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Sampling Problems

Bayesian inference

Compute P(θ|D) = P(D|θ)P(θ)
P(D) .

Write the density of P(θ|D) as

exp(−U(θ))∫
exp(−U(θ)) dθ

.

www.analyticsvidhya.com

Langevin diffusion

Simulate a stochastic differential equation:

dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(θ) ∝ exp(−U(θ)).
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Sampling Problems

Prediction as a repeated game

Player chooses action at ∈ A,

Adversary chooses outcome yt ,

Player incurs loss `(at , yt).

Aim to minimize regret:∑
t `(at , yt)−mina

∑
t `(a, yt).

Exponential weights strategy

pt(a) ∝ exp (−U(a)) ,

with U(a) := η

t−1∑
s=1

`(a, ys).

Langevin diffusion

Simulate a stochastic differential equation:

dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(a) ∝ exp(−U(a)).
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Sampling Algorithms

Langevin diffusion

SDE: dxt = −∇U(xt) dt +
√

2 dBt .

Stationary distribution has density p∗(·) ∝ exp(−U(·)).

Discrete Time: Langevin MCMC Sampler (Euler-Maruyama)

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk ∼ N (0, I ).

How close to the desired p∗ is pk (the density of xk)?

How rapidly does it converge?

Viewpoint

Sampling as optimization over the space of probability distributions.
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Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

Use training data (x1, y1), . . . , (xn, yn) ∈ X × Y to choose
parameters θ of a deep neural network fθ : X → Y.

Aim to minimize loss U(θ) =
1

n

n∑
i=1

`(yi , fθ(xi )).

Gradient: θk+1 = θk − ηk∇U(θk)

Stochastic gradient: Random θ0, θk+1 = θk − ηk∇Ûξk (θk)

... with minibatch gradient estimates, Ûξk (θ) =
1

ξk

∑
i∈ξk

`(yi , fθ(xi ))

... and decreasing stepsizes ηk .

What is the distribution of θk?

View stochastic gradient methods as sampling algorithms.
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Langevin Diffusion

Langevin diffusion

Stochastic differential equation:

dxt = −∇U(xt) dt︸ ︷︷ ︸
drift

+
√

2 dBt ,

where xt ∈ Rd , U : Rd → R, dBt is standard Brownian
motion on Rd .

Paul Langevin
wikipedia.org

Define pt as the density of xt .
Under mild regularity assumptions, pt → p∗; p∗(x) ∝ exp(−U(x)).

8 / 35



Discretization of the Langevin Diffusion

Langevin Markov Chain

Choose step-size η and simulate the Markov chain:

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk
iid∼ N (0, Id).

Gradient descent

xk+1 = xk − η∇U(xk)

Langevin Markov Chain

xk+1 = xk − η∇U(xk) +
√

2ηξk
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Langevin Markov Chain

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk
iid∼ N (0, Id).

How does the density pk of xk evolve?

Asymptotic results

Under regularity conditions, for shrinking step-size ηk , ‖pk − p∗‖TV → 0.
e.g., (Gelfand and Mitter, 1991), (Roberts and Tweedie, 1996)

Arnak Dalalyan mediamax.am

Quantitative results

For suitably small (fixed) η and k = Ω̃

(
d

ε2

)
,

‖pk − p∗‖TV ≤ ε. (Dalalyan, 2014)

W2(pk , p
∗) ≤ ε. (Durmus and Moullines, 2016)
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Langevin Diffusion as Gradient Flow

Langevin Diffusion in Rd

dxt = −∇U(xt) dt +
√

2 dBt .

Gradient flow in P(Rd)

pt minimizes d
dtH(pt) + 1

2 |p
′
t |2.

(Jordan, Kinderlehrer and Otto, 1998), (Ambrosio, Gigli and Savaré, 2005)

Richard Jordan David Kinderlehrer Felix Otto Luigi Ambrosio Nicola Gigli Giuseppe Savaré

pt is the distribution of xt .

H(p) := KL (p‖p∗).

|p′t | = limh→0
W2(pt ,pt+h)

h
.

W2 is the 2-Wasserstein metric.
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Sampling as Optimization

Sampling algorithms can be viewed as deterministic optimization
procedures over a space of probability distributions.

Can we apply tools and techniques from optimization to sampling?

Xiang Cheng

An Optimization Analysis in P(Rd)

Convergence of Langevin MCMC in KL-divergence.
Xiang Cheng and PB.
arXiv:1705.09048[stat.ML]; ALT 2018.
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Langevin MCMC

xk+1 = xk − η∇U(xk) +
√

2ηξk , ξk
iid∼ N (0, Id).

How does the density pk of xk evolve?

Theorem

For smooth, strongly convex U, that is, ∀x ,mI � ∇2U(x) � LI ,

suitably small η and k = Ω̃

(
d

ε

)
ensure that KL

(
pk‖p∗

)
≤ ε.

