Overparameterization and Benign Overfitting in Linear Regression

Peter Bartlett CS and Statistics UC Berkeley

May 11, 2019

Phil Long

Gábor Lugosi

Alexander Tsigler

Overfitting in Deep Networks

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017)

- Deep networks can be trained to zero training error (for *regression* loss)
- ... with near state-of-the-art performance
- ... even for noisy problems.
- No tradeoff between fit to training data and complexity!
- Benign overfitting.

also (Belkin, Hsu, Ma, Mandal, 2018)

Benign Overfitting

A new statistical phenomenon

- Statistical wisdom says a prediction rule should not fit too well.
- But deep networks are trained to fit noisy data perfectly, and they predict well.
- An unexplored statistical phenomenon: good prediction with zero training error for regression loss.
- A similar phenomenon was observed in the mid-90s for classification problems. It led to the development of the margins analysis: zero classification loss still leaves room for tradeoffs between complexity and training error for regression loss.
- An aside: there is nothing mysterious about p > n ('overparameterization').
 Overparameterization = nonparametric

Progress on interpolating prediction

• Interpolating nearest neighbor rules in high dimensions

(Belkin, Hsu, Mitra, 2018)

- Kernel regression with kernels defined in terms of the Euclidean inner product (Liang and Rakhlin, 2018)
- Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)

• Linear regression with $p,n
ightarrow\infty$, $p/n
ightarrow\gamma$ (Hastie, Montanari, Rosset, Tibshirani, 2019)

Simple Prediction Setting: Linear Regression

- Covariate $x \in \mathbb{H}$ (Hilbert space); response $y \in \mathbb{R}$.
- (x, y) Gaussian, mean zero.

Define:

$$\Sigma := \mathbb{E}xx^{\top} = \sum_{i} \lambda_{i} v_{i} v_{i}^{\top}, \quad (\text{assume } \lambda_{1} \ge \lambda_{2} \ge \cdots)$$
$$\theta^{*} := \arg\min_{\theta} \mathbb{E} \left(y - x^{\top} \theta \right)^{2},$$
$$\sigma^{2} := \mathbb{E} (y - x^{\top} \theta^{*})^{2}.$$

Definitions

Minimum norm estimator

- Data: $X \in \mathbb{H}^n$, $y \in \mathbb{R}^n$.
- Estimator $\hat{\theta} = \left(X^{\top}X\right)^{\dagger}X^{\top}y$, which solves

$$\min_{\theta \in \mathbb{H}} \qquad \|\theta\|^2 \\ \text{s.t.} \qquad \|X\theta - y\|^2 = \min_{\beta} \|X\beta - y\|^2 \,.$$

Excess prediction error:

(Σ determines importance of parameter directions)

$$R(\hat{\theta}) := \mathbb{E}_{(x,y)} \left[\left(y - x^{\top} \hat{\theta} \right)^2 - \left(y - x^{\top} \theta^* \right)^2 \right] = \left(\hat{\theta} - \theta^* \right)^{\top} \Sigma \left(\hat{\theta} - \theta^* \right).$$

Overfitting regime

- We consider situations where $\min_{\beta} ||X\beta y||^2 = 0$.
- Hence, $y_1 = x_1^{\top} \hat{\theta}, \dots, y_n = x_n^{\top} \hat{\theta}$.
- When can the label noise be hidden in $\hat{\theta}$ without hurting predictive accuracy?

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}
ight)
ight), \ &\mathbb{E}R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}, 1
ight\}. \end{aligned}$$

Definition (Effective Ranks)

Recall that $\lambda_1 \ge \lambda_2 \ge \cdots$ are the eigenvalues of Σ . For $k \ge 0$, if $\lambda_{k+1} > 0$, define the effective ranks

 $r_k(\Sigma) = rac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}, \qquad \qquad R_k(\Sigma) = rac{\left(\sum_{i>k} \lambda_i\right)^2}{\sum_{i>k} \lambda_i^2}.$

Lemma

$$1 \leq r_k(\Sigma) \leq R_k(\Sigma) \leq r_k^2(\Sigma).$$

Notions of Effective Rank

$$r_k(\Sigma) = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}},$$

$$R_k(\Sigma) = \frac{\left(\sum_{i>k} \lambda_i\right)^2}{\sum_{i>k} \lambda_i^2}.$$

Examples

•
$$r_0(I_p) = R_0(I_p) = p$$
.
• If $\operatorname{rank}(\Sigma) = p$, we can write

$$r_0(\Sigma) = \operatorname{rank}(\Sigma)s(\Sigma), \qquad R_0(\Sigma) = \operatorname{rank}(\Sigma)S(\Sigma),$$

with $s(\Sigma) = \frac{1/p\sum_{i=1}^p \lambda_i}{\lambda_1}, \qquad S(\Sigma) = \frac{\left(1/p\sum_{i=1}^p \lambda_i\right)^2}{1/p\sum_{i=1}^p \lambda_i^2}.$

Both s and S lie between 1/p ($\lambda_2 \approx 0$) and 1 (λ_i all equal).

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(\Sigma)}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}
ight)
ight), \ &\mathbb{E}R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(\Sigma)}, 1
ight\}. \end{aligned}$$

Intuition

- The mix of eigenvalues of Σ determines:
 - **(**) how the label noise is distributed in $\hat{\theta}$, and
 - 2 how errors in $\hat{\theta}$ affect prediction accuracy.
- To avoid harming prediction accuracy, the noise energy must be distributed across many unimportant directions.
- Need $\operatorname{tr}(\Sigma)/n$ small; need $r_{k^*}(\Sigma)/n \ge b$ and $R_{k^*}(\Sigma)/n$ large.
- Overparameterization is essential for benign overfitting: many eigenvalues not too far below λ_{k*+1}.

