regression

~—{ Theorem. N

For universal constants b, c, and any #*, 02, ¥, if A, > 0 then
e min K + ! 1
c n o R (%)’
A tr(X) k* n
< _|* < (12, [ 2\=) 2
<EL(f) - L' <c (ne Py o2 (£ Rk*(z))> ,

where k* = min{k > 0: r(X) > bn}.
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Notions of Effective Rank

~— Definition. N

Recall that \; > A, > --- are the eigenvalues of ¥. Define the
effective ranks

Zi>k Ai _ (Zi>k >‘f)2
rk():) = )\k+1 Rk(Z) = Zi>k )\,2 5
Example
If rank(X) = p, we can write
ro(X) = rank(X)s(X), Ro(X) = rank(X)S(X),
| _YpYPN (/e N’
with s(X) = DV 5(%) = m

Both s and S lie between 1/p (A2 = 0) and 1 (\; all equal).
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Benign Overfitting in Linear Regression

Intuition

» To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions:

» There should be many non-zero eigenvalues.

» They should have a small sum compared to n.

» There should be many eigenvalues no larger than Ay~
(the number depends on how assymmetric they are).
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Overfitting?

> Fitting data “too” well versus

» Bias too low, variance too high.

Key takeaway: we should not conflate these two.
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Outline

Interpolation
Overfitting in Deep Networks
Nearest neighbor
Local Kernel Smoothing
Kernel and Linear Regression
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