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The statistics of deep learning: fit versus complexity

Use training data to choose parameters

Use training data to choose parameters

What determines prediction accuracy?

(microsoft.com) (Johnson et al, 2016) (Lee et al, 2009)
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The statistics of deep learning: fit versus complexity

Typical theorem

prediction error ≤ training error + complexity penalty

Outline

Empirical process theory for classificationEmpirical process theory
for classification

Margins analysis: relating classification to regression

Interpolation: Where is the tradeoff between fit and complexity?

Interpolation in linear regression

Problem formulation

Independent training data (x1, y1), . . . , (xn, yn) ∼ P

Prediction rule f : X → Y
Loss `(y , f (x))

Prediction error: E`(y , f (x))
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VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi ) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, and p parameters, with the following nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)
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Generalization in Neural Networks: Number of Parameters

NIPS 1996
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Generalization: Margins and Size of Parameters

With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X )) 6= Y ) ≤ 1

n

n∑
i=1

`(Yi , f (Xi )) + pn(F)

1. (B., 1996) ` = L-Lipschitz approximation of step function;
pn = (scale-sensitive dimension) = Õ((LB)d/

√
n).

2. (B. and Mendelson, 2000)
pn = (Rademacher averages) = Õ(LBd/

√
n).

3. (B., Foster and Telgarsky, 2017)
pn = (covering numbers) = Õ(LRd/

√
n).

The bound combines training error (with the L-Lipschitz surrogate
loss `) with a complexity penalty, pn(F).

pn(F) need not grow with the number of parameters.

e.g., F = d-layer sigmoid networks with each unit’s weights bounded
in 1-norm, that is, ‖w‖1 ≤ B.

pn(F) need not grow with the number of parameters.

e.g., F = ReLU networks with bounded spectral norms of weight
matrices W1, . . . ,Wd over the d layers: R = O(‖W1‖ · · · ‖Wd‖).

see also (Neyshabur, Tomioka and Srebro, 2015), (Golowich, Rakhlin and Shamir, 2018)
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Outline

Empirical process theory for classification

Margins analysis: relating classification to regression

Interpolation: Where is the tradeoff between fit and
complexity?

Interpolation in linear regression
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Interpolation in Deep Networks:
A New Challenge for Statistical Learning Theory

Deep networks can be trained to zero
training error (to machine precision)

... with near state-of-the-art
performance

... even for noisy problems.

No tradeoff between fit to training data
and complexity!

Pr(sign(f (X )) 6= Y ) ≤
1

n

n∑
i=1

`(Yi , f (Xi )) + pn(F)

(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) (Belkin, Hsu, Ma, Mandal, 2018)
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Interpolating Prediction Rules

Progress on interpolating prediction

Interpolating nearest neighbor rules in high dimensions
(Belkin, Hsu, Mitra, 2018)

Kernel regression with polynomial kernels
(Liang and Rakhlin, 2018)

Kernel smoothing with singular kernels
(Belkin, Rakhlin, Tsybakov, 2018)
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Interpolation in Linear Regression

Phil Long Gábor Lugosi Alexander Tsigler

Linear regression

Training data (x1, y1), . . . , (xn, yn) ∈ Rp × R.

Linear functions: fθ(x) = x>θ.

Squared error: `(y , fθ(x)) = (y − fθ(x))2.

Least squares linear prediction: θ∗ minimizes E`(y , fθ(x)).

Choose θ̂ to interpolate:
1

n

n∑
i=1

`(yi , fθ(xi )) = 0.

Hence, y1 = fθ̂(x1), . . . , yn = fθ̂(xn) (need p ≥ n).

Which interpolating fθ? Choose θ̂ to minimize ‖θ‖.
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Interpolation in Linear Regression

Interpolation for linear prediction

Excess expected loss, E`(y , fθ̂(x))− E`(y , fθ∗(x)) has two
components: (corresponding to fθ∗ (x) and y − fθ∗ (x))

1 θ̂ is a distorted version of θ∗, because the sample x1, . . . , xn distorts our
view of the covariance of x .

Not a problem, even in high dimensions (p > n).
2 θ̂ is corrupted by the noise in y1, . . . , yn.

Problematic in high dimensions.

When can we hide the label noise in θ̂ without hurting predictive
accuracy?
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Interpolation in Linear Regression

Accurate interpolating prediction as dimension pn grows

Suppose the covariance of x is in two pieces:

a constant piece (of dimension k), and
a ‘tail’ (of dimension pn − k)) that gets longer and flatter with n.

Denote the variance in the ‘tail’ directions γ1 ≥ · · · ≥ γpn−k .

Theorem

If the ‘tail’ is long and flat:

a small proportion of variance in any direction,
γ1∑
i γi

= o(1/n),

total variance
∑

i γi = o(n),

then for jointly gaussian (x, y), with high probability,

E`(y , fθ̂(x))− E`(y , fθ∗(x)) = O

((
k

n

)1/4

+

(
nγ1∑
i γi

)1/4
)
→ 0.
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Interpolating prediction

Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

In high-dimensional linear regression, if the covariance has a long, flat
tail, the minimum norm interpolant can hide the noise in these many
unimportant directions.

Relies on overparameterization
... and lots of unimportant parameters

Can we extend these results to interpolating deep networks?

What is the analog of the minimum norm linear prediction rule?
What role does the optimization method play?
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