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Overfitting in Deep Networks
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(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) also (Belkin, Hsu, Ma, Mandal, 2018)



Benign Overfitting

A new statistical phenomenon

@ Statistical wisdom says a prediction rule should not fit too well.

@ But deep networks are trained to fit noisy data perfectly, and they
predict well.

@ An unexplored statistical phenomenon:
good prediction with zero training error for regression loss.

@ A similar phenomenon was observed in the mid-90s for classification
problems. It led to the development of the margins analysis: zero
classification loss still leaves room for tradeoffs between complexity
and training error for regression loss.

@ An aside: there is nothing mysterious about p > n

(‘overparameterization’).
Overparameterization = nonparametric




Interpolating Prediction Rules

Progress on interpolating prediction

@ Interpolating nearest neighbor rules in high dimensions

(Belkin, Hsu, Mitra, 2018)
o Kernel regression with kernels defined in terms of the Euclidean inner

product (Liang and Rakhlin, 2018)
@ Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)

o Linear regression W|th p,n — 00, p/n — 7Y (Hastie, Montanari, Rosset, Tibshirani, 2019)

v




Definitions

Simple Prediction Setting: Linear Regression

o Covariate x € H (Hilbert space); response y € R.

@ (x,y) Gaussian, mean zero.

@ Define:

Y = FExx'| = Z)\;v;v,—r, (assume Ay > Ap > --+)
i

T2
0* ::argmginE(y—x 9) ,

o2 :=E(y — x' 6"




Definitions

Minimum norm estimator

o Data: X e H", y € R".
o Estimator § = (XTX)TXTy, which solves

min 102
OcH
2 . 2
st X0~y = min X3 2.
4
Excess prediction error: (X determines importance of parameter directions)

RO) = Bpey | (v =x'0) = (v =xT0)"| = (0-07) = (3-).



Interpolating Linear Regression

Overfitting regime

@ We consider situations where ming || X/ — y|?=0.

@ Hence, y1:x1T0,..., ,,:x,,THA.
@ When can the label noise be hidden in § without hurting predictive
accuracy?




Benign Overfitting: Main Result

For universal constants b, c, and any linear regression problem (6%, 02, ¥)
with A\, >0, if k* =min{k > 0: r(X) > bn},

@ With high probability,
. (%) K on
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Notions of Effective Rank

Definition (Effective Ranks)

Recall that A\; > A > --- are the eigenvalues of X.
For k > 0, if Ag41 > 0, define the effective ranks

Ei>k Ai

Ak+1

(Zi>k )‘i)2.

n(x) =
{z) Y

: Rk(X) =

v
Lemma




Notions of Effective Rank

(Zi>k )‘i)2

Zi>k Ai
’ Dk A7

W(®) = Ak+1

Rk(X) =

v

Q rno(lp) = Ro(lp) =p
@ If rank(X) = p, we can write

r(X) = rank(X)s(X), Ro(X) = rank(X)S(X),
Py, 2
with s(X) = 1/192/\:1,-1)\:7 S(¥) = (11//[;%1)

Both s and S lie between 1/p (A2 =~ 0) and 1 (\; all equal).
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Benign Overfitting: Main Result

@ The mix of eigenvalues of ¥ determines:
© how the label noise is distributed in é, and
@ how errors in 0 affect prediction accuracy.

@ To avoid harming prediction accuracy, the noise energy must be
distributed across many unimportant directions.

@ Need tr(X)/n small; need ri«(X)/n > b and Ry«(X)/n large.

@ Overparameterization is essential for benign overfitting:
many eigenvalues not too far below A~ 1.




Benign Overfitting: Proof Ideas

Interpolation for linear prediction

@ Excess expected loss, has two components: (coresponding to xT6* and y — xT 6*)

@ 0 is a distorted version of 6%, because the sample x1, . . ., x, distorts our
view of the covariance of x.

) Not a problem, even in high dimensions (p > n).
@ 0 is corrupted by the noise in y1,...,y,.

Problematic.

@ When can the label noise be hidden in § without hurting predictive
accuracy?




Benign Overfitting: Proof Ideas

Bias-variance decomposition

Define the noise vector ¢ = y — X6*.

Estimator: 0=(XTX)XTy =(XTX)' XT(X0* +¢),

Excess risk: R() = (é - 9*>T r <0A - 0*)




Benign Overfitting: Proof Ideas

Standard normals
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Now z; ~ N(0,/,) and z and A_; are independent.




Benign Overfitting: Proof Ideas

Concentration

If re(X) > bn, then

1
M k(Z) < pon (A) < i1 (A) < igarie(X),

where 111(A) > - > up(A) are the eigenvalues of A= >, \izz"

@ Split the trace into “heavy” directions, which cost 1/n each, and
“light” directions, which cost n/Ry«(X).

@ The excess expected loss is at least as big as the same trace term.

@ When A and A_; are concentrated, the same split gives a lower bound
within a constant factor of the upper bound.

(And otherwise, the excess expected loss is at least a constant.)
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Benign Overfitting in Linear Regression

@ Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

@ In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict

well:

The noise is hidden in many unimportant directions.
o Relies on overparameterization
o ... and lots of unimportant parameters




Interpolating prediction

@ Can we extend these results to interpolating deep networks?

o There are recent results showing that in extremely wide networks, a
gradient flow stays near a linear approximation.
But these conditions seem unnatural; representation learning with
linear combinations of random features?

e Benign overfitting with these nonlinear functions?

o What is the analog of the minimum norm linear prediction rule?

o What role does the optimization method play?




Benign Overfitting in Linear Regression

@ Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

@ In linear regression, a long, flat tail of the covariance eigenvalues is
necessary and sufficient for the minimum norm interpolant to predict

well:

The noise is hidden in many unimportant directions.
o Relies on overparameterization
o ... and lots of unimportant parameters




