Generalization in Deep Networks. II.

Peter Bartlett

UC Berkeley

March 20, 2019

Outline

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules

VC-Dimension of Neural Networks

Theorem (Vapnik and Chervonenkis)

Suppose $\mathcal{F} \subseteq \{-1,1\}^{\mathcal{X}}$.

For every prob distribution P on $\mathcal{X} \times \{-1, 1\}$, with probability $1 - \delta$ over n iid examples $(x_1, y_1), \ldots, (x_n, y_n)$, every f in \mathcal{F} satisfies

$$P(f(x) \neq y) \leq \frac{1}{n} \left| \left\{ i : f(x_i) \neq y_i \right\} \right| + \left(\frac{c}{n} \left(\operatorname{VCdim}(\mathcal{F}) + \log(1/\delta) \right) \right)^{1/2}.$$

- For uniform bounds (that is, for all distributions and all $f \in \mathcal{F}$, proportions are close to probabilities), this inequality is tight within a constant factor.
- For neural networks, VC-dimension:
 - increases with number of parameters
 - depends on nonlinearity and depth

VC-Dimension of Neural Networks

Theorem

Consider the class \mathcal{F} of $\{-1,1\}$ -valued functions computed by a network with L layers, p parameters, and k computation units with the following nonlinearities:

• Piecewise constant (linear threshold units):

$$VCdim(\mathcal{F}) = \tilde{O}(p).$$

(Baum and Haussler, 1989)

Piecewise linear (ReLUs):

$$VCdim(\mathcal{F}) = \tilde{O}(pL).$$

(B., Harvey, Liaw, Mehrabian, 2017)

$$\operatorname{VCdim}(\mathcal{F}) = \tilde{O}(\rho L^2).$$

(B., Maiorov, Meir, 1998)

$$VCdim(\mathcal{F}) = \tilde{O}(p^2k^2).$$

(Karpinsky and MacIntyre, 1994)

Generalization in Neural Networks: Number of Parameters

NeurIPS 1996

Experimental Results

Neural networks with many parameters, trained on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.

Number of weights Number of patterns

Outline

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules

Large-Margin Classifiers

- Consider a real-valued function $f: \mathcal{X} \to \mathbb{R}$ used for classification.
- The prediction on $x \in \mathcal{X}$ is $sign(f(x)) \in \{-1, 1\}$.
- For a pattern-label pair $(x, y) \in \mathcal{X} \times \{-1, 1\}$, if yf(x) > 0 then f classifies x correctly.
- We call yf(x) the margin of f on x.
- We can view a larger margin as a more confident correct classification.
- Minimizing a continuous loss, such as

$$\sum_{i=1}^n (f(X_i) - Y_i)^2,$$

encourages large margins.

 For large-margin classifiers, we should expect the fine-grained details of f to be less important.

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples

$$(X_1, Y_1), \dots, (X_n, Y_n) \in \mathcal{X} \times \{\pm 1\}, \text{ every } f \in \mathcal{F} \subset \mathbb{R}^{\mathcal{X}} \text{ has}$$

$$\Pr(\operatorname{sign}(f(X)) \neq Y) \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[Y_i f(X_i) \leq \gamma] + \tilde{O}\left(\sqrt{\frac{\operatorname{fat}_{\mathcal{F}}(\gamma)}{n}}\right).$$

2. If functions in \mathcal{F} are computed by L-layer sigmoid networks with each unit's weights bounded in 1-norm, that is, $\|w\|_1 \leq B$, then

$$\operatorname{fat}_{\mathcal{F}}(\gamma) = \tilde{O}((B/\gamma)^L).$$

- The bound depends on the margin loss plus a complexity term.
- Minimizing quadratic loss or cross-entropy loss leads to large margins.
- $fat_{\mathcal{F}}(\gamma)$ is a scale-sensitive version of VC-dimension. Unlike the VC-dimension, it need not grow with the number of parameters.

Outline

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules

Recall: Rademacher Complexity Structural Results

Theorem

- $\bullet F \subseteq G \text{ implies } ||R_n||_F \leq ||R_n||_G.$
- $||R_n||_{cF} = |c| ||R_n||_F.$
- **3** For $|g(X)| \le 1$, $|\mathbb{E}||R_n||_{F+g} \mathbb{E}||R_n||_F| \le \sqrt{2\log 2/n}$.
- $||R_n||_{coF} = ||R_n||_F$, where coF is the convex hull of F.
- If $\phi : \mathbb{R} \times \mathcal{Z}$ has $\alpha \mapsto \phi(\alpha, z)$ 1-Lipschitz for all z and $\phi(0, z) = 0$, then for $\phi(F) = \{z \mapsto \phi(f(z), z)\}, \ \mathbb{E} \|R_n\|_{\phi(F)} \le 2\mathbb{E} \|R_n\|_F$.

