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Deep Networks

Deep compositions of nonlinear functions
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Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.
Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

apprOXimation. (Birman & Solomjak, 1967), (DeVore et al, 1991)
Some functions require much more complexity for a shallow
representation. (Telgarsky, 2015), (Eldan & Shamir, 2015)

v

@ Optimization?
o Nonlinear parameterization.
o Apparently worse as the depth increases.

@ Statistical complexity?




@ Statistical complexity of deep networks
@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ Optimization in deep linear residual networks
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VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

@ Want to choose a function f such that P(f(x) # y) is small (near
optimal).




VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth



VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q Sigmoid: VCdim(F) = O (p?k?).
(Karpinsky and Maclntyre, 1994))




Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster
Cornell

Matus Telgarsky
UIuC



Generalization in Deep Networks

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

e Multiclass margin function for f : X — R™, y € {1,..., m}:

M(F(x).) = F(x)y = max F(x);
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PM(A(X), V) <0) < & 3 1m0, Y) < 21+ 0 ().

i=1

Definitions
Network with L layers, parameters Az, ..., A;:

| A\

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee ))

1A I

3/2
Scale of fa: Ra =[], l|Aill« (z%) .

(Assume o; is 1-Lipschitz, inputs normalized.)
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Generalization in Neural Networks

@ Risk bounded in terms of the product of operator norms of the layers.

e c.f. (B., 1996): similar result for sigmoid networks (in terms of the
product over L layers of another operator norm—wrt || - ||)-

@ Recent work by Golowich, Rakhlin, and Shamir: similar bounds with

improved dependence on depth for special cases (homogeneous
nonlinearities).
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@ Statistical complexity of deep networks
@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ Optimization in deep linear residual networks
o Gradient descent
e Symmetric maps and positivity
o Regularized gradient descent and positive maps
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Deeper Networks

Revolution of Depth
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shallow

ImageNet Classification top-5 error (%)

(Deep Residual Networks. Kaiming He. 2016)
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012)
5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

[__fei000 ]

(Deep Residual Networks. Kaiming He. 2016)
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Deeper Networks

Revolution of Depth
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(Deep Residual Networks. Kaiming He. 2016)
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Deep network component Residual network component

weight layer

anytwo

stacked layers F(x) identity
i x
H =F ®
H(x) () =F(x)+x

(Deep Residual Networks. Kaiming He. 2016)
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Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

e.g., hi: x — x + Ajo(Bjx) hi: x — x + Air(Bix)
1
=, 8= 07 3
a(v); 15 exp(—v) r(v)i = max{0, v;}

o -5 2 5 10
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Deep Residual Networks

Advantages

@ With zero-valued parameters, the network
computes the identity.

@ Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)
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Deep Residual Networks

Training deep plain nets vs deep residual nets: CIFAR-10

ResNet-20

ResNet-32
~ResNet-44
= ResNet-56
=ResNet-110

20-layer

5 plain-20
plain-32
~— plain-44
— plain-56| . . i
% 1 3 4 5 6 % 1 2 3 4 5
iter. (led) iter. (le4)
v
(Kaiming He, Xiangyu Zhang, Shaogqing Ren, Jian Sun. 2016)
Large improvements over plain nets (e.g., ImageNet Large Scale Visual
Recognition Challenge, Common Objects in Context Detection Challenge).
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Related work

Emplrlcal rISk |and5cape fOI’ n > p e.g.,(Soudry and Carmon, 2016), (Kawaguchi, 2016)

SGD learning linear separators (Brutkus, Globerson, Malach, Shalev-Shwartz, 2017)

Optimization landscape and gradient descent

(Du & Lee, 2018), (Du, Lee, Tian, Poczos, Singh, 2017), (Soltanolkotabi, Javanmard, Lee, 2017)

Residual nets: a' (x + Bfy(x)). (Shamir, 2018)

Deep linear compositions: (I + An) - -+ (I + Aq). (Hardt & Ma, 2016)

22 /52



Some intuition: linear functions

Products of near-identity matrices

© Every invertible® A can be written as
A=(1+Ap) - (I + A1),

where [|Aj|| = O(1/m).

