Optimizing Probability Distributions for Learning: Sampling meets Optimization

Peter Bartlett

Computer Science and Statistics
UC Berkeley

March 25, 2019
Sampling Problems

Bayesian inference

Compute $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$.

Write the density of $P(\theta|D)$ as

$$\exp(-U(\theta)) \int \exp(-U(\theta)) \, d\theta.$$

Langevin diffusion

Simulate a stochastic differential equation:

$$dx_t = -\nabla U(x_t) \, dt + \sqrt{2} \, dB_t.$$

Stationary distribution has density $p^*(\theta) \propto \exp(-U(\theta))$.

www.analyticsvidhya.com
Sampling Problems

Prediction as a repeated game
- Player chooses action $a_t \in \mathcal{A}$,
- Adversary chooses outcome y_t,
- Player incurs loss $\ell(a_t, y_t)$.

Aim to minimize **regret**: $\sum_t \ell(a_t, y_t) - \min_a \sum_t \ell(a, y_t)$.

Exponential weights strategy
$$p_t(a) \propto \exp \left(- U(a) \right),$$
with $U(a) := \eta \sum_{s=1}^{t-1} \ell(a, y_s)$.

Langevin diffusion
Simulate a stochastic differential equation:
$$dx_t = -\nabla U(x_t) \, dt + \sqrt{2} \, dB_t.$$

Stationary distribution has density $p^*(a) \propto \exp(-U(a))$.
Sampling Algorithms

Langevin diffusion

SDE: \[dx_t = -\nabla U(x_t) \, dt + \sqrt{2} \, dB_t. \]

Stationary distribution has density \(p^* (\cdot) \propto \exp(-U(\cdot)). \)

Discrete Time: Langevin MCMC Sampler (Euler-Maruyama)

\[x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \quad \xi_k \sim \mathcal{N}(0, I). \]

- How close to the desired \(p^* \) is \(p_k \) (the density of \(x_k \))?
- How rapidly does it converge?

Viewpoint

Sampling as optimization over the space of probability distributions.
Parameter optimization in deep neural networks

- Use training data \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\) to choose parameters \(\theta\) of a deep neural network \(f_\theta : \mathcal{X} \rightarrow \mathcal{Y}\).

- Aim to minimize loss \(U(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_\theta(x_i))\).

- Gradient: \(\theta_{k+1} = \theta_k - \eta_k \nabla U(\theta_k)\)

- Stochastic gradient: Random \(\theta_0\), \(\theta_{k+1} = \theta_k - \eta_k \nabla \hat{U}_\xi(\theta_k)\)

- ... with minibatch gradient estimates, \(\hat{U}_\xi(\theta) = \frac{1}{\xi_k} \sum_{i \in \xi_k} \ell(y_i, f_\theta(x_i))\)

- What is the distribution of \(\theta_k\)?

- View stochastic gradient methods as sampling algorithms.

- How can we improve their performance?
Outline

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs
Discretization of the Langevin Diffusion

Langevin Markov Chain

Choose step-size η and simulate the Markov chain:

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \quad \xi_k \text{iid} \sim \mathcal{N}(0, I_d).$$

Gradient descent

$$x_{k+1} = x_k - \eta \nabla U(x_k)$$

Langevin Markov Chain

$$x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k$$
Langevin Diffusion as Gradient Flow

Langevin Diffusion in \mathbb{R}^d

$$dx_t = -\nabla U(x_t) \, dt + \sqrt{2} \, dB_t.$$

Gradient flow in $\mathcal{P}(\mathbb{R}^d)$

p_t minimizes $\frac{d}{dt} \mathcal{H}(p_t) + \frac{1}{2} |p_t'|^2$.

(Jordan, Kinderlehrer and Otto, 1998), (Ambrosio, Gigli and Savaré, 2005)
Sampling as Optimization

- Sampling algorithms can be viewed as deterministic optimization procedures over a space of probability distributions.
- Can we apply tools and techniques from optimization to sampling?

An Optimization Analysis in $\mathcal{P}(\mathbb{R}^d)$

Convergence of Langevin MCMC in KL-divergence.
Xiang Cheng and PB.

Xiang Cheng
Langevin MCMC

\[x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{2\eta} \xi_k, \quad \xi_k \overset{iid}{\sim} \mathcal{N}(0, I_d). \]

How does the density \(p_k \) of \(x_k \) evolve?

Theorem

For smooth, strongly convex \(U \), that is, \(\forall x, mI \preceq \nabla^2 U(x) \preceq LI \), suitably small \(\eta \) and \(k = \tilde{\Omega} \left(\frac{d}{\epsilon} \right) \) ensure that \(\mathcal{KL}(p^k || p^*) \leq \epsilon \).

Implies older bounds for TV and \(W_2 \):

For suitably small \(\eta \) and \(k = \tilde{\Omega} \left(\frac{d}{\epsilon^2} \right) \),

\(\| p_k - p^* \|_{TV} \leq \epsilon. \) \hspace{1cm} (Dalalyan, 2014)

\(W_2(p_k, p^*) \leq \epsilon. \) \hspace{1cm} (Durmus and Moullines, 2016)
Sampling as Optimization

- Sampling algorithms can be viewed as deterministic optimization procedures over the probability space.
- Can we apply tools and techniques from optimization to sampling?