Interpolation for linear prediction

Excess expected loss, has two components: (corresponding to x^Tθ* and y - x^Tθ*)

 θ
 is a distorted version of θ*, because the sample x₁,..., x_n distorts our view of the covariance of x.

Not a problem, even in high dimensions (p > n). **2** $\hat{\theta}$ is corrupted by the noise in y_1, \ldots, y_n .

Problematic.

• When can the label noise be hidden in $\hat{\theta}$ without hurting predictive accuracy?

Bias-variance decomposition

Define the noise vector $\epsilon = y - X\theta^*$.

Estimator:

Excess risk:

$$\begin{aligned} \hat{\theta} &= (X^{\top}X)^{\dagger}X^{\top}y = (X^{\top}X)^{\dagger}X^{\top}(X\theta^{*} + \epsilon), \\ R(\hat{\theta}) &= \left(\hat{\theta} - \theta^{*}\right)^{\top}\Sigma\left(\hat{\theta} - \theta^{*}\right) \\ &= \theta^{*\top}\left(I - \hat{\Sigma}\hat{\Sigma}^{\dagger}\right)\left(\Sigma - \hat{\Sigma}\right)\left(I - \hat{\Sigma}^{\dagger}\hat{\Sigma}\right)\theta^{*} \\ &+ \sigma^{2}\mathrm{tr}\left(\left(X^{\top}X\right)^{\dagger}\Sigma\right). \end{aligned}$$

Benign Overfitting: Proof Ideas

Standard normals

$$\operatorname{tr}\left(\left(X^{\top}X\right)^{\dagger}\Sigma\right) = \operatorname{tr}\left(\Sigma^{1/2}X^{\top}\left(XX^{\top}\right)^{-2}X\Sigma^{1/2}\right)$$
$$= \sum_{i=1}^{\infty}\lambda_{i}^{2}z_{i}^{\top}A^{-2}z_{i}$$
$$= \sum_{i=1}^{\infty}\frac{\lambda_{i}^{2}z_{i}^{\top}A_{-i}^{-2}z_{i}}{(1+\lambda_{i}z_{i}^{\top}A_{-i}^{-1}z_{i})^{2}},$$

where $z_i = X v_i / \sqrt{\lambda_i}$ for $\Sigma = \sum_j \lambda_j v_j v_j^{\top}$, and

$$A = \sum_{i=1}^{\infty} \lambda_i z_i z_i^{\top}, \qquad \qquad A_{-i} = \sum_{j \neq i} \lambda_j z_j z_j^{\top}.$$

Now $z_i \sim \mathcal{N}(0, I_n)$ and z_i and A_{-i} are independent.

Benign Overfitting: Proof Ideas

Concentration

If $r_k(\Sigma) \geq bn$, then

$$\frac{1}{c}\lambda_{k+1}r_k(\Sigma) \leq \mu_n(A) \leq \mu_{k+1}(A) \leq c\lambda_{k+1}r_k(\Sigma),$$

where $\mu_1(A) \geq \cdots \geq \mu_n(A)$ are the eigenvalues of $A = \sum_i \lambda_i z_i z_i^{\top}$.

- Split the trace into "heavy" directions, which cost 1/n each, and "light" directions, which cost $n/R_{k^*}(\Sigma)$.
- The excess expected loss is at least as big as the same trace term.
- When A and A_{-i} are concentrated, the same split gives a lower bound within a constant factor of the upper bound.
 (And otherwise, the excess expected loss is at least a constant.)

Theorem

2

For universal constants b, c, and any linear regression problem (θ^* , σ^2 , Σ) with $\lambda_n > 0$, if $k^* = \min \{k \ge 0 : r_k(\Sigma) \ge bn\}$,

With high probability,

$$egin{aligned} &R(\hat{ heta}) \leq c \left(\| heta^*\|^2 \sqrt{rac{ ext{tr}(m{\Sigma})}{n}} + \sigma^2 \left(rac{k^*}{n} + rac{n}{R_{k^*}(m{\Sigma})}
ight)
ight), \ &\mathbb{E} R(\hat{ heta}) \geq rac{\sigma^2}{c} \min\left\{rac{k^*}{n} + rac{n}{R_{k^*}(m{\Sigma})}, 1
ight\}. \end{aligned}$$

- Interpolation: far from the regime of a tradeoff between fit to training data and complexity.
- In linear regression, a long, flat tail of the covariance eigenvalues is necessary and sufficient for the minimum norm interpolant to predict well:

The noise is hidden in many unimportant directions.

- Relies on overparameterization
- ... and lots of unimportant parameters

• Can we extend these results to interpolating deep networks?

- There are recent results showing that in extremely wide networks, a gradient flow stays near a linear approximation. But these conditions seem unnatural; representation learning with linear combinations of random features?
- Benign overfitting with these nonlinear functions?
- What is the analog of the minimum norm linear prediction rule?
- What role does the optimization method play?

- Interpolation: far from the regime of a tradeoff between fit to training data and complexity.
- In linear regression, a long, flat tail of the covariance eigenvalues is necessary and sufficient for the minimum norm interpolant to predict well:

The noise is hidden in many unimportant directions.

- Relies on overparameterization
- ... and lots of unimportant parameters