(Hardt and Ma, 2016)

* .
Provided det(A) > 0.
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Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + ¢, e ~ N(0,021),
consider choosing A1, ..., A, to minimize quadratic loss:

E[|(/ + Am) - (I + A)x =yl
If ||A;]] < 1, every stationary point of the quadratic loss is a global
optimum:
Vi, VAEI( + Am) - (/ +An)x —y|* =0
= =+ An)--- (I + A).

v

(Hardt and Ma, 2016)
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@ Statistical complexity of deep networks
@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ Optimization in deep linear residual networks

Steve Evans Phil Long

Berkeley, Stat/Math Google
arXiv:1804.05012
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,
hmo hm_10---0hy =h,

so that all layers compute near-identity functions:

log m
|hi —1d||, = O( - )

Definition: the Lipschitz seminorm of f satisfies, for all x, y,
1F(x) = FWI < Il lIx =yl
Think of the functions h; as near-identity maps that might be computed as

hi(x) = x4+ Ajo(Bix) .
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Representing with near-identities

Theorem

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that h is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
||hi —1d||, = O(log m/m) and hp o hp_10---0hy = hon X.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},
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Representing with near-identities

© Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () - ) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

© Ensure that a; and aj;; are sufficiently close that h; ~ Id.

@ Show |lh; —1d||, is small on small and large scales (c.f. a; — aj_1).
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'ohlzh?

so that all layers compute near-identity functions:

log m
I —1all, = 0 (°£™).

e Deeper networks allow flatter nonlinear functions at each layer.
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@ Statistical complexity of deep networks
@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ Optimization in deep linear residual networks
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Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy, Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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Stationary points

What the theorem says

@ If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

@ Thus every stationary point is a global optimum.

@ There are no local minima and no saddle points.
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Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

o Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

@ We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.
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Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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Stationary points

Proof ideas (1)
If |f —1d||, <« <1 then
© f is invertible.
Q |fllL<l+aand|f . <1/(1-a).
© For F(g)=fog, |[DF(g)—Id| < a.
© For a linear map h (such as DF(g) —Id), ||h|| = ||h]|..

e ||7]| denotes the induced norm: ||g|| := sup{M x| > O}.

Il
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Stationary points

Proof ideas (2)
© Projection theorem implies
1
Q(h) = §E |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

@ It is possible to choose a direction A s.t. ||[A| =1 and
Dy, Q(h)(A) = cE [|h(X) = h*(X)]5 -
© Because the hjs are near-identities,

(1 —E)m_l
c> ————.
lh = h||

e cv, is the evaluation functional, ev,(f) = f(x).
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Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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Deep compositions of near-identities

o If the mapping is not invertible?
eg., h: RY — R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?

@ Regularized gradient methods for near-identity maps?
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@ Statistical complexity of deep networks
@ Deep residual networks

o Optimization in deep linear residual networks
o Gradient descent
e Symmetric maps and positivity
o Regularized gradient descent and positive maps

L=

Dave Helmbold Phil Long

UCSsC Google
arXiv:1802.06093
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Optimization in deep linear residual networks

Linear networks

o Consider fg : R? — RY defined by fo(x) = ©, --- O x.

@ Suppose (x,y) ~ P, and consider using gradient methods to choose
© to minimize ¢(©) = 1E||fo(x) — y|%.

QO Exx' =1

@ y = ®x for some matrix ¢ (wlog, because of projection theorem)
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Optimization in deep linear residual networks

why wlog?

Define ® as the minimizer of E||®x — y||? (the least squares map).
Then the projection theorem implies

E|0x — y|2 = E[[0x — ®x|2 + 2E(@x — &x)" (¢x — y) + E[jox - y|
— E[|©x — ox|? + El|ox — y|,

so wlog we can assume y = ®x and define, for linear fgo,

(0) = JElfo(x) — x|
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Optimization in deep linear residual networks

Recall f@(X) = @L s elx = e1:LX.
where we use the notation ©;; = ©,0,_1---0O;.