Implies older bounds for TV and W2:

For suitably small η and k = Ω̃

(
d

ε2

)
,

‖pk − p∗‖TV ≤ ε. (Dalalyan, 2014)

W2(pk , p
∗) ≤ ε. (Durmus and Moullines, 2016)
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Analog with gradient flow over Rd

Minimization over Rd

Minimize f : Rd → R using
gradient flow yt : R+ → Rd

wrt Euclidean norm:

min

(
d

dt
f (yt) +

1

2

∥∥∥∥ d

dt
yt

∥∥∥∥2
)

d

dt
f (yt) =

〈
∇f (yt),

d

dt
yt

〉
d

dt
f (y∗t ) = −‖∇f (y∗t )‖2

2

Minimization over P(Rd)

Minimize H(p) = KL (p‖p∗) using
gradient flow pt : R+ → P(Rd)
wrt W2:

min

(
d

dt
H(pt) +

1

2

∣∣p′t ∣∣2)

d

dt
H(pt) = Ex∼pt

[〈
∇x

∂H
∂p

(pt)(x), vt(x)

〉]
d

dt
H(p∗t ) = −Ex∼p∗t

[∥∥∥∥∇∂H∂p
(p∗t )(x)

∥∥∥∥2

2

]
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Notation

P(Rd): set of densities over Rd .

H(p) = KL (p‖p∗) =

∫
log

p(x)

p∗(x)
p(x) dx .

W 2
2 (p, q) = infγ∈Γ(p,q) E(x ,y)∼γ ‖x − y‖2

2, with

Γ(p, q): all joint distributions on Rd × Rd with marginals p and q.

For a curve pt : R+ → P(Rd), the metric derivative is

|p′t | = limh→0
W2(pt ,pt+h)

h
.

If vt is tangent to pt , then |p′t |2 = Ex∼pt

[
‖vt(x)‖2

2

]
.

Fréchet derivative: ∂H
∂pt

(pt) = 1 + log
(

pt

p∗

)
.

d
dtH(pt) = Ex∼pt

[〈
∇x

∂H
∂pt

(pt)(x), vt(x)
〉]
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Analog with gradient flow over Rd

Minimization over Rd

m-strong convexity of f implies f (y)− f (y∗) ≤ 1
m‖∇f (y)‖2

2.

Hence
d

dt
(f (yt)− f (y∗)) ≤ −m(f (yt)− f (y∗)).

Minimization over P(Rd)

m-strong convexity of U implies m-geodesic-convexity of H(p) in W2,

which implies H(p)−H(p∗) ≤ 1
mEx∼p

[∥∥∥∇∂H
∂p (p)(x)

∥∥∥2

2

]
.

Hence
d

dt
(H(pt)−H(p∗)) ≤ −m(H(pt)−H(p∗)).
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Sampling as Optimization

Sampling algorithms can be viewed as deterministic optimization
procedures over the probability space.

Can we apply tools and techniques from optimization to sampling?

Xiang Cheng Niladri Chatterji Mike Jordan

Nesterov acceleration in P(Rd)
Underdamped Langevin MCMC: A
non-asymptotic analysis.
Xiang Cheng, Niladri Chatterji, PB and
Mike Jordan.
arXiv:1707.03663 [stat.ML]; COLT18.
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Nesterov acceleration in sampling

Kramers’ Equation (1940)

Stochastic differential equation:

dxt = vt dt,

dvt = −vt dt︸ ︷︷ ︸
friction

−∇U(xt) dt︸ ︷︷ ︸
acceleration

+
√

2 dBt ,

where xt , vt ∈ Rd , U : Rd → R, dBt is standard
Brownian motion on Rd .

Hendrick A. Kramers
wikipedia.org

Define pt as the density of (xt , vt).
Under mild regularity assumptions, pt → p∗:

p∗(x) ∝ exp

(
−U(x)− 1

2
‖v‖2

2

)
.
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Nesterov acceleration in sampling

(Overdamped)
Langevin Diffusion

dxt = −∇U(xt) dt +
√

2 dBt .

Underdamped
Langevin Diffusion

dxt = vt dt,

dvt = −vt dt −∇U(xt) dt +
√

2 dBt .
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Nesterov acceleration in sampling

Underdamped Langevin Markov Chain

Choose step-size η and simulate the SDE:

dx̃t = ṽt dt

dṽt = −ṽt dt −∇U(x̃kη) dt +
√

2 dBt

for kη ≤ t < (k + 1)η.

(Not the standard Euler-Maruyama discretization.)

• A version of Hamiltonian Monte Carlo
(Duane, Kennedy, Pendleton and Roweth, 1987), (Neal, 2011)

• How does the density pk of (x̃kη, ṽkη) evolve?
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Nesterov acceleration in sampling

Theorem

For smooth, strongly convex U, suitably small η and k = Ω̃

(√
d

ε

)
,

underdamped Langevin MCMC gives W2(pk , p
∗) ≤ ε.

Idea of proof: uses tools from (Eberle, Guillin and Zimmer, 2017)

Synchronous coupling (shared Brownian motion); strong convexity.

