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Sampling Problems

Bayesian inference

Compute P(θ|D) = P(D|θ)P(θ)
P(D) .

Write the density of P(θ|D) as

exp(−U(θ))∫
exp(−U(θ)) dθ

.

www.analyticsvidhya.com

Langevin diffusion

Simulate a stochastic differential equation:

dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(θ) ∝ exp(−U(θ)).
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Sampling Problems

Prediction as a repeated game

Player chooses action at ∈ A,

Adversary chooses outcome yt ,

Player incurs loss `(at , yt).

Aim to minimize regret:∑
t `(at , yt)−mina

∑
t `(a, yt).

Exponential weights strategy

pt(a) ∝ exp (−U(a)) ,

with U(a) := η

t−1∑
s=1

`(a, ys).

Langevin diffusion

Simulate a stochastic differential equation:

dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(a) ∝ exp(−U(a)).
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Sampling Algorithms

Langevin diffusion

SDE: dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(·) ∝ exp(−U(·)).

Discrete Time: Langevin MCMC Sampler (Euler-Maruyama)

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk ∼ N (0, I ).

How close to the desired p∗ is pk (the density of xk)?

How rapidly does it converge?

Viewpoint

Sampling as optimization over the space of probability distributions.
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Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

Use training data (x1, y1), . . . , (xn, yn) ∈ X × Y to choose
parameters θ of a deep neural network fθ : X → Y.

Aim to minimize loss U(θ) =
1

n

n∑
i=1

`(yi , fθ(xi )).

Gradient: θk+1 = θk − ηk∇U(θk)

Stochastic gradient: Random θ0, θk+1 = θk − ηk∇Ûξk (θk)

... with minibatch gradient estimates, Ûξk (θ) =
1

ξk

∑
i∈ξk

`(yi , fθ(xi ))

What is the distribution of θk?

View stochastic gradient methods as sampling algorithms.

How can we improve their performance?

5 / 22



Outline

The Langevin diffusion

Optimization theory for sampling methods

Convergence of Langevin MCMC in KL-divergence
Nesterov acceleration in sampling
The nonconvex case

Sampling methods for optimization

Stochastic gradient methods as SDEs
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Discretization of the Langevin Diffusion

Langevin Markov Chain

Choose step-size η and simulate the Markov chain:

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk
iid∼ N (0, Id).

Gradient descent

xk+1 = xk − η∇U(xk)

Langevin Markov Chain

xk+1 = xk − η∇U(xk) +
√

2ηξk
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Langevin Diffusion as Gradient Flow

Langevin Diffusion in Rd

dxt = −∇U(xt) dt +
√

2 dBt .

Gradient flow in P(Rd)

pt minimizes d
dtH(pt) + 1

2 |p
′
t |2.

(Jordan, Kinderlehrer and Otto, 1998), (Ambrosio, Gigli and Savaré, 2005)

Richard Jordan David Kinderlehrer Felix Otto Luigi Ambrosio Nicola Gigli Giuseppe Savaré

pt is the distribution of xt .

H(p) := KL (p‖p∗).

|p′t | = limh→0
W2(pt ,pt+h)

h
.

W2 is the 2-Wasserstein metric.
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Sampling as Optimization

Sampling algorithms can be viewed as deterministic optimization
procedures over a space of probability distributions.

Can we apply tools and techniques from optimization to sampling?

Xiang Cheng

An Optimization Analysis in P(Rd)

Convergence of Langevin MCMC in KL-divergence.
Xiang Cheng and PB.
arXiv:1705.09048[stat.ML]; ALT 2018.
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Langevin MCMC

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk
iid∼ N (0, Id).

How does the density pk of xk evolve?

Theorem

For smooth, strongly convex U, that is, ∀x ,mI � ∇2U(x) � LI ,

suitably small η and k = Ω̃

(
d

ε

)
ensure that KL

(
pk‖p∗

)
≤ ε.

Implies older bounds for TV and W2:

For suitably small η and k = Ω̃

(
d

ε2

)
,

‖pk − p∗‖TV ≤ ε. (Dalalyan, 2014)

W2(pk , p
∗) ≤ ε. (Durmus and Moullines, 2016)

10 / 22



Sampling as Optimization

Sampling algorithms can be viewed as deterministic optimization
procedures over the probability space.

Can we apply tools and techniques from optimization to sampling?

Xiang Cheng Niladri Chatterji Mike Jordan

Nesterov acceleration in P(Rd)
Underdamped Langevin MCMC: A
non-asymptotic analysis.
Xiang Cheng, Niladri Chatterji, PB and
Mike Jordan.
arXiv:1707.03663 [stat.ML]; COLT18.
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Nesterov acceleration in sampling

Kramers’ Equation (1940)

Stochastic differential equation:

dxt = vt dt,

dvt = −vt dt︸ ︷︷ ︸
friction

−∇U(xt) dt︸ ︷︷ ︸
acceleration

+
√

2 dBt ,

where xt , vt ∈ Rd , U : Rd → R, dBt is standard
Brownian motion on Rd .

Define pt as the density of (xt , vt).
Under mild regularity assumptions, pt → p∗:

p∗(x) ∝ exp

(
−U(x)− 1

2
‖v‖2

2

)
.
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Nesterov acceleration in sampling

(Overdamped)
Langevin Diffusion

dxt = −∇U(xt) dt +
√

2 dBt .

Underdamped
Langevin Diffusion

dxt = vt dt,

dvt = −vt dt −∇U(xt) dt +
√

2 dBt .
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Nesterov acceleration in sampling

Theorem

For smooth, strongly convex U, suitably small η and k = Ω̃

(√
d

ε

)
,

underdamped Langevin MCMC gives W2(pk , p
∗) ≤ ε.

Significantly faster than overdamped Langevin:

For suitably small η and k = Ω̃

(
d

ε2

)
, W2(pk , p

∗) ≤ ε.
(Durmus and Moullines, 2016)
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Nonconvex potentials

Multi-modal p (nonconvex U)?

Xiang Cheng Niladri Chatterji Yasin Abbasi-Yadkori Mike Jordan

Sharp convergence rates for Langevin dynamics in the nonconvex setting.
Xiang Cheng, Niladri Chatterji, Yasin Abbasi-Yadkori, PB and Mike Jordan.
arXiv:1805.01648 [stat.ML].

15 / 22



Nonconvex potentials

Assumptions

Smooth everywhere: ∇2U � LI .

Strongly convex outside a ball:
∀x , y , ‖x − y‖2 ≥ R ⇒ U(x) ≥ U(y) + 〈U(y), x − y〉+ m

2 ‖x − y‖2
2.
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Nonconvex potentials

Theorem

Suppose U is L-smooth and strongly convex outside a ball of radius R and
η is suitably small.

1 If k = Ω̃

(
d

ε2
exp(LR2)

)
,

then overdamped Langevin MCMC has W1(pk , p
∗) ≤ ε.

2 If k = Ω̃

(√
d

ε
exp(LR2)

)
,

then underdamped Langevin MCMC has W1(pk , p
∗) ≤ ε.

We can think of LR2 is a measure of non-convexity of U.

The improvement from overdamped to underdamped is the same as
in the convex case.
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Outline

The Langevin diffusion

Optimization theory for sampling methods

Convergence of Langevin MCMC in KL-divergence
Nesterov acceleration in sampling
The nonconvex case

Sampling methods for optimization

Stochastic gradient methods as SDEs
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Sampling Algorithms for Optimization

Xiang Cheng Mike Jordan

Quantitative central limit theorems for discrete stochastic
processes.
Xiang Cheng, PB and Mike Jordan.
arXiv:1902.00832 [math.ST].
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Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

Use training data (x1, y1), . . . , (xn, yn) ∈ X × Y to choose parameters
θ of a deep neural network fθ : X → Y.

Aim to minimize loss U(θ) =
1

n

n∑
i=1

`(yi , fθ(xi )).

Stochastic gradient: Random θ0, θk+1 = θk − η∇Ûξk (θk),

... with minibatch gradient estimates, Ûξk (θ) =
1

ξk

∑
i∈ξk

`(yi , fθ(xi ))
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Sampling Algorithms for Optimization

Definitions

xk+1 = xk − η∇U(xk) +
√
ηTξk (xk), with ξk

iid∼ q.

Define the covariance of the noise: σ2
x := Eξ

[
Tξ(x)Tξ(x)>

]
.

Consider the SDE: dxt = −∇U(xt) dt +
√

2σxt dBt .

Let p∗ denote its stationary distribution.

Theorem
For U smooth, strongly convex, bounded third derivative, σ2

x uniformly bounded,

Tξ(·) smooth, bounded third derivatives, log p∗ with bounded third derivatives,

If η is sufficiently small, W2(p̂, p∗) ≤ ε, (x∞ ∼ p̂)

and for k = Ω̃
(
d7

ε2

)
, W2(pk , p

∗) ≤ ε. (xk ∼ pk)

The classical CLT (with U quadratic) shows that the 1/
√
k rate is

optimal.

Example: one dimension

dxt = −U ′(xt) dt +
√

2σxt dBt

p∗(x) ∝ exp (−H(x)) = exp

(
−
∫

U ′(x)

σ2
x

− log σ2
x

)
Compared to U(x), high-variance regions
become flatter and have lower density.
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