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The statistics of deep learning: fit versus complexity

Use training data to choose parameters




The statistics of deep learning: fit versus complexity
Typical theorem
prediction error < training error + complexity penalty

@ Empirical process theory for classificationEmpirical process theory
for classification

@ Margins analysis: relating classification to regression
@ Interpolation: Where is the tradeoff between fit and complexity?

@ Interpolation in linear regression

v
Problem formulation

@ Independent training data (x1,y1),...,(Xn, ¥n) ~ P
@ Prediction rule f : X — Y

@ Loss {(y, f(x))

@ Prediction error: El(y, f(x))




VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight—within
a constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth



VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, and p parameters, with the following nonlinearities:
@ Piecewise constant (linear threshold units): VCdim(F) = © (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = © (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
@ Piecewise polynomial: VCdim(F) = O (pL?).
(B., Maiorov, Meir, 1998)J




Generalization in Neural Networks: Number of Parameters

NIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.
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Generalization: Margins and Size of Parameters

With high probability over n training examples
(X1, Y1), ..., (Xn, Ya) € X x {£1}, every f € F CRY has

Pr(sign(f(X) Zz (Yi, F(Xi)) + pa(F)

1. (B., 1996) ¢ = L-Lipschitz approximation of step function;
pn = (scale-sensitive dimension) = O((LB)9/+/n).

2. (B. and Mendelson, 2000)

pn = (Rademacher averages) = O(LB9/+/n).

3. (B., Foster and Telgarsky, 2017)

pn = (covering numbers) = O(LRd/\/n).

@ The bound combines training error (with the L-Lipschitz surrogate
loss £) with a complexity penalty, p,(F).

@ py(F) need not grow with the number of parameters.
see also (Neyshabur, Tomioka and Srebro, 2015), Gol?wwh Rakhl |n an Shamir, 2
e e.g., F = d-layer sigmoid networks with eac un|t s weig ounde
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Empirical process theory for classification

Margins analysis: relating classification to regression

Interpolation: Where is the tradeoff between fit and
complexity?

Interpolation in linear regression




Interpolation in Deep Networks:

A New Challenge for Statistical Learning Theory

4.0
=—a |nception

35 o—0 AlexNet -
£ ollo— mip 112 @ Deep networks can be trained to zero
[ o o - o o
8,5 training error (to machine precision)
£20 @ ... with near state-of-the-art

L performance

1.0 .

00 02 04 06 08 10 @ ... even for noisy problems.

label corruption

@ No tradeoff between fit to training data
and complexity!
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Interpolating Prediction Rules

Progress on interpolating prediction

@ Interpolating nearest neighbor rules in high dimensions

(Belkin, Hsu, Mitra, 2018)

o Kernel regression with polynomial kernels

(Liang and Rakhlin, 2018)

@ Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)
y




Interpolation in Linear Regression

Phil Long Gébor Lugosi Alexander Tsigler

Linear regression

e Training data (x1,y1),--.,(Xn,¥n) € RP x R.

o Linear functions: fy(x) = x"6.
@ Squared error: £(y, fy(x)) = (v — fo(x))>.

o Least squares linear prediction: 8* minimizes E4(y, fy(x)).

A 1w
Ch 0 to int late: — Uy, fa(x;)) = 0.
oose § to interpolate: — ’Z:; (vi, fa(xi)) =0
Hence, y1 = f3(x1), ..., yn = f3(xa) (need p > n).

e Which interpolating f? Choose  to minimize ||0).




Interpolation in Linear Regression

Interpolation for linear prediction

o Excess expected loss, El(y, f3(x)) — El(y, fp<(x)) has two
components: (corresponding to fg« (x) and y — fyx (x))

@ 0 is a distorted version of 8%, because the sample xg, ..., x, distorts our
view of the covariance of x.

Not a problem, even in high dimensions (p > n).
@ 0 is corrupted by the noise in yq,...,y,.

Problematic in high dimensions.

@ When can we hide the label noise in § without hurting predictive
accuracy?




Interpolation in Linear Regression

Accurate interpolating prediction as dimension p, grows

@ Suppose the covariance of x is in two pieces:

e a constant piece (of dimension k), and
o a ‘tail’ (of dimension p, — k)) that gets longer and flatter with n.

@ Denote the variance in the ‘tail’ directions y3 > -+ > v, _«.

v

If the ‘tail’ is long and flat:

@ a small proportion of variance in any direction, L o(1/n),

e total variance ) ;i = o(n),

then for jointly gaussian (x, y), Wlth hlgh probabl|lty,

Et(y, £5(x)) — E€(y, fr-(x)) = O ((k>1/4 + (S .>1/4> Lo




Interpolating prediction

@ Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

@ In high-dimensional linear regression, if the covariance has a long, flat
tail, the minimum norm interpolant can hide the noise in these many
unimportant directions.

o Relies on overparameterization
@ ... and lots of unimportant parameters
@ Can we extend these results to interpolating deep networks?

o What is the analog of the minimum norm linear prediction rule?
o What role does the optimization method play?




