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@ Margins analysis: Size of parameters
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@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

@ Want to choose a function f such that P(f(x) # y) is small (near
optimal).
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Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight—within
a constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = © (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = © (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
O Sigmoid: VCdim(F) = O (pk?).
(Karpinsky and Maclntyre, 1994))
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster
Cornell

Matus Telgarsky
UIuC
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e For a pattern-label pair (x,y) € X x {1,..., m},
define the margin M(f(x),y) = f(x), — max;», f(x);.

o If M(f(x),y) > 0 then f classifies x correctly.

@ We can view a larger margin as a more confident correct classification.

@ Minimizing a continuous loss, such as
n
2
> IF(X) = Yill?,
i=1
encourages large margins.

o For large-margin classifiers, we should expect the fine-grained details
of f to be less important.
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Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measure the size of functions computed by a network of ReLUs via
operator norms.

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[ Aill« == supjx<1 [[Aix]-
@ Recall: Multiclass margin function for f : X — R™, y € {1,...,m}, is

M(f(x),y) = f(x), — rgéa;( f(x);.

11/22
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

1< = rl
PRME(0, V) S0) < S 1M((X). Y) <] 46 (7 ﬁ).

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee ))

Scale of fa: Ra ::H;L:l HA:H*
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PM(A(X), V) <0) < & 3 1m0, Y) < 21+ 0 ().

i=1

Definitions
Network with L layers, parameters Az, ..., A;:

| A

fA(X) = O'L(AL(TLfl(ALfl e 01(A1X) cee ))

1A I

3/2
Scale of fa: Ra =[], l|Aill« (z%) .

(Assume o; is 1-Lipschitz, inputs normalized.)
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Understanding Generalization Failures

CIFAR10

6: frog 9: truck 9: truck 4: deer 1: automobile

i il H

wh Toix
1: automobile 2: bird 7: horse 8: ship 3:cat

=l

= ]

[ L

4: deer 7: horse 7: horse 2: bird 9: truck
. s

9: truck 9: truck 3:cat 2: bird 6: frog

2P a

v

http://corochann.com/
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Understanding Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=8 true labels
2.0 o—e random labels |
9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps

v

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, ‘Benjamin Recht, and Oriol Vinyals, 2017)
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Understanding Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
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Understanding Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on CIFAR10

—  cifar
- rand label
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Understanding Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled cumulative margins on MNIST

mni
10— mnistrand

-0.075 -0.050 -0.025 0.000 0.025 0.050 0075
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Generalization in Deep Networks

With high probability, every f4 with Rq < r satisfies

n

1 = rL
PHME(X), Y) S0) < S 1M((X). Y) <] 4.0 (%)

Network with L layers, parameters A;, ..., A;r:

fA(X) = O'(A[_O'Lfl(ALfl 600 0'1(A1X) 0oo ))

L 2/3\ 3/2
Scale of fa: Ra =] [.—; [|Aill« (2,4:1 %) :
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Understanding Generalization Failures
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=@~ cifar Lipschitz [ ]
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Understanding Generalization Failures

——— excess risk 0.9 e — A== X == A

/‘A’WN’
=A= cifar excess risk /

=@~ cifar Lipschitz

A
==A= cifar [random] excess risk
=@~ cifar [random] Lipschitz

A /

——— excess risk 0.3 yia
A~ XA A 7 A A A

A

AT o —— —

= . —e

epoch 10 epoch 100
1 1
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Generalization in Neural Networks

@ With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

@ Regularization and optimization: explicit control of operator norms?
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