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Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi )
, r(v)i = max{0, vi}
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Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation. (Birman & Solomjak, 1967), (DeVore et al, 1991)

Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Statistical complexity?
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VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).
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VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi ) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.
B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster

Cornell

Matus Telgarsky

UIUC
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Generalization in Deep Networks

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .
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Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X ),Y ) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi ),Yi ) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · · )).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
∑L

i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)
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Generalization in Neural Networks

Risk bounded in terms of the product of operator norms of the layers.

c.f. (B., 1996): similar result for sigmoid networks (in terms of the
product over L layers of another operator norm—wrt ‖ · ‖∞).

Recent work by Golowich, Rakhlin, and Shamir: similar bounds with
improved dependence on depth for special cases (homogeneous
nonlinearities).
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Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)
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Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)

15 / 52



Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)
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Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Deep network component Residual network component

(Deep Residual Networks. Kaiming He. 2016)
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Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ x + Aiσ(Bix) hi : x 7→ x + Ai r(Bix)

σ(v)i =
1

1 + exp(−vi )
, r(v)i = max{0, vi}
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Deep Residual Networks

Advantages

With zero-valued parameters, the network
computes the identity.

Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)
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Deep Residual Networks

Training deep plain nets vs deep residual nets: CIFAR-10

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

Large improvements over plain nets (e.g., ImageNet Large Scale Visual
Recognition Challenge, Common Objects in Context Detection Challenge).
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Related work

Empirical risk landscape for n > p. e.g.,(Soudry and Carmon, 2016), (Kawaguchi, 2016)

SGD learning linear separators (Brutkus, Globerson, Malach, Shalev-Shwartz, 2017)

Optimization landscape and gradient descent
(Du & Lee, 2018), (Du, Lee, Tian, Poczos, Singh, 2017), (Soltanolkotabi, Javanmard, Lee, 2017)

Residual nets: a>(x + Bfθ(x)). (Shamir, 2018)

Deep linear compositions: (I + Am) · · · (I + A1). (Hardt & Ma, 2016)
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Some intuition: linear functions

Products of near-identity matrices

1 Every invertible∗ A can be written as

A = (I + Am) · · · (I + A1),

where ‖Ai‖ = O(1/m).

(Hardt and Ma, 2016)

∗
Provided det(A) > 0.
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Some intuition: linear functions

Products of near-identity matrices

2 For a linear Gaussian model,

y = Ax + ε, ε ∼ N (0, σ2I ),

consider choosing A1, . . . ,Am to minimize quadratic loss:

E‖(I + Am) · · · (I + A1)x − y‖2.

If ‖Ai‖ < 1, every stationary point of the quadratic loss is a global
optimum:

∀i , ∇Ai
E‖(I + Am) · · · (I + A1)x − y‖2 = 0

⇒ A = (I + Am) · · · (I + A1).

(Hardt and Ma, 2016)
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Steve Evans
Berkeley, Stat/Math

Phil Long
Google

arXiv:1804.05012
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

Definition: the Lipschitz seminorm of f satisfies, for all x , y ,

‖f (x)− f (y)‖ ≤ ‖f ‖L‖x − y‖.

Think of the functions hi as near-identity maps that might be computed as

hi (x) = x + Aiσ(Bix)︸ ︷︷ ︸ .
As the network gets deeper, the functions x 7→ Aiσ(Bix) can get flatter.
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Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that h is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.
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Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2

...

hm(· · · (h1(x)) · · · ) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

• Deeper networks allow flatter nonlinear functions at each layer.
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Stationary points

Result

For (X ,Y ) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X )− Y ‖2

2 ,

define the minimizer h∗(x) = E[Y |X = x ].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y ) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.
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Stationary points

What the theorem says

If the composition h is sub-optimal and each function hi is a
near-identity, then there is a downhill direction in function space: the
functional gradient of Q wrt hi is non-zero.

Thus every stationary point is a global optimum.

There are no local minima and no saddle points.
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Stationary points

What the theorem says

The theorem does not say there are no local minima of a deep
residual network of ReLUs or sigmoids with a fixed architecture.

Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.
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Stationary points

Result

For (X ,Y ) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X )− Y ‖2

2 ,

define the minimizer h∗(x) = E[Y |X = x ].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y ) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.
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Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.
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Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X )− h∗(X )‖2

2 + constant.

2 Then
DhiQ(h) = E [(h(X )− h∗(X )) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X )− h∗(X )‖2
2 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f ) = f (x).
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Stationary points

Result

For (X ,Y ) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X )− Y ‖2

2 ,

define the minimizer h∗(x) = E[Y |X = x ].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y ) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.
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Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?

Regularized gradient methods for near-identity maps?
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UCSC

Phil Long
Google

arXiv:1802.06093
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Optimization in deep linear residual networks

Linear networks

Consider fΘ : Rd → Rd defined by fΘ(x) = ΘL · · ·Θ1x .

Suppose (x , y) ∼ P, and consider using gradient methods to choose
Θ to minimize `(Θ) = 1

2E‖fΘ(x)− y‖2.