Significantly faster than overdamped Langevin:

For suitably small η and k = Ω̃

(
d

ε2

)
, W2(pk , p

∗) ≤ ε.
(Durmus and Moullines, 2016)

Related work

HMC (Lee and Vempala, 2017)

With separability assumption (Mangoubi and Smith, 2017), (Mangoubi and Vishnoi, 2018).
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Nonconvex potentials

Multi-modal p (nonconvex U)?

Xiang Cheng Niladri Chatterji Yasin Abbasi-Yadkori Mike Jordan

Sharp convergence rates for Langevin dynamics in the nonconvex setting.
Xiang Cheng, Niladri Chatterji, Yasin Abbasi-Yadkori, PB and Mike Jordan.
arXiv:1805.01648 [stat.ML].
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Nonconvex potentials

Assumptions

Smooth everywhere: ∇2U � LI .

Strongly convex outside a ball:
∀x , y , ‖x − y‖2 ≥ R ⇒ U(x) ≥ U(y) + 〈U(y), x − y〉+ m

2 ‖x − y‖2
2.
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Nonconvex potentials

Theorem

Suppose U is L-smooth and strongly convex outside a ball of radius R and
η is suitably small.

1 If k = Ω̃

(
d

ε2
exp(LR2)

)
,

then overdamped Langevin MCMC has W1(pk , p
∗) ≤ ε.

2 If k = Ω̃

(√
d

ε
exp(LR2)

)
,

then underdamped Langevin MCMC has W1(pk , p
∗) ≤ ε.

We can think of LR2 is a measure of non-convexity of U.

The improvement from overdamped to underdamped is the same as
in the convex case.
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Nonconvex potentials

Idea of proof

Synchronous coupling when far away; exploits strong convexity.

Eberle’s (2016) reflection coupling (1-D Brownian motion along the
line between) when close: this 1-D random walk couples.

Since it is in 1-D, the rate is not exponential in dimension.

Related work

Weaker assumptions; exponential in dimension.(Raginsky, Rakhlin and Telgarsky, 2017)

Stronger assumptions: mixtures of Gaussians. (Ge, Lee and Risteski, 2017)

Metropolis-Hastings version. (Bou-Rabee, Eberle and Zimmer, 2018)
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Sampling Algorithms for Optimization

Xiang Cheng Mike Jordan

Quantitative central limit theorems for discrete stochastic
processes.
Xiang Cheng, PB and Mike Jordan.
arXiv:1902.00832 [math.ST].
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Sampling Algorithms for Optimization

Parameter optimization in deep neural networks

Use training data (x1, y1), . . . , (xn, yn) ∈ X × Y to choose parameters
θ of a deep neural network fθ : X → Y.

Aim to minimize loss U(θ) =
1

n

n∑
i=1

`(yi , fθ(xi )).

Stochastic gradient: Random θ0, θk+1 = θk − η∇Ûξk (θk),

... with minibatch gradient estimates, Ûξk (θ) =
1

ξk

∑
i∈ξk

`(yi , fθ(xi ))
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Sampling Algorithms for Optimization

This has the form:

xk+1 = xk − η∇Ûξk (xk)

= xk − η∇U(xk) +
√
ηTξk (xk),

... which is suggestive of a Langevin diffusion but ...

The noise Tξk (x) =
√
η
(
∇U(x)−∇Ûξk (x)

)
is not

Gaussian, and depends on x .

What is the stationary distribution of xk?

How rapidly is it approached?
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Sampling Algorithms for Optimization

Definitions

xk+1 = xk − η∇U(xk) +
√
ηTξk (xk), with ξk

iid∼ q.

Define the covariance of the noise: σ2
x := Eξ

[
Tξ(x)Tξ(x)>

]
.

Consider the SDE: dxt = −∇U(xt) dt +
√

2σxt dBt .

Let p∗ denote its stationary distribution.

Theorem
For U smooth, strongly convex, bounded third derivative, σ2

x uniformly bounded,

Tξ(·) smooth, bounded third derivatives, log p∗ with bounded third derivatives,

If η is sufficiently small, W2(p̂, p∗) ≤ ε, (x∞ ∼ p̂)

and for k = Ω̃
(
d7

ε2

)
, W2(pk , p

∗) ≤ ε. (xk ∼ pk)

The classical CLT (with U quadratic) shows that the 1/
√
k rate is

optimal.

Example: one dimension

dxt = −U ′(xt) dt +
√

2σxt dBt

p∗(x) ∝ exp (−H(x)) = exp

(
−
∫

U ′(x)

σ2
x

− log σ2
x

)
Compared to U(x), high-variance regions
become flatter and have lower density.
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Further Work

Optimization theory for sampling methods

Large scale problems: stochastic gradient estimates
Variance reduction with stochastic gradient estimates
Convergence in KL for underdamped Langevin, nonconvex
With constraints
Lower bounds

Sampling methods for optimization

Stochastic gradient with momentum?
Nonconvex loss U?
Role of noise covariance in behavior of stochastic gradient method?
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