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Overfitting in Deep Networks

Deep networks can be trained to zero
training error (for regression loss)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Benign overfitting.

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)
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Benign Overfitting

A new statistical phenomenon

Statistical wisdom says a prediction rule should not fit too well.

But deep networks are trained to fit noisy data perfectly, and they
predict well.

An unexplored statistical phenomenon:
good prediction with zero training error for regression loss.

A similar phenomenon was observed in the mid-90s for classification
problems. It led to the development of the margins analysis: zero
classification loss still leaves room for tradeoffs between complexity
and training error for regression loss.

An aside: there is nothing mysterious about p > n
(‘overparameterization’).
Overparameterization = nonparametric
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Interpolating Prediction Rules

Progress on interpolating prediction

Interpolating nearest neighbor rules in high dimensions
(Belkin, Hsu, Mitra, 2018)

Kernel regression with kernels defined in terms of the Euclidean inner
product (Liang and Rakhlin, 2018)

Kernel smoothing with singular kernels
(Belkin, Rakhlin, Tsybakov, 2018)

Linear regression with p, n→∞, p/n→ γ (Hastie, Montanari, Rosset, Tibshirani, 2019)
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Definitions

Simple Prediction Setting: Linear Regression

Covariate x ∈ H (Hilbert space); response y ∈ R.

(x , y) Gaussian, mean zero.

Define:

Σ := Exx> =
∑
i

λiviv
>
i , (assume λ1 ≥ λ2 ≥ · · · )

θ∗ := arg min
θ

E
(
y − x>θ

)2
,

σ2 := E(y − x>θ∗)2.
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Definitions

Minimum norm estimator

Data: X ∈ Hn, y ∈ Rn.

Estimator θ̂ =
(
X>X

)†
X>y , which solves

min
θ∈H

‖θ‖2

s.t. ‖Xθ − y‖2 = min
β
‖Xβ − y‖2 .

Excess prediction error: (Σ determines importance of parameter directions)

R(θ̂) := E(x ,y)

[(
y − x>θ̂

)2
−
(
y − x>θ∗

)2
]

=
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
.
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Interpolating Linear Regression

Overfitting regime

We consider situations where minβ ‖Xβ − y‖2 = 0.

Hence, y1 = x>1 θ̂, . . . , yn = x>n θ̂.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: Main Result

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that λ1 ≥ λ2 ≥ · · · are the eigenvalues of Σ.
For k ≥ 0, if λk+1 > 0, define the effective ranks

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Lemma

1 ≤ rk(Σ) ≤ Rk(Σ) ≤ r2
k (Σ).
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Notions of Effective Rank

rk(Σ) =

∑
i>k λi

λk+1
, Rk(Σ) =

(∑
i>k λi

)2∑
i>k λ

2
i

.

Examples

1 r0(Ip) = R0(Ip) = p.

2 If rank(Σ) = p, we can write

r0(Σ) = rank(Σ)s(Σ), R0(Σ) = rank(Σ)S(Σ),

with s(Σ) =
1/p

∑p
i=1 λi

λ1
, S(Σ) =

(
1/p

∑p
i=1 λi

)2

1/p
∑p

i=1 λ
2
i

.

Both s and S lie between 1/p (λ2 ≈ 0) and 1 (λi all equal).
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Benign Overfitting: Main Result

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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Benign Overfitting: Main Result

Intuition

The mix of eigenvalues of Σ determines:
1 how the label noise is distributed in θ̂, and
2 how errors in θ̂ affect prediction accuracy.

To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

Need tr(Σ)/n small; need rk∗(Σ)/n ≥ b and Rk∗(Σ)/n large.

Overparameterization is essential for benign overfitting:
many eigenvalues not too far below λk∗+1.
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Benign Overfitting: Proof Ideas

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x>θ∗ and y − x>θ∗)

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).
2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic.

When can the label noise be hidden in θ̂ without hurting predictive
accuracy?
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Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector ε = y − Xθ∗.

Estimator: θ̂ = (X>X )†X>y = (X>X )†X>(Xθ∗ + ε),

Excess risk: R(θ̂) =
(
θ̂ − θ∗

)>
Σ
(
θ̂ − θ∗

)
= θ∗>

(
I − Σ̂Σ̂†

)(
Σ− Σ̂

)(
I − Σ̂†Σ̂

)
θ∗

+ σ2tr

((
X>X

)†
Σ

)
.
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Benign Overfitting: Proof Ideas

Standard normals

tr

((
X>X

)†
Σ

)
= tr

(
Σ1/2X>

(
XX>

)−2
XΣ1/2

)
=
∞∑
i=1

λ2
i z
>
i A−2zi

=
∞∑
i=1

λ2
i z
>
i A−2
−i zi

(1 + λiz>i A−1
−i zi )

2
,

where zi = Xvi/
√
λi for Σ =

∑
j λjvjv

>
j , and

A =
∞∑
i=1

λiziz
>
i , A−i =

∑
j 6=i

λjzjz
>
j .

Now zi ∼ N (0, In) and zi and A−i are independent.
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Benign Overfitting: Proof Ideas

Concentration

If rk(Σ) ≥ bn, then

1

c
λk+1rk(Σ) ≤ µn (A) ≤ µk+1(A) ≤ cλk+1rk(Σ),

where µ1(A) ≥ · · · ≥ µn(A) are the eigenvalues of A =
∑

i λiziz
>
i .

Split the trace into “heavy” directions, which cost 1/n each, and
“light” directions, which cost n/Rk∗(Σ).

The excess expected loss is at least as big as the same trace term.

When A and A−i are concentrated, the same split gives a lower bound
within a constant factor of the upper bound.
(And otherwise, the excess expected loss is at least a constant.)
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Benign Overfitting: Main Result

Theorem

For universal constants b, c , and any linear regression problem (θ∗, σ2, Σ)
with λn > 0, if k∗ = min {k ≥ 0 : rk(Σ) ≥ bn},

1 With high probability,

R(θ̂) ≤ c

(
‖θ∗‖2

√
tr(Σ)

n
+ σ2

(
k∗

n
+

n

Rk∗(Σ)

))
,

2

ER(θ̂) ≥ σ2

c
min

{
k∗

n
+

n

Rk∗(Σ)
, 1

}
.
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Benign Overfitting in Linear Regression

Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict
well:
The noise is hidden in many unimportant directions.

Relies on overparameterization
... and lots of unimportant parameters
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Interpolating prediction

Can we extend these results to interpolating deep networks?

There are recent results showing that in extremely wide networks, a
gradient flow stays near a linear approximation.
But these conditions seem unnatural; representation learning with
linear combinations of random features?
Benign overfitting with these nonlinear functions?
What is the analog of the minimum norm linear prediction rule?
What role does the optimization method play?
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