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VC-Dimension of Neural Networks

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth



VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q Sigmoid: VCdim(F) = O (p?k?).
(Karpinsky and Maclntyre, 1994))




Generalization in Neural Networks: Number of Parameters

rIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.
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Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

o We call yf(x) the margin of f on x.
@ We can view a larger margin as a more confident correct classification.

@ Minimizing a continuous loss, such as
n
Z 2
i=1
encourages large margins.

o For large-margin classifiers, we should expect the fine-grained details
of f to be less important.




Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O ( ftf“)
i=1

2. If functions in F are computed by L-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fatz(7) = O((B/7)L).

@ The bound depends on the margin loss plus a complexity term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

e fat () is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.
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Recall: Rademacher Complexity Structural Results

Q@ F C G implies | RyllF < [[Rolc.
@ [IRollcr = lellIRullr-

© For [¢(X)] < L, [El|Ralr+ — EllRollel < v/2log2/n.
Q ||Rnllcor = ||Rnl|F, where coF is the convex hull of F.

@ If ¢ : R x Z has a — ¢(a, z) 1-Lipschitz for all z and ¢(0,z) =0,
then for 6(F) = {2 6(F(2), 2)}, El|Rallagr) < 2E|Rall£.




Rademacher Complexity for Lipschitz Loss

Example

To analyze ERM over F : X — ) with loss ¢, we want |[P — P,||¢ small,
where

f[: = {(X,y) r—)f(f(X),y) f € F}’

If £(-,y) is 1-Lipschitz, then we can define ¢(a, (x,y)) = (o, y) — £(0, y)
and

O(F) = {(x,y) = Uf(x),y) = €(0,y) : f € F}
.

Then (5) implies E||Rnl[4(Fy) < 2E| Rnl|F.
And if [¢| <1, (3) implies E||Rqll¢, < 2E|[Rnl|lF + 1/2l0og2/n.




Rademacher Complexity for Lipschitz Loss

@ Classification loss is not Lipschitz!
o Consider the 1/v-Lipschitz loss

1 if « <0,
dla)=91—a/y fO0<a<y,
0 if > 1.

@ Large margin loss is an upper bound and classification loss is a lower
bound:

1[YF(X) < 0] < ¢(YF(X)) < 1[YF(X) <~].

@ So if we can relate the Lipschitz risk P¢( Y7 (X)) to the Lipschitz
empirical risk P,o(Yf (X)), we have a large margin bound:

P1[Yf(X) < 0] < Po(YF(X)) c.f. Paop(YF(X)) < Po1[YF(X) <]



Rademacher Complexity for Lipschitz Loss

PYF(X) < 0] < Po(YF(X))
< Pg(YF(X)) + “E|Rille + O(1/v/n)

< Pal[YF(X) < 9] + K| Rolle + O(1/ V)

with high probability.

Notice that we've turned a classification problem into a regression problem.
The VC-dimension (which captures arbitrarily fine-grained properties of
the function class) is no longer important.

This is only an upper bound, but there are comparison theorems that
relate the excess risk to the excess ¢-risk.



Rademacher Averages for Sigmoid Networks

Consider the following class Fpg of two-layer neural networks:

k
Fg = {x — ZW;O’ (v,-TX) cw; >0, ||wlji < B, ||vili £ B, k> 1},
i=1

where B > 0 and the nonlinear function ¢ : R — R satisfies the Lipschitz
condition, |o(a) — o(b)| < |a — b|, and o(0) = 0. Suppose that the
distribution is such that | X||ooc <1 a.s. Then

2log2d
E|Rolly < B2/ —2—,

where d is the dimension of the input space, X = RY.




Rademacher Averages for Sigmoid Networks: Proof

Recall the notation
k
= {Z‘“f’ k2Lai20fali=17¢ F}.
i=1

Define

G i={(x1,...,xq) = x; : 1 <j<d},

d
Vg = {Xi—> Vix vl = Z|Vi| < B}

i=1
= Beo ({0} UG U —G)
= Bco (G U —G)



Rademacher Averages for Sigmoid Networks: Proof

k k
Fg = {XP—)ZW,'O'(V,'(X)) | k>1,w; > O,ZW,- <B,y EVB}

i=1 i=1

= Bco ({0} Uo o Vg) = Bco(o o Vp)
Ry(Fg) = Ry (Bco (o 0 Vg))

= BR,(co(o 0 Vpg))

= BR, (0 0 V)

< BRA(VB)

= BR, (Bco (G U —G))

= B’R,(GU—G)

< g2 /2log (2d)
— n .
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RelLU Networks

@ The sigmoid nonlinearity is convenient, because it ensures
boundedness (in ¢+,) of the inputs to each layer.

@ What about nonlinearities like the ReLU’s, which is Lipschitz, but
unbounded?

@ We also need to keep control of the scale of the vectors that are
computed throughout the network.




Networks with Lipschitz Nonlinearities

Theorem (B., Foster, Telgarsky, 2017)

With high probability over n training examples
(X1, Y1), ..., (Xn, Ya) € X x {£1}, every fyy with Ry < r has

Pr(sign(f(X)) # Y) < ,172 1[Yif(X;) <~]+ O (erﬁ>

Here, fiyy is computed in a network with L layers and parameters
Wi, ..., W;:

fw(X) = O'L(W[_O'Lfl(WLfl 000 01(W1X) 000 )),

where the o; are 1-Lipschitz, and we measure the scale of fi/ using a
product of norms of the matrices W;,

for example, r :=JT-_, | Wil (ZL “Wi“i,/ls)s/z.

i=1 2/3
w12/

The proof uses a covering numbers argument.



RelLU Networks

Using the positive homogeneity property of the ReLU nonlinearity (that is,
for all @ > 0 and x € R, o(ax) = ao(x)) gives an elegant argument (due
to Gollowich, Rakhlin and Shamir) to bound the Rademacher complexity.

Theorem

With high probability over n training examples
(X1, Y1), ..., (Xn, Yn) € X x {£1} with || Xi|| <1as., every f € .7:55 has

(2B)"
ke

where f € Ff g is an L-layer network of the form

Rn(FFB) <

Frgi=Wio(Wi_1---o(Wix)---),

o is 1-Lipschitz, positive homogeneous (that is, for all @ > 0 and x € R,
o(ax) = ao(x)), and applied componentwise, and ||Wi||r < B.
(W, is a row vector.)




ReLU Networks: Proof

(Write E, as the conditional expectation given the data.)

E.
fEF, ||W||F<B

£(X)

1
< 2BE, sup —
fer n

2 2

Iterating this and using Jensen's inequality proves the theorem:

n n 2
gll D Xl | X, Xn gl E| > eXi| | X,..., X,
i=1 2 n\ i=1 2
1
ZH\ZHXI 7




ReLU Networks: Proof

For WT = (wy ---wy), we use positive homogeneity:

k n 2
= Z (Z 6,'0'(VVJ-T f(X,')))

j=1 \i=1

k n WT 2
=S wil? (D eio | 7Z(3) | |
= — [[wj|
and

n WT 2
sup [ w;|? eio [ —L—f(x
||WHF<BJZ; ! z:: [[w; i ()

:H Il= 1” ! <BZZO‘ (Zea W; f(x,))) = B? sup (Ze;o (WTf(X,-))> ,

n 2

Z eiU(Wf(X,'))

i=1

lw=1 i=1

then apply the Ledoux-Talagrand contraction and Cauchy-Schwartz inequalities



Uniform laws of large numbers

Rademacher complexity and uniform laws
(Concentration. Symmetrization. Restrictions.)

Controlling Rademacher complexity:
e Growth function
o VC-dimension
e Structural results for Rademacher complexity
@ Neural networks
VC-dimension
o Large margin classifiers
o Rademacher averages for sigmoid networks
o Rademacher averages for ReLU networks

Interpolating prediction rules




Generalization: Margins and Size of Parameters

@ A classification problem becomes a regression problem if we use a loss
function that doesn't vary too quickly.

@ For regression, the complexity of a neural network is controlled by the
size of the parameters, and can be independent of the number of
parameters.

@ We have a tradeoff between the fit to the training data (margins) and
the complexity (size of parameters):

n

Pr(sign(F(X)) # Y) < - > (Y5, F(X) + pa(F)
i=1

@ Even if the training set is classified correctly, it might be worthwhile
to increase the complexity, to improve this loss function.




Interpolation in Deep Networks:

A New Challenge for Statistical Learning Theory

4.0
=—a |nception

35 o—0 AlexNet -
£ ollo— mip 112 @ Deep networks can be trained to zero
o .. .
8,5 training error (for regression loss)
£20 @ ... with near state-of-the-art

L performance

1.0 .

00 02 04 06 08 10 @ ... even for noisy problems.

label corruption

@ No tradeoff between fit to training data
and complexity!
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Pr(sign(f(X)) # Y) < EZ Yi, £(X;)) + pa(F)
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o
(Zhang, Bengio, Hardt, Recht, Vinyals, 2017) (Belkin, Hsu, Ma, Mandal, 2018)



Interpolating Prediction Rules

Progress on interpolating prediction

@ Interpolating nearest neighbor rules in high dimensions

(Belkin, Hsu, Mitra, 2018)

o Kernel regression with polynomial kernels

(Liang and Rakhlin, 2018)

@ Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)
y




Interpolation in Linear Regression

Phil Long Gébor Lugosi Alexander Tsigler

Linear regression

e Training data (x1,y1),--.,(Xn,¥n) € RP x R.

o Linear functions: fy(x) = x"6.
@ Squared error: £(y, fy(x)) = (v — fo(x))>.

o Least squares linear prediction: 8* minimizes E4(y, fy(x)).

A 1w
Ch 0 to int late: — Uy, fa(x;)) = 0.
oose § to interpolate: — ’Z:; (vi, fa(xi)) =0
Hence, y1 = f3(x1), ..., yn = f3(xa) (need p > n).

e Which interpolating f? Choose  to minimize ||0).




Interpolation in Linear Regression

Think of this optimization as

min 0]
s.t. Zﬁ(y;,fe(X;)) <,
i—1

with C = 0. Compare this to

i i fo(xi ;
3o ) A1

or min Zé(y,-,fg(x,-))
i=1

s.t. 0] < B.



Interpolation in Linear Regression

We have

0=(XTX)TxTy
= (XTX)IXT(X0" +¢),

so
E(x"0—y)? —E(x"0" — y)?

—Eo*T (/ - iif) (z - z) (/ - iTi) 0" + ETr <z (XTX>T> .



Interpolation in Linear Regression

Interpolation for linear prediction

o Excess expected loss, El(y, f3(x)) — El(y, fp<(x)) has two
components: (corresponding to fg« (x) and y — fyx (x))

@ 0 is a distorted version of 8%, because the sample xg, ..., x, distorts our
view of the covariance of x.

Not a problem, even in high dimensions (p > n).
@ 0 is corrupted by the noise in yq,...,y,.

Problematic in high dimensions.

@ When can we hide the label noise in § without hurting predictive
accuracy?




Interpolation in Linear Regression

Accurate interpolating prediction as dimension p,, grows

@ Split the covariance of x into two pieces:

e a big piece of dimension k, and
o a ‘tail' (of dimension p, — k))—that gets longer and flatter with n.

@ Denote the variance in the first k directions as A\1 > --- > A,
@ and the variance in the ‘tail’ directions as A1 > -+ > Ap,.
TR
@ Denote I’k(Z) = )\7 Z A
]
(This is the scale of the variance tail, relative to its highest variance.)
1P
@ Also write rp(X) = — A
0( ) )\1 Z; i
=




Interpolation in Linear Regression

If k = o(n) and the ‘tail’ is long and flat:

@ a small proportion of variance in any direction, ri(X) = w(n), that is,

Ak41
=o(1/n),
Zi>k Aj

@ total variance not too large, ro(X) = o(n),

then for jointly gaussian (x,y),

E(y, f5(x)) — EAy, fy- (x)) = o( nE) 1, ") Lo,

1 oo
Ak+1 Z Al

i=k+1

where r(X) =

There is also a (weaker) lower bound in terms of n/r(X).



Interpolating Prediction

@ Interpolation: far from the regime of a tradeoff between fit to training
data and complexity.

@ In high-dimensional linear regression, if the covariance has a long, flat
tail, the minimum norm interpolant can hide the noise in these many
unimportant directions.

o Relies on overparameterization
@ ... and lots of unimportant parameters
@ Can we extend these results to interpolating deep networks?

o What is the analog of the minimum norm linear prediction rule?
o What role does the optimization method play?
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