Rademacher Complexity for Lipschitz Loss

Example

To analyze ERM over $F: \mathcal{X} \to \mathcal{Y}$ with loss ℓ , we want $\|P - P_n\|_{\ell_F}$ small, where

$$\ell_F := \{(x,y) \mapsto \ell(f(x),y) : f \in F\},\,$$

If $\ell(\cdot,y)$ is 1-Lipschitz, then we can define $\phi(\alpha,(x,y))=\ell(\alpha,y)-\ell(0,y)$ and

$$\phi(F) = \{(x, y) \mapsto \ell(f(x), y) - \ell(0, y) : f \in F\}$$

= $\ell_F - \ell_0$.

Then (5) implies $\mathbb{E}||R_n||_{\phi(F)} \leq 2\mathbb{E}||R_n||_F$.

And if $|\ell| \leq 1$, (3) implies $\mathbb{E} \|R_n\|_{\ell_F} \leq 2\mathbb{E} \|R_n\|_F + \sqrt{2\log 2/n}$.

Rademacher Complexity for Lipschitz Loss

- Classification loss is not Lipschitz!
- ullet Consider the $1/\gamma$ -Lipschitz loss

$$\phi(\alpha) = \begin{cases} 1 & \text{if } \alpha \leq 0, \\ 1 - \alpha/\gamma & \text{if } 0 < \alpha < \gamma, \\ 0 & \text{if } \alpha \geq 1. \end{cases}$$

 Large margin loss is an upper bound and classification loss is a lower bound:

$$1[Yf(X) \le 0] \le \phi(Yf(X)) \le 1[Yf(X) \le \gamma].$$

• So if we can relate the Lipschitz risk $P\phi(Yf(X))$ to the Lipschitz empirical risk $P_n\phi(Yf(X))$, we have a large margin bound:

$$P1[Yf(X) \le 0] \le P\phi(Yf(X)) \text{ c.f. } P_n\phi(Yf(X)) \le P_n1[Yf(X) \le \gamma].$$

Rademacher Complexity for Lipschitz Loss

$$P1[Yf(X) \le 0] \le P\phi(Yf(X))$$

$$\le P_n\phi(Yf(X)) + \frac{c}{\gamma}\mathbb{E}||R_n||_F + O(1/\sqrt{n})$$

$$\le P_n1[Yf(X) \le \gamma] + \frac{c}{\gamma}\mathbb{E}||R_n||_F + O(1/\sqrt{n})$$

with high probability.

Notice that we've turned a classification problem into a regression problem.

The VC-dimension (which captures arbitrarily fine-grained properties of the function class) is no longer important.

This is only an upper bound, but there are comparison theorems that relate the *excess* risk to the excess ϕ -risk.

Rademacher Averages for Sigmoid Networks

Theorem

Consider the following class \mathcal{F}_B of two-layer neural networks:

$$\mathcal{F}_{B} = \left\{ x \mapsto \sum_{i=1}^{k} w_{i} \sigma\left(v_{i}^{T} x\right) : w_{i} \geq 0, \ \|w\|_{1} \leq B, \ \|v_{i}\|_{1} \leq B, \ k \geq 1 \right\},$$

where B>0 and the nonlinear function $\sigma:\mathbb{R}\to\mathbb{R}$ satisfies the Lipschitz condition, $|\sigma(a)-\sigma(b)|\leq |a-b|$, and $\sigma(0)=0$. Suppose that the distribution is such that $\|X\|_{\infty}\leq 1$ a.s. Then

$$\mathbb{E}||R_n||_{\mathcal{F}_B} \leq B^2 \sqrt{\frac{2\log 2d}{n}},$$

where d is the dimension of the input space, $\mathcal{X} = \mathbb{R}^d$.

Rademacher Averages for Sigmoid Networks: Proof

Recall the notation

$$co(F) = \left\{ \sum_{i=1}^{k} \alpha_i f_i : k \ge 1, \alpha_i \ge 0, \|\alpha\|_1 = 1, f_i \in F \right\}.$$

Define

$$\mathcal{G} := \{ (x_1, \dots, x_d) \mapsto x_j : 1 \le j \le d \},$$

$$\mathcal{V}_B := \left\{ x \mapsto v'x : \|v\|_1 = \sum_{i=1}^d |v_i| \le B \right\}$$

$$= Bco(\{0\} \cup \mathcal{G} \cup -\mathcal{G})$$

$$= Bco(\mathcal{G} \cup -\mathcal{G})$$

Rademacher Averages for Sigmoid Networks: Proof

$$\mathcal{F}_{B} = \left\{ x \mapsto \sum_{i=1}^{k} w_{i} \sigma(v_{i}(x)) \mid k \geq 1, w_{i} \geq 0, \sum_{i=1}^{k} w_{i} \leq B, v_{i} \in \mathcal{V}_{B} \right\}$$

$$= B \operatorname{co} \left(\{0\} \cup \sigma \circ \mathcal{V}_{B} \right) = B \operatorname{co} \left(\sigma \circ \mathcal{V}_{B} \right)$$

$$R_{n}(\mathcal{F}_{B}) = R_{n} \left(B \operatorname{co} \left(\sigma \circ \mathcal{V}_{B} \right) \right)$$

$$= B R_{n} \left(\operatorname{co} \left(\sigma \circ \mathcal{V}_{B} \right) \right)$$

$$= B R_{n} \left(\sigma \circ \mathcal{V}_{B} \right)$$

$$\leq B R_{n} (\mathcal{V}_{B})$$

$$= B R_{n} \left(B \operatorname{co} \left(\mathcal{G} \cup -\mathcal{G} \right) \right)$$

$$= B^{2} R_{n} \left(\mathcal{G} \cup -\mathcal{G} \right)$$

$$\leq B^{2} \sqrt{\frac{2 \log \left(2d \right)}{n}}.$$

Outline

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules

ReLU Networks

- The sigmoid nonlinearity is convenient, because it ensures boundedness (in ℓ_{∞}) of the inputs to each layer.
- What about nonlinearities like the ReLU's, which is Lipschitz, but unbounded?
- We also need to keep control of the scale of the vectors that are computed throughout the network.

Networks with Lipschitz Nonlinearities

Theorem (B., Foster, Telgarsky, 2017)

With high probability over n training examples $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{\pm 1\}$, every f_W with $R_W \leq r$ has

$$\Pr(\operatorname{sign}(f(X)) \neq Y) \leq \frac{1}{n} \sum_{i=1}^{n} 1[Y_i f(X_i) \leq \gamma] + \tilde{O}\left(\frac{rL}{\gamma \sqrt{n}}\right).$$

Here, f_W is computed in a network with L layers and parameters W_1, \ldots, W_L :

$$f_W(x) := \sigma_L(W_L \sigma_{L-1}(W_{L-1} \cdots \sigma_1(W_1 x) \cdots)),$$

where the σ_i are 1-Lipschitz, and we measure the scale of f_W using a product of norms of the matrices W_i ,

for example,
$$r := \prod_{i=1}^{L} \|W_i\|_* \left(\sum_{i=1}^{L} \frac{\|W_i\|_{2,1}^{2/3}}{\|W_i\|_{2,1}^{2/3}}\right)^{3/2}$$
.

The proof uses a covering numbers argument.

ReLU Networks

Using the positive homogeneity property of the ReLU nonlinearity (that is, for all $\alpha \geq 0$ and $x \in \mathbb{R}$, $\sigma(\alpha x) = \alpha \sigma(x)$) gives an elegant argument (due to Gollowich, Rakhlin and Shamir) to bound the Rademacher complexity.

Theorem

With high probability over n training examples

$$(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathcal{X} imes\{\pm 1\}$$
 with $\|X_i\|\leq 1$ a.s., every $f\in\mathcal{F}_{L,B}^F$ has

$$R_n(\mathcal{F}_{F,B}) \leq \frac{(2B)^L}{\sqrt{n}},$$

where $f \in \mathcal{F}_{F,B}$ is an *L*-layer network of the form

$$\mathcal{F}_{F,B} := W_L \sigma(W_{L-1} \cdots \sigma(W_1 x) \cdots),$$

 σ is 1-Lipschitz, positive homogeneous (that is, for all $\alpha \geq 0$ and $x \in \mathbb{R}$, $\sigma(\alpha x) = \alpha \sigma(x)$), and applied componentwise, and $\|W_i\|_F \leq B$. (W_L is a row vector.)

ReLU Networks: Proof

(Write \mathbb{E}_{ϵ} as the conditional expectation given the data.)

Lemma

$$\mathbb{E}_{\epsilon} \sup_{f \in F, \|W\|_{F} \leq B} \frac{1}{n} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma(Wf(X_{i})) \right\|_{2} \leq 2B \mathbb{E}_{\epsilon} \sup_{f \in F} \frac{1}{n} \left\| \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \right\|_{2}.$$

Iterating this and using Jensen's inequality proves the theorem:

$$\mathbb{E}\left[\frac{1}{n}\left\|\sum_{i=1}^{n}\epsilon_{i}X_{i}\right\|_{2}\left|X_{1},\ldots,X_{n}\right] \leq \frac{1}{n}\sqrt{\mathbb{E}\left[\left\|\sum_{i=1}^{n}\epsilon_{i}X_{i}\right\|_{2}^{2}\left|X_{1},\ldots,X_{n}\right]\right]}$$

$$=\frac{1}{n}\sqrt{\sum_{i=1}^{n}\left\|X_{i}\right\|_{2}^{2}} \leq \frac{1}{\sqrt{n}}.$$

ReLU Networks: Proof

For $W^{\top} = (w_1 \cdots w_k)$, we use positive homogeneity:

$$\begin{split} \left\| \sum_{i=1}^{n} \epsilon_{i} \sigma(W f(x_{i})) \right\|^{2} &= \sum_{j=1}^{k} \left(\sum_{i=1}^{n} \epsilon_{i} \sigma(w_{j}^{\top} f(x_{i})) \right)^{2} \\ &= \sum_{j=1}^{k} \|w_{j}\|^{2} \left(\sum_{i=1}^{n} \epsilon_{i} \sigma\left(\frac{w_{j}^{\top}}{\|w_{j}\|} f(x_{i}) \right) \right)^{2}, \end{split}$$

and

$$\begin{split} \sup_{\|W\|_{F} \leq B} \sum_{j=1}^{k} \|w_{j}\|^{2} \left(\sum_{i=1}^{n} \epsilon_{i} \sigma \left(\frac{w_{j}^{\top}}{\|w_{j}\|} f(x_{i}) \right) \right)^{2} \\ = \sup_{\|w_{j}\|=1; \|\alpha\|_{1} \leq B^{2}} \sum_{i=1}^{k} \alpha_{j} \left(\sum_{i=1}^{n} \epsilon_{i} \sigma \left(w_{j}^{\top} f(x_{i}) \right) \right)^{2} = B^{2} \sup_{\|w\|=1} \left(\sum_{i=1}^{n} \epsilon_{i} \sigma \left(w^{\top} f(x_{i}) \right) \right)^{2}, \end{split}$$

then apply the Ledoux-Talagrand contraction and Cauchy-Schwartz inequalities.

Outline

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules

Generalization: Margins and Size of Parameters

- A *classification* problem becomes a *regression* problem if we use a loss function that doesn't vary too quickly.
- For regression, the complexity of a neural network is controlled by the *size* of the parameters, and can be independent of the number of parameters.
- We have a tradeoff between the fit to the training data (margins) and the complexity (size of parameters):

$$\Pr(\operatorname{sign}(f(X)) \neq Y) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) + p_n(\mathcal{F})$$

 Even if the training set is classified correctly, it might be worthwhile to increase the complexity, to improve this loss function.

Interpolation in Deep Networks: A New Challenge for Statistical Learning Theory

- Deep networks can be trained to zero training error (for regression loss)
- ... with near state-of-the-art performance
- ... even for noisy problems.
- No tradeoff between fit to training data and complexity!

$$\Pr(\operatorname{sign}(f(X)) \neq Y) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f(X_i)) + \rho_n(\mathcal{F})$$

Interpolating Prediction Rules

Progress on interpolating prediction

• Interpolating nearest neighbor rules in high dimensions

(Belkin, Hsu, Mitra, 2018)

• Kernel regression with polynomial kernels

(Liang and Rakhlin, 2018)

Kernel smoothing with singular kernels

(Belkin, Rakhlin, Tsybakov, 2018)

Phil Long

Gábor Lugosi

Alexander Tsigler

Linear regression

- Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$.
- Linear functions: $f_{\theta}(x) = x^{\top} \theta$.
- Squared error: $\ell(y, f_{\theta}(x)) = (y f_{\theta}(x))^2$.
- Least squares linear prediction: θ^* minimizes $\mathbb{E}\ell(y, f_{\theta}(x))$.
- Choose $\hat{\theta}$ to interpolate: $\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)) = 0$. Hence, $y_1 = f_{\hat{\theta}}(x_1), \dots, y_n = f_{\hat{\theta}}(x_n)$ (need $p \ge n$).
- Which interpolating f_{θ} ? Choose $\hat{\theta}$ to minimize $\|\theta\|$.

Think of this optimization as

$$\min_{\theta} \qquad \|\theta\|$$
s.t. $\sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)) \leq C,$

with C = 0. Compare this to

$$\begin{aligned} & & & \min_{\theta} & & & \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)) + \lambda \|\theta\|, \\ & & \text{or} & & & \min_{\theta} & & \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i)) \\ & & & \text{s.t.} & & \|\theta\| \leq B. \end{aligned}$$

We have

$$\hat{\theta} = (X^{\top}X)^{\dagger}X^{\top}y$$

= $(X^{\top}X)^{\dagger}X^{\top}(X\theta^* + \epsilon),$

SO

$$\mathbb{E}(x^{\top}\hat{\theta} - y)^{2} - \mathbb{E}(x^{\top}\theta^{*} - y)^{2}$$

$$= \mathbb{E}\theta^{*\top} \left(I - \hat{\Sigma}\hat{\Sigma}^{\dagger}\right) \left(\Sigma - \hat{\Sigma}\right) \left(I - \hat{\Sigma}^{\dagger}\hat{\Sigma}\right) \theta^{*} + \mathbb{E}\operatorname{Tr}\left(\Sigma \left(X^{\top}X\right)^{\dagger}\right).$$

Interpolation for linear prediction

- Excess expected loss, $\mathbb{E}\ell(y, f_{\hat{\theta}}(x)) \mathbb{E}\ell(y, f_{\theta^*}(x))$ has two components: (corresponding to $f_{\theta^*}(x)$ and $y f_{\theta^*}(x)$)
 - **1** $\hat{\theta}$ is a distorted version of θ^* , because the sample x_1, \ldots, x_n distorts our view of the covariance of x

Not a problem, even in high dimensions (p > n).

② $\hat{\theta}$ is corrupted by the noise in y_1, \ldots, y_n .

Problematic in high dimensions.

• When can we hide the label noise in $\hat{\theta}$ without hurting predictive accuracy?

Accurate interpolating prediction as dimension p_n grows

- Split the covariance of x into two pieces:
 - a big piece of dimension k, and
 - a 'tail' (of dimension $p_n k$))—that gets longer and flatter with n.
- Denote the variance in the first k directions as $\lambda_1 \geq \cdots \geq \lambda_k$,
- ullet and the variance in the 'tail' directions as $\lambda_{k+1} \geq \cdots \geq \lambda_{p_n}$.
- Denote $r_k(\Sigma) = \frac{1}{\lambda_{k+1}} \sum_{i=k+1}^{p_m} \lambda_i$.

(This is the scale of the variance tail, relative to its highest variance.)

• Also write $r_0(\Sigma) = \frac{1}{\lambda_1} \sum_{i=1}^{p_n} \lambda_i$.

Theorem

If k = o(n) and the 'tail' is long and flat:

- a small proportion of variance in any direction, $r_k(\Sigma) = \omega(n)$, that is, $\frac{\lambda_{k+1}}{\sum_{i>k} \lambda_i} = o(1/n)$,
- total variance not too large, $r_0(\Sigma) = o(n)$,

then for jointly gaussian (x, y),

$$\mathbb{E}\ell(y, f_{\hat{ heta}}(x)) - \mathbb{E}\ell(y, f_{ heta^*}(x)) = \tilde{O}\left(\sqrt{rac{r_0(\Sigma)}{n}} + rac{n}{r_k(\Sigma)} + rac{k}{n}
ight) o 0,$$
 where $r_k(\Sigma) = rac{1}{\lambda_{k+1}} \sum_{i=k+1}^{\infty} \lambda_i.$

There is also a (weaker) lower bound in terms of $n/r_k(\Sigma)$.

Interpolating Prediction

- Interpolation: far from the regime of a tradeoff between fit to training data and complexity.
- In high-dimensional linear regression, if the covariance has a long, flat tail, the minimum norm interpolant can hide the noise in these many unimportant directions.
 - Relies on overparameterization
 - ... and lots of unimportant parameters
- Can we extend these results to interpolating deep networks?
 - What is the analog of the minimum norm linear prediction rule?
 - What role does the optimization method play?

Outline¹

- Uniform laws of large numbers
- Rademacher complexity and uniform laws (Concentration. Symmetrization. Restrictions.)
- Controlling Rademacher complexity:
 - Growth function
 - VC-dimension
 - Structural results for Rademacher complexity
- Neural networks
 - VC-dimension
 - Large margin classifiers
 - Rademacher averages for sigmoid networks
 - Rademacher averages for ReLU networks
- Interpolating prediction rules: A new challenge for statistical learning theory