Optimization Properties of Deep Residual Networks

Peter Bartlett

UC Berkeley

May 14, 2018

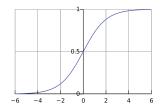
Deep compositions of nonlinear functions

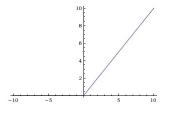
$$h = h_m \circ