
Some Statistical Properties of Deep Networks

Peter Bartlett

UC Berkeley

August 2, 2018

1 / 22

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

2 / 22

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix)

hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
,

r(v)i = max{0, vi}

2 / 22

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix)

hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
,

r(v)i = max{0, vi}

2 / 22

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

2 / 22

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

2 / 22

Deep Networks

Representation learning

Depth provides an effective way of representing useful
features.

Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

Statistical complexity?

3 / 22

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

Statistical complexity?

3 / 22

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

Statistical complexity?

3 / 22

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

Statistical complexity?

3 / 22

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

Statistical complexity?

3 / 22

Outline

VC theory: Number of parameters

Margins analysis: Size of parameters

Understanding generalization failures

4 / 22

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

5 / 22

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

5 / 22

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.

Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

5 / 22

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

5 / 22

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

6 / 22

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.

For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

6 / 22

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

6 / 22

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.
For neural networks, VC-dimension:

increases with number of parameters

depends on nonlinearity and depth

6 / 22

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight—within
a constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

6 / 22

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

7 / 22

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

7 / 22

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

7 / 22

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

7 / 22

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Θ̃ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Θ̃ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

7 / 22

Outline

VC theory: Number of parameters

Margins analysis: Size of parameters

Understanding generalization failures

8 / 22

Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.
B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster

Cornell

Matus Telgarsky

UIUC

9 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.

The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Large-Margin Classifiers

Consider a vector-valued function f : X → Rm used for classification,
y ∈ {1, . . . ,m}.
The prediction on x ∈ X is arg maxy f (x)y .

For a pattern-label pair (x , y) ∈ X × {1, . . . ,m},
define the margin M(f (x), y) = f (x)y −maxi 6=y f (x)i .

If M(f (x), y) > 0 then f classifies x correctly.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

‖f (Xi)− Yi‖2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

10 / 22

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measure the size of functions computed by a network of ReLUs via
operator norms.

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup‖x‖≤1 ‖Aix‖.

Recall: Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}, is

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

11 / 22

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measure the size of functions computed by a network of ReLUs via
operator norms.

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup‖x‖≤1 ‖Aix‖.

Recall: Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}, is

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

11 / 22

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measure the size of functions computed by a network of ReLUs via
operator norms.

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup‖x‖≤1 ‖Aix‖.

Recall: Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}, is

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

11 / 22

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measure the size of functions computed by a network of ReLUs via
operator norms.

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup‖x‖≤1 ‖Aix‖.
Recall: Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}, is

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

11 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ]

+ Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
∑L

i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

12 / 22

Outline

VC theory: Number of parameters

Margins analysis: Size of parameters

Understanding generalization failures

13 / 22

Understanding Generalization Failures

CIFAR10

http://corochann.com/

14 / 22

Understanding Generalization Failures

Stochastic Gradient Training Error on CIFAR10

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
15 / 22

Understanding Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

16 / 22

Understanding Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled margins on CIFAR10

17 / 22

Understanding Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled cumulative margins on MNIST

18 / 22

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σ(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
∑L

i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

19 / 22

Understanding Generalization Failures

epoch 10 epoch 100

cifar Lipschitz

cifar [random] Lipschitz

20 / 22

Understanding Generalization Failures

epoch 10 epoch 100

excess risk 0.3

excess risk 0.9

cifar excess risk

cifar Lipschitz

cifar [random] excess risk

cifar [random] Lipschitz

21 / 22

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Regularization and optimization: explicit control of operator norms?

22 / 22

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Regularization and optimization: explicit control of operator norms?

22 / 22

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Regularization and optimization: explicit control of operator norms?

22 / 22