Assumptions

1 Exx> = I

2 y = Φx for some matrix Φ (wlog, because of projection theorem)
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Optimization in deep linear residual networks

why wlog?

Define Φ as the minimizer of E‖Φx − y‖2 (the least squares map).
Then the projection theorem implies

E‖Θx − y‖2 = E‖Θx − Φx‖2 + 2E(Θx − Φx)>(Φx − y) + E‖Φx − y‖2

= E‖Θx − Φx‖2 + E‖Φx − y‖2,

so wlog we can assume y = Φx and define, for linear fΘ,

`(Θ) =
1

2
E‖fΘ(x)− Φx‖2.
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Optimization in deep linear residual networks

Recall fΘ(x) = ΘL · · ·Θ1x = Θ1:Lx ,
where we use the notation Θi :j = ΘjΘj−1 · · ·Θi .

Gradient descent

Θ(0) =
(

Θ
(0)
1 ,Θ

(0)
2 , . . . ,Θ

(0)
L

)
:= (I , I , . . . , I )

Θ
(t+1)
i := Θ

(t)
i − η(Θi+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>,

where η is a step-size.
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Gradient descent in deep linear residual networks

Theorem

There is a positive constant c0 and polynomials p1 and p2 such that
if `(Θ(0)) ≤ c0 and η ≤ 1/p1(d , L), after p2(d , L, 1/η) log(1/ε) iterations,
gradient descent achieves `(Θ(t)) ≤ ε.
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Gradient descent: proof idea

Lemma [Hardt and Ma] (Gradient is big when loss is big)

If, for all layers i , σmin(Θi ) ≥ 1− a, then ||∇Θ`(Θ)||2 ≥ 4`(Θ)L(1− a)2L.

Lemma (Hessian is small for near-identities)

For Θ with ||Θi ||2 ≤ 1 + z for all i ,

‖∇2
Θ`(Θ)‖F ≤ 3Ld5(1 + z)2L.

Lemma (Stay close to the identity)

R(t + 1) ≤ R(t) + η(1 +R(t))L
√

2`(t),

where R(t) := maxi ||Θ
(t)
i − I ||2 and `(t) := 1

2 ||Θ
(t)
1:L − Φ||2F .

Then for sufficiently small step-size η, the gradient update ensures that
`(t) decreases exponentially.
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Optimization in deep linear residual networks

Definition (γ-positive matrix)

A matrix A is γ-positive for γ > 0 if, for all unit length u, we have
u>Au > γ.

Theorem

Suppose that the least squares map Φ is symmetric.

(a) There is an absolute positive constant c3 such that
if Φ is γ-positive (0 < γ < 1), L ≥ c3 ln (||Φ||2/γ), and η ≤ 1

L(1+||Φ||22)
,

after t = poly(L, ||Φ||2/γ, 1/η) log(d/ε) iterations,
gradient descent achieves `(fΘ(t)) ≤ ε.
(b) If Φ has a negative eigenvalue −λ and L is even, then gradient descent
satisfies `(Θ(t)) ≥ λ2/2 (as does any penalty-regularized version of gradient descent).
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Symmetric linear functions

Proof idea

(a) A set of symmetric matrices A is commuting normal if there is a single
unitary matrix U such that for all A ∈ A, U>AU is diagonal.

Clearly, {Φ,Θ(0)
1 ,Θ

(0)
2 , . . . ,Θ

(0)
L } = {Φ, I} is commuting normal.

The gradient update keeps
⋃

i ,t{Φ,Θ
(t)
i } commuting normal.

So the dynamics decomposes:

λ̂(t+1) = λ̂(t) + η(λ̂(t))L−1(λL − (λ̂(t))L).

(b) The eigenvalues stay positive.
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Positive (not necessarily symmetric) linear functions

Theorem

For any γ-positive Φ, there is an algorithm (power projection)
that, after t = poly(d , ||Φ||F , 1

γ ) log(1/ε) iterations, produces Θ(t) with

`(Θ(t)) ≤ ε.

Power projection algorithm idea

1 Take a gradient step for each Θi .

2 Project Θ1:L onto the set of γ-positive linear maps.

3 Set Θ
(t+1)
1 , . . . ,Θ

(t+1)
L as the balanced factorization of Θ1:L.
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Positive (not necessarily symmetric) linear functions

Balanced factorization

We can write any matrix A, with singular values σ1, . . . , σd , as

A = AL · · ·A1, where the singular values of each Ai are σ
1/L
1 , . . . , σ

1/L
d .

(Idea: Write the polar decomposition A = RP (i.e., R unitary, P psd);
set Ai = R1/LPi , with Pi = R(i−1)/LP1/LR−(i−1)/L.)
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Optimization in deep linear residual networks

Gradient descent

converges if `(0) sufficiently small,
converges for a positive symmetric map,
cannot converge for a symmetric map with a negative eigenvalue.

Regularized gradient descent converges for a positive map.

Convergence is linear in all cases.

Deep nonlinear residual networks?
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