Optimizing Probability Distributions for Learning: Sampling meets Optimization

Peter Bartlett

Computer Science and Statistics UC Berkeley

Joint work with Yasin Abbasi-Yadkori, Niladri Chatterji, Xiang Cheng, Mike Jordan

April 16, 2019

Sampling Problems

Bayesian inference

Compute
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$
.

Write the density of $P(\theta|D)$ as

$$\frac{\exp(-U(\theta))}{\int \exp(-U(\theta)) d\theta}.$$

Langevin diffusion

Simulate a stochastic differential equation:

$$dx_t = -\nabla U(x_t) dt + \sqrt{2} dB_t.$$

Stationary distribution has density $p^*(\theta) \propto \exp(-U(\theta))$.

Sampling Problems

Prediction as a repeated game

- Player chooses action $a_t \in \mathcal{A}$,
- Adversary chooses outcome y_t,
- Player incurs loss $\ell(a_t, y_t)$.

Aim to minimize regret:

$$\sum_{t} \ell(a_t, y_t) - \min_{a} \sum_{t} \ell(a, y_t).$$

Exponential weights strategy

$$p_t(a) \propto \exp\left(-U(a)\right),$$

with
$$U(a) := \eta \sum_{s=1}^{t-1} \ell(a, y_s).$$

Langevin diffusion

Simulate a stochastic differential equation:

$$dx_t = -\nabla U(x_t) dt + \sqrt{2} dB_t.$$

Stationary distribution has density $p^*(a) \propto \exp(-U(a))$.

Sampling Algorithms

Langevin diffusion

SDE:
$$dx_t = -\nabla U(x_t) dt + \sqrt{2} dB_t$$
.

Stationary distribution has density $p^*(\cdot) \propto \exp(-U(\cdot))$.

Discrete Time: Langevin MCMC Sampler (Euler-Maruyama)

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k,$$
 $\xi_k \sim \mathcal{N}(0, I).$

- How close to the desired p^* is p_k (the density of x_k)?
- How rapidly does it converge?

Viewpoint

Sampling as optimization over the space of probability distributions.

Parameter optimization in deep neural networks

- Use training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$ to choose parameters θ of a deep neural network $f_{\theta} : \mathcal{X} \to \mathcal{Y}$.
- Aim to minimize loss $U(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)).$
- Gradient: $\theta_{k+1} = \theta_k \eta_k \nabla U(\theta_k)$
- Stochastic gradient: Random θ_0 , $\theta_{k+1} = \theta_k \eta_k \nabla \hat{U}_{\xi_k}(\theta_k)$
- ... with minibatch gradient estimates, $\hat{U}_{\xi_k}(\theta) = \frac{1}{\xi_k} \sum_{i \in \mathcal{E}_i} \ell(y_i, f_{\theta}(x_i))$
- ... and decreasing stepsizes η_k .
 - What is the distribution of θ_k ?
 - View stochastic gradient methods as sampling algorithms.

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

Langevin Diffusion

Langevin diffusion

Stochastic differential equation:

$$dx_t = \underbrace{-\nabla U(x_t) dt}_{\text{drift}} + \sqrt{2} dB_t,$$

where $x_t \in \mathbb{R}^d$, $U : \mathbb{R}^d \to \mathbb{R}$, dB_t is standard Brownian motion on \mathbb{R}^d .

Paul Langevin wikipedia.org

Define p_t as the density of x_t .

Under mild regularity assumptions, $p_t \to p^*$; $p^*(x) \propto \exp(-U(x))$.

Discretization of the Langevin Diffusion

Langevin Markov Chain

Choose step-size η and simulate the Markov chain:

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \qquad \xi_k \stackrel{iid}{\sim} \mathcal{N}(0, I_d).$$

Gradient descent

$$x_{k+1} = x_k - \eta \nabla U(x_k)$$

Langevin Markov Chain

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k$$

Langevin Markov Chain

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \qquad \xi_k \stackrel{iid}{\sim} \mathcal{N}(0, I_d).$$

How does the density p_k of x_k evolve?