Nesterov acceleration in $\mathcal{P}(\mathbb{R}^d)$

Underdamped Langevin MCMC: A non-asymptotic analysis.
Xiang Cheng, Niladri Chatterji, PB and Mike Jordan.
Nesterov acceleration in sampling

Kramers’ Equation (1940)

Stochastic differential equation:

\[
\begin{align*}
 dx_t &= v_t \, dt, \\
 dv_t &= -v_t \, dt - \nabla U(x_t) \, dt + \sqrt{2} \, dB_t,
\end{align*}
\]

where \(x_t, v_t \in \mathbb{R}^d \), \(U : \mathbb{R}^d \to \mathbb{R} \), \(dB_t \) is standard Brownian motion on \(\mathbb{R}^d \).

Define \(p_t \) as the density of \((x_t, v_t) \).

Under mild regularity assumptions, \(p_t \to p^* \):

\[
p^*(x) \propto \exp \left(-U(x) - \frac{1}{2} \|v\|_2^2 \right).
\]
Nesterov acceleration in sampling

(Overdamped) Langevin Diffusion

\[d x_t = -\nabla U(x_t) \, dt + \sqrt{2} \, d B_t. \]

Underdamped Langevin Diffusion

\[d x_t = v_t \, dt, \]
\[d v_t = -v_t \, dt - \nabla U(x_t) \, dt + \sqrt{2} \, d B_t. \]
Nesterov acceleration in sampling

Theorem

For smooth, strongly convex U, suitably small η and $k = \tilde{\Omega} \left(\frac{\sqrt{d}}{\epsilon} \right)$, underdamped Langevin MCMC gives $W_2(p_k, p^*) \leq \epsilon$.

Significantly faster than overdamped Langevin:

For suitably small η and $k = \tilde{\Omega} \left(\frac{d}{\epsilon^2} \right)$, $W_2(p_k, p^*) \leq \epsilon$.

(Durmus and Moullines, 2016)
Nonconvex potentials

Multi-modal p (nonconvex U)?

Nonconvex potentials

Assumptions

- Smooth everywhere: \(\nabla^2 U \preceq LI \).
- Strongly convex outside a ball:
 \[\forall x, y, \|x - y\|_2 \geq R \Rightarrow U(x) \geq U(y) + \langle U(y), x - y \rangle + \frac{m}{2}\|x - y\|_2^2. \]
Nonconvex potentials

Theorem

Suppose U is L-smooth and strongly convex outside a ball of radius R and η is suitably small.

1. If $k = \tilde{\Omega}\left(\frac{d}{\epsilon^2} \exp(LR^2)\right)$, then overdamped Langevin MCMC has $W_1(p_k, p^*) \leq \epsilon$.

2. If $k = \tilde{\Omega}\left(\frac{\sqrt{d}}{\epsilon} \exp(LR^2)\right)$, then underdamped Langevin MCMC has $W_1(p_k, p^*) \leq \epsilon$.

- We can think of LR^2 is a measure of non-convexity of U.
- The improvement from overdamped to underdamped is the same as in the convex case.
Outline

- The Langevin diffusion
- Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
- Sampling methods for optimization
 - Stochastic gradient methods as SDEs
Quantitative central limit theorems for discrete stochastic processes.
Xiang Cheng, PB and Mike Jordan.
Use training data \((x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\) to choose parameters \(\theta\) of a deep neural network \(f_{\theta} : \mathcal{X} \to \mathcal{Y}\).

Aim to minimize loss \(U(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(x_i))\).

Stochastic gradient: Random \(\theta_0\), \(\theta_{k+1} = \theta_k - \eta \nabla \hat{U}_{\xi_k}(\theta_k)\),

... with minibatch gradient estimates, \(\hat{U}_{\xi_k}(\theta) = \frac{1}{\xi_k} \sum_{i \in \xi_k} \ell(y_i, f_{\theta}(x_i))\).
Sampling Algorithms for Optimization

Definitions
- \(x_{k+1} = x_k - \eta \nabla U(x_k) + \sqrt{\eta} T_{\xi_k}(x_k) \), with \(\xi_k \sim \text{iid} \ q \).
- Define the covariance of the noise: \(\sigma_x^2 \equiv \mathbb{E}_\xi [T_{\xi}(x) T_{\xi}(x)^\top] \).
- Consider the SDE: \(\frac{dx_t}{dt} = -\nabla U(x_t) \ dt + \sqrt{2\sigma_{x_t}} dB_t \).
- Let \(p^* \) denote its stationary distribution.

Theorem
For \(U \) smooth, strongly convex, bounded third derivative, \(\sigma_x^2 \) uniformly bounded,
\(T_{\xi}() \) smooth, bounded third derivatives, \(\log p^* \) with bounded third derivatives,
If \(\eta \) is sufficiently small, \(W_2(\hat{p}, p^*) \leq \epsilon \),
and for \(k = \tilde{\Omega} \left(\frac{d_7}{\epsilon^2} \right) \), \(W_2(p_k, p^*) \leq \epsilon \).

The classical CLT (with \(U \) quadratic) shows that the \(1/\sqrt{k} \) rate is optimal.

Example: one dimension
\[
\frac{dx_t}{dt} = -\nabla U(x_t) \ dt + \sqrt{2\sigma_{x_t}} dB_t
\]

Compared to \(U(x) \), high-variance regions become flatter and have lower density.
The Langevin diffusion
Optimization theory for sampling methods
 - Convergence of Langevin MCMC in KL-divergence
 - Nesterov acceleration in sampling
 - The nonconvex case
Sampling methods for optimization
 - Stochastic gradient methods as SDEs