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Sampling Problems

Bayesian inference
Posterior Beliefs

Compute P(0|D) = %_

Write the density of P(6|D) as

exp(=U(0))
[ exp(—U(8)) db’

Evidence

Prior Beliefs

www.analyticsvidhya.com

Langevin diffusion

Simulate a stochastic differential equation:
dx; = =V U(x) dt + V2 dB;.

Stationary distribution has density p*(6) oc exp(—U(6)).




Sampling Problems

Prediction as a repeated game Exponential weights strategy

@ Player chooses action a; € A,

@ Adversary chooses outcome y;, pt(a) x exp (—U(a)),
o Player incurs loss ¢(a¢, yt). -1
with U(a) := nZﬂ(a,ys).

Aim to minimize regret:

Zt {(at, yt) — min, Zt U(a, yt).

s=1

Langevin diffusion

Simulate a stochastic differential equation:
dx; = —VU(x¢) dt + /2 dB;.

Stationary distribution has density p*(a) oc exp(—U(a)).




Sampling Algorithms

Langevin diffusion

SDE:  dx; = —VU(x;) dt + /2 dB;.
Stationary distribution has density p*(-) o< exp(—U(+)).

Discrete Time: Langevin MCMC Sampler (Euler-Maruyama)
X1 = xk = NV U(xk) + v2nék, &k ~ N(0,1).

@ How close to the desired p* is py (the density of xx)?
@ How rapidly does it converge?

Sampling as optimization over the space of probability distributions.




Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

@ Use training data (x1,y1),- .., (Xn, ¥n) € X X Y to choose
parameters 6 of a deep neural network fp : X — ).

@ Aim to minimize loss U(0) = ZE yi, fo(x;))

o Gradient: 01 = 0, — nkVU(Hk)

@ Stochastic gradient: Random 6y, Ok+1 = Ok — kVng(Qk)

@ ... with minibatch gradient estimates, ng _f Zﬁ(y,,fg(x, )
IS

@ What is the distribution of 6,7
@ View stochastic gradient methods as sampling algorithms.

@ How can we improve their performance?




@ The Langevin diffusion
@ Optimization theory for sampling methods
e Convergence of Langevin MCMC in KL-divergence
o Nesterov acceleration in sampling
e The nonconvex case
@ Sampling methods for optimization
e Stochastic gradient methods as SDEs




Discretization of the Langevin Diffusion

Langevin Markov Chain

Choose step-size n and simulate the Markov chain:

X1 = Xk — NV U(xi) + v/2nék, Ek ~ N(0, Iy).

Langevin Markov Chain

Xep1 = Xk = NV U(xk) X1 = Xk — NV U(xk) + v/2nék




Langevin Diffusion as Gradient Flow

Langevin Diffusion in RY Gradient flow in P(R?)

dx¢ = =V U(xt) dt + V2dB;. p: minimizes %’H(pt) + %|p§|2

4

v
(Jordan, Kinderlehrer and Otto, 1998), (Ambrosio, Gigli and Savaré, 2005)
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Sampling as Optimization

@ Sampling algorithms can be viewed as deterministic optimization
procedures over a space of probability distributions.

@ Can we apply tools and techniques from optimization to sampling?

Xiang Cheng

An Optimization Analysis in P(R9)

Convergence of Langevin MCMC in KL-divergence.
Xiang Cheng and PB.
arXiv:1705.09048[stat.ML]; ALT 2018.




Langevin MCMC

Xkr1 = Xk — NV U(xk) + v/2néx, Ek i’igN(O, la). J

How does the density px of x, evolve?

For smooth, strongly convex U, that is, Vx, ml < V2U(x) < LI,

€

~ (d
suitably small n and kK = Q <) ensure that L (Pk“P*) <e

Implies older bounds for TV and Ws:

~ (d
For suitably small n and kK = Q (2)
€

||pk — p* ” TV <e. (Dalalyan, 2014)

W2(pk, p*) S € (Durmus and Moullines, 2016)




Sampling as Optimization

@ Sampling algorithms can be viewed as deterministic optimization
procedures over the probability space.
@ Can we apply tools and techniques from optimization to sampling?

Nesterov acceleration in P(RY)

Underdamped Langevin MCMC: A
non-asymptotic analysis.