Asymptotic results

Under regularity conditions, for shrinking step-size η_k , $\|p_k - p^*\|_{TV} \to 0$.

e.g., (Gelfand and Mitter, 1991), (Roberts and Tweedie, 1996)

Arnak Dalalyan

mediamax.am

Quantitative results

For suitably small (fixed) η and $k = \tilde{\Omega}\left(\frac{d}{\epsilon^2}\right)$,

$$\|p_k - p^*\|_{TV} \leq \epsilon.$$

(Dalalyan, 2014)

$$W_2(p_k, p^*) \leq \epsilon$$
.

(Durmus and Moullines, 2016)

Langevin Diffusion as Gradient Flow

Langevin Diffusion in \mathbb{R}^d

$$dx_t = -\nabla U(x_t) dt + \sqrt{2} dB_t.$$

Gradient flow in $\mathcal{P}(\mathbb{R}^d)$

 p_t minimizes $\frac{d}{dt}\mathcal{H}(\mathbf{p}_t) + \frac{1}{2}|\mathbf{p}_t'|^2$.

(Jordan, Kinderlehrer and Otto, 1998), (Ambrosio, Gigli and Savaré, 2005)

Richard Jordan

David Kinderlehrer

Felix Otto

Luigi Ambrosio

Nicola Gigli

Nicola Gigli Giuseppe Savaré

 $W_2(\mathbf{p}_t, \mathbf{p}_{t+h})$

Sampling as Optimization

- Sampling algorithms can be viewed as deterministic optimization procedures over a space of probability distributions.
- Can we apply tools and techniques from optimization to sampling?

Xiang Cheng

An Optimization Analysis in $\mathcal{P}(\mathbb{R}^d)$

Convergence of Langevin MCMC in KL-divergence. Xiang Cheng and PB. arXiv:1705.09048[stat.ML]; ALT 2018.

Langevin MCMC

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \qquad \xi_k \stackrel{iid}{\sim} \mathcal{N}(0, I_d).$$

How does the density p_k of x_k evolve?

Theorem

For smooth, strongly convex U, that is, $\forall x, ml \leq \nabla^2 U(x) \leq Ll$,

suitably small η and $k = \tilde{\Omega}\left(\frac{d}{\epsilon}\right)$ ensure that $\mathcal{KL}\left(\mathbf{p}^k \| \mathbf{p}^*\right) \leq \epsilon$.

Implies older bounds for TV and W_2 :

For suitably small η and $k = \tilde{\Omega}\left(\frac{d}{\epsilon^2}\right)$,

$$\|p_k - p^*\|_{TV} \le \epsilon$$
.

(Dalalyan, 2014)

$$W_2(p_k, p^*) < \epsilon$$
.

(Durmus and Moullines, 2016)

Analog with gradient flow over \mathbb{R}^d

Minimization over \mathbb{R}^d

Minimize $f: \mathbb{R}^d \to \mathbb{R}$ using gradient flow $y_t: \mathbb{R}^+ \to \mathbb{R}^d$ wrt Euclidean norm:

$$\min \left(\frac{d}{dt} f(y_t) + \frac{1}{2} \left\| \frac{d}{dt} y_t \right\|^2 \right)$$

$$\frac{d}{dt}f(y_t) = \left\langle \nabla f(y_t), \frac{d}{dt}y_t \right\rangle$$

$$\frac{d}{dt}f(y_t^*) = -\|\nabla f(y_t^*)\|_2^2$$

Minimization over $\mathcal{P}(\mathbb{R}^d)$

Minimize $\mathcal{H}(\mathbf{p}) = \mathcal{KL}(\mathbf{p} || \mathbf{p}^*)$ using gradient flow $\mathbf{p}_t : \mathbb{R}^+ \to \mathcal{P}(\mathbb{R}^d)$ wrt W_2 :

$$\min \ \left(\frac{d}{dt}\mathcal{H}(\mathbf{p}_t) + \frac{1}{2}\left|\mathbf{p}_t'\right|^2\right)$$