Gradient descent

o) — (@(1°)a@§°)a---7950)> = (I,1,...,1)
@Etﬂ) o= @,(-t) = 77(@,'+1:L)T (@(115[)_ - ¢’> (@(12—1)Ta

where 7 is a step-size.
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Gradient descent in deep linear residual networks

There is a positive constant ¢y and polynomials p; and p» such that
if £(©(©) < g and n < 1/p1(d, L), after po(d,L,1/n)log(1/e€) iterations,
gradient descent achieves £(©(Y)) < e.
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Gradient descent: proof idea

Lemma [Hardt and Ma] (Gradient is big when loss is big)
If, for all layers i, omin(©;) > 1 — a, then ||Vel(©)|? > 44(O)L(1 — a)?L.

Lemma (Hessian is small for near-identities)
For © with ||©;|]2 < 1+ z for all /,

IV40(0)||F < 3Ld°(1 + z)%L.

Lemma (Stay close to the identity)

R(t+1) <R(t) +n(l+R(t)/20(t),
where R(t) := max; [|©\") — I||; and £(t) := }||0") — |2,

Then for sufficiently small step-size 7, the gradient update ensures that
{(t) decreases exponentially.
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@ Statistical complexity of deep networks

@ Deep residual networks
@ Optimization in deep linear residual networks

o Gradient descent
e Symmetric maps and positivity
o Regularized gradient descent and positive maps
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Optimization in deep linear residual networks

Definition (y-positive matrix)

A matrix A is y-positive for v > 0 if, for all unit length u, we have
ul Au > 7.

Theorem

| A\

Suppose that the least squares map @ is symmetric.
(a) There is an absolute positive constant c3 such that
if ® is y-positive (0 <y < 1), L > c3In(||®P|]2/7), and n <

after t = poly(L, ||®||2/7,1/n) log(d/e) iterations,
gradient descent achieves ((fg)) < €.

L(1+H¢H )’

(b) If ® has a negative eigenvalue —\ and L is even, then gradient descent
Satisﬁes E(@(t)) Z )\2/2 (as does any penalty-regularized version of gradient descent).

v
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Symmetric linear functions

Proof idea

(a) A set of symmetric matrices A is commuting normal if there is a single
unitary matrix U such that for all A€ A, UT AU is diagonal.

Clearly, {®, @(10),@(0), .. .,@(LO)} = {®,/} is commuting normal.

The gradient update keeps Ui’t{cb,@,(-t)} commuting normal.

So the dynamics decomposes:

S\(H-l) _ S\(t) + n(j\(t))L—l()\L _ (j\(t))L)

(b) The eigenvalues stay positive.
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@ Statistical complexity of deep networks

@ Deep residual networks
@ Optimization in deep linear residual networks

o Gradient descent
e Symmetric maps and positivity
o Regularized gradient descent and positive maps
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Positive (not necessarily symmetric) linear functions

Theorem

For any ~-positive ®, there is an algorithm (power projection)

that, after t = poly(d, ||®||F, %) log(1/e) iterations, produces ©() with
((e) <e.

Power projection algorithm idea

© Take a gradient step for each ©;.

| A

@ Project ©1.; onto the set of y-positive linear maps.

© Set @:(ltﬂ), e @(LtH) as the balanced factorization of ©1.;.

.
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Positive (not necessarily symmetric) linear functions

Balanced factorization

We can write any matrix A, with singular values o1, ...,04, as

A= A, --- A1, where the singular values of each A; are U}/L, ey O'Z/L.

(Idea: Write the polar decomposition A= RP (i.e., R unitary, P psd);
set A; = RYLP;, with p; = RU-VD/LpL/LR=(i—1)/L )
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Optimization in deep linear residual networks

o Gradient descent
e converges if £(0) sufficiently small,
e converges for a positive symmetric map,
e cannot converge for a symmetric map with a negative eigenvalue.

Regularized gradient descent converges for a positive map.

Convergence is linear in all cases.

Deep nonlinear residual networks?
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@ Statistical complexity of deep networks
@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ Optimization in deep linear residual networks
o Gradient descent
e Symmetric maps and positivity
o Regularized gradient descent and positive maps
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