Xiang Cheng, Niladri Chatterji, PB and
Mike Jordan.

arXiv:1707.03663 [stat.ML]; COLT18.

Xiang Cheng Niladri Chatterji Mike Jordan



Nesterov acceleration in sampling

Kramers' Equation (1940)

Stochastic differential equation:

dXt = Vi dt,
th = — Vi dt — VU(Xt) dt +\/§ dBt,
H/_/ h/d

friction acceleration

where x¢, v € R4, U : R?Y — R, dB; is standard
Brownian motion on RY.

Define p; as the density of (xt, v¢).
Under mild regularity assumptions, p; — p*:

) o exp (~UGx) = 13



Nesterov acceleration in sampling
(Overdamped) Underdamped
Langevin Diffusion Langevin Diffusion

dxt = —VU(x;) dt + V2 dB;. dxe = v dt,
dvi = —v dt — VU(xt) dt + V2 dB:.




Nesterov acceleration in sampling

~ d
For smooth, strongly convex U, suitably small n and k = Q (i)

underdamped Langevin MCMC gives Wa(py, p*) < e.

Significantly faster than overdamped Langevin:

~ (d
For suitably small  and k = Q (—2> Wa(pk, p*) < e.
€

(Durmus and Moullines, 2016)




Nonconvex potentials

@ Multi-modal p (nonconvex U)?

Xiang Cheng Niladri Chatterji Yasin Abbasi-Yadkori Mike Jordan

Xiang Cheng, Niladri Chatterji, Yasin Abbasi-Yadkori, PB and Mike Jordan.

Sharp convergence rates for Langevin dynamics in the nonconvex setting.
arXiv:1805.01648 [stat.ML]. J




Nonconvex potentials

@ Smooth everywhere: V2U =< LI.

@ Strongly convex outside a ball:
Vx,y, Ix =yl =2 R = U(x) > U(y) + (U(y), x — y) + ZllIx = ¥l3.

36)




Nonconvex potentials

Suppose U is L-smooth and strongly convex outside a ball of radius R and
7 is suitably small.

0 Ifk=0 (‘i exp(LR2)),
€
then overdamped Langevin MCMC has Wi (pk, p*) < e.

QIfk=0Q ﬁexp(LRz) ,
€

then underdamped Langevin MCMC has Wi (pk, p*) < e.

@ We can think of LR? is a measure of non-convexity of U.

@ The improvement from overdamped to underdamped is the same as
in the convex case.



@ The Langevin diffusion
@ Optimization theory for sampling methods
e Convergence of Langevin MCMC in KL-divergence
o Nesterov acceleration in sampling
e The nonconvex case
@ Sampling methods for optimization
e Stochastic gradient methods as SDEs




Sampling Algorithms for Optimization

Quantitative central limit theorems for discrete stochastic
processes.

Xiang Cheng, PB and Mike Jordan.

arXiv:1902.00832 [math.ST].

Xiang Cheng Mike Jordan



Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

@ Use training data (x1,y1),..., (Xn, ¥n) € X X ) to choose parameters
0 of a deep neural network fp : X — ).

@ Aim to minimize loss U(f) = ZE Vi, fo(xi))

@ Stochastic gradient: Random 00, Okr1 = Ok — nVng(Gk)

@ ... with minibatch gradient estimates, ng ZE Vi, fp(xi))
'EEk




Sampling Algorithms for Optimization

. iid
© Xkr1 = xk —NVU() + N Tg (%), with § ~ gq.
@ Define the covariance of the noise: 02 :=E¢ [Te(x) Te(x)T].
o Consider the SDE: dx; = —VU(x;) dt + /20, dB;.

@ Let p* denote its stationary distribution.

For U smooth, strongly convex, bounded third derivative, 0)2( uniformly bounded,

T¢ () smooth, bounded third derivatives, log p* with bounded third derivatives,
If n is sufficiently small, Wa(p, p*) <€, (X0 ~ P)

and for k = (‘;’—;) Wa(pk, p*) < e. (xk ~ px)

The classical CLT (with U quadratic) shows that the 1/v/k rate is
optimal.

15 1—”



@ The Langevin diffusion
@ Optimization theory for sampling methods
e Convergence of Langevin MCMC in KL-divergence
o Nesterov acceleration in sampling
e The nonconvex case
@ Sampling methods for optimization
e Stochastic gradient methods as SDEs