$$\frac{d}{dt}\mathcal{H}(\mathbf{p}_t) = \mathbb{E}_{\mathbf{x} \sim \mathbf{p}_t} \left[\left\langle \nabla_{\mathbf{x}} \frac{\partial \mathcal{H}}{\partial \mathbf{p}}(\mathbf{p}_t)(\mathbf{x}), v_t(\mathbf{x}) \right\rangle \right]$$

$$\frac{d}{dt}\mathcal{H}(\mathbf{p}_t^*) = -\mathbb{E}_{\mathbf{x} \sim \mathbf{p}_t^*} \left[\left\| \nabla \frac{\partial \mathcal{H}}{\partial \mathbf{p}}(\mathbf{p}_t^*)(\mathbf{x}) \right\|_2^2 \right]$$

Notation

- $\mathcal{P}(\mathbb{R}^d)$: set of densities over \mathbb{R}^d .
- $\mathcal{H}(\mathbf{p}) = \mathcal{KL}(\mathbf{p} || \mathbf{p}^*) = \int \log \frac{p(x)}{p^*(x)} p(x) dx.$
- $W_2^2(p,q) = \inf_{\gamma \in \Gamma(p,q)} \mathbb{E}_{(x,y) \sim \gamma} \|x y\|_2^2$, with $\Gamma(p,q)$: all joint distributions on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals p and q.
- ullet For a curve ${f p}_t: \mathbb{R}^+ o \mathcal{P}(\mathbb{R}^d)$, the metric derivative is

$$|\mathbf{p}_t'| = \lim_{h \to 0} \frac{W_2(\mathbf{p}_t, \mathbf{p}_{t+h})}{h}.$$

- If v_t is tangent to \mathbf{p}_t , then $|\mathbf{p}_t'|^2 = \mathbb{E}_{x \sim \mathbf{p}_t} \left[\|v_t(x)\|_2^2 \right]$.
- Fréchet derivative: $\frac{\partial \mathcal{H}}{\partial \mathbf{p}_t}(\mathbf{p}_t) = 1 + \log\left(\frac{\mathbf{p}_t}{\mathbf{p}^*}\right)$.
- $\bullet \ \frac{d}{dt}\mathcal{H}(\mathbf{p}_t) = \mathbb{E}_{\mathbf{x} \sim \mathbf{p}_t} \left[\left\langle \nabla_{\mathbf{x}} \frac{\partial \mathcal{H}}{\partial \mathbf{p}_t}(\mathbf{p}_t)(\mathbf{x}), v_t(\mathbf{x}) \right\rangle \right]$

Analog with gradient flow over \mathbb{R}^d

Minimization over \mathbb{R}^d

m-strong convexity of f implies $f(y) - f(y^*) \le \frac{1}{m} \|\nabla f(y)\|_2^2$.

Hence $\frac{d}{dt}(f(y_t)-f(y^*)) \leq -m(f(y_t)-f(y^*)).$

Minimization over $\mathcal{P}(\mathbb{R}^d)$

m-strong convexity of U implies m-geodesic-convexity of $\mathcal{H}(\mathbf{p})$ in W_2 , which implies $\mathcal{H}(\mathbf{p}) - \mathcal{H}(\mathbf{p}^*) \leq \frac{1}{m} \mathbb{E}_{\mathbf{x} \sim \mathbf{p}} \left[\left\| \nabla \frac{\partial \mathcal{H}}{\partial \mathbf{p}}(\mathbf{p})(\mathbf{x}) \right\|_2^2 \right].$

Hence
$$\frac{d}{dt}(\mathcal{H}(\mathbf{p}_t) - \mathcal{H}(\mathbf{p}^*)) \leq -m(\mathcal{H}(\mathbf{p}_t) - \mathcal{H}(\mathbf{p}^*)).$$

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

Sampling as Optimization

- Sampling algorithms can be viewed as deterministic optimization procedures over the probability space.
- Can we apply tools and techniques from optimization to sampling?

Xiang Cheng

Niladri Chatterji

Mike Jordan

Nesterov acceleration in $\mathcal{P}(\mathbb{R}^d)$

Underdamped Langevin MCMC: A non-asymptotic analysis.
Xiang Cheng, Niladri Chatterji, PB and Mike Jordan.
arXiv:1707.03663 [stat.ML]; COLT18.

Kramers' Equation (1940)

Stochastic differential equation:

$$dx_t = v_t dt,$$

$$dv_t = \underbrace{-v_t dt}_{\text{friction}} - \underbrace{\nabla U(x_t) dt}_{\text{acceleration}} + \sqrt{2} dB_t,$$

where $x_t, v_t \in \mathbb{R}^d$, $U : \mathbb{R}^d \to \mathbb{R}$, dB_t is standard Brownian motion on \mathbb{R}^d .

Hendrick A. Kramers wikipedia.org

Define p_t as the density of (x_t, v_t) .

Under mild regularity assumptions, $p_t \rightarrow p^*$:

$$p^*(x) \propto \exp\left(-U(x) - \frac{1}{2}||v||_2^2\right).$$

(Overdamped) Langevin Diffusion

$$dx_t = -\nabla U(x_t) dt + \sqrt{2} dB_t.$$

Underdamped Langevin Diffusion

$$dx_t = v_t dt,$$

$$dv_t = -v_t dt - \nabla U(x_t) dt + \sqrt{2} dB_t.$$

Underdamped Langevin Markov Chain

Choose step-size η and simulate the SDE:

$$d\tilde{x}_t = \tilde{v}_t dt$$

$$d\tilde{v}_t = -\tilde{v}_t dt - \nabla U(\tilde{x}_{k\eta}) dt + \sqrt{2} dB_t$$

for
$$k\eta \leq t < (k+1)\eta$$
.

(Not the standard Euler-Maruyama discretization.)

- A version of Hamiltonian Monte Carlo
 - (Duane, Kennedy, Pendleton and Roweth, 1987), (Neal, 2011)
- How does the density p_k of $(\tilde{x}_{k\eta}, \tilde{v}_{k\eta})$ evolve?

Theorem

For smooth, strongly convex U, suitably small η and $k = \tilde{\Omega}\left(\frac{\sqrt{d}}{\epsilon}\right)$, underdamped Langevin MCMC gives $W_2(p_k, p^*) \le \epsilon$.

Idea of proof: uses tools from (Eberle, Guillin and Zimmer, 2017) Synchronous coupling (shared Brownian motion); strong convexity.

Significantly faster than overdamped Langevin:

For suitably small
$$\eta$$
 and $k = \tilde{\Omega}\left(\frac{d}{\epsilon^2}\right)$, $W_2(p_k, p^*) \le \epsilon$.

Related work

HMC (Lee and Vempala, 2017)

With separability assumption (Mangoubi and Smith, 2017), (Mangoubi and Vishnoi, 2018).

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

Multi-modal p (nonconvex U)?

Xiang Cheng

Niladri Chatterji

Yasin Abbasi-Yadkori

Mike Jordan

Sharp convergence rates for Langevin dynamics in the nonconvex setting. Xiang Cheng, Niladri Chatterji, Yasin Abbasi-Yadkori, PB and Mike Jordan. arXiv:1805.01648 [stat.ML].

Assumptions

- Smooth everywhere: $\nabla^2 U \leq LI$.
- Strongly convex outside a ball:

$$\forall x, y, \|x - y\|_2 \ge R \Rightarrow U(x) \ge U(y) + \langle U(y), x - y \rangle + \frac{m}{2} \|x - y\|_2^2.$$

Theorem

Suppose U is L-smooth and strongly convex outside a ball of radius R and η is suitably small.

- If $k = \tilde{\Omega}\left(\frac{d}{\epsilon^2}\exp(LR^2)\right)$, then overdamped Langevin MCMC has $W_1(p_k, p^*) \le \epsilon$.
- $\textbf{ If } k = \tilde{\Omega}\left(\frac{\sqrt{d}}{\epsilon}\exp(LR^2)\right),$ then underdamped Langevin MCMC has $W_1(p_k, p^*) \leq \epsilon$.
 - We can think of LR^2 is a measure of non-convexity of U.
 - The improvement from overdamped to underdamped is the same as in the convex case.

Idea of proof

- Synchronous coupling when far away; exploits strong convexity.
- Eberle's (2016) reflection coupling (1-D Brownian motion along the line between) when close: this 1-D random walk couples.
- Since it is in 1-D, the rate is not exponential in dimension.

Related work

- Weaker assumptions; exponential in dimension. (Raginsky, Rakhlin and Telgarsky, 2017)
- Stronger assumptions: mixtures of Gaussians. (Ge, Lee and Risteski, 2017)
- Metropolis-Hastings version. (Bou-Rabee, Eberle and Zimmer, 2018)

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

Xiang Cheng

Mike Jordan

Quantitative central limit theorems for discrete stochastic processes.

Xiang Cheng, PB and Mike Jordan.

arXiv:1902.00832 [math.ST].

Parameter optimization in deep neural networks

- Use training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}$ to choose parameters θ of a deep neural network $f_{\theta} : \mathcal{X} \to \mathcal{Y}$.
- Aim to minimize loss $U(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)).$
- Stochastic gradient: Random θ_0 , $\theta_{k+1} = \theta_k \eta \nabla \hat{U}_{\xi_k}(\theta_k)$,
- ... with minibatch gradient estimates, $\hat{U}_{\xi_k}(\theta) = \frac{1}{\xi_k} \sum_{i \in \epsilon} \ell(y_i, f_{\theta}(x_i))$

• This has the form:

$$\begin{aligned} x_{k+1} &= x_k - \eta \nabla \hat{U}_{\xi_k}(x_k) \\ &= x_k - \eta \nabla U(x_k) + \sqrt{\eta} T_{\xi_k}(x_k), \end{aligned}$$

- ... which is suggestive of a Langevin diffusion but ...
- The noise $T_{\xi_k}(x) = \sqrt{\eta} \left(\nabla U(x) \nabla \hat{U}_{\xi_k}(x) \right)$ is not Gaussian, and depends on x.
- What is the stationary distribution of x_k ?
- How rapidly is it approached?

Definitions

- with $\xi_{k} \stackrel{iid}{\sim} a$. • $x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{\eta} T_{\varepsilon_k}(x_k)$ $\sigma_{\mathsf{x}}^2 := \mathbb{E}_{\varepsilon} \left[T_{\varepsilon}(\mathsf{x}) T_{\varepsilon}(\mathsf{x})^{\top} \right].$ Define the covariance of the noise:
- $dx_t = -\nabla U(x_t) dt + \sqrt{2}\sigma_{x_t} dB_t$ Consider the SDE:
- Let p* denote its stationary distribution.

Theorem

For U smooth, strongly convex, bounded third derivative, σ_x^2 uniformly bounded,

 $T_{\varepsilon}(\cdot)$ smooth, bounded third derivatives, $\log p^*$ with bounded third derivatives,

If η is sufficiently small, $W_2(\hat{p}, p^*) \leq \epsilon$, $(x_{\infty} \sim \hat{p})$ and for $k = \tilde{\Omega}\left(\frac{d^7}{\epsilon^2}\right)$, $W_2(p_k, p^*) \le \epsilon$. $(x_k \sim p_k)$

The classical CLT (with U quadratic) shows that the $1/\sqrt{k}$ rate is

optimal.

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs

Further Work

- Optimization theory for sampling methods
 - Large scale problems: stochastic gradient estimates
 - Variance reduction with stochastic gradient estimates
 - Convergence in KL for underdamped Langevin, nonconvex
 - With constraints
 - Lower bounds
- Sampling methods for optimization
 - Stochastic gradient with momentum?
 - Nonconvex loss *U*?
 - Role of noise covariance in behavior of stochastic gradient method?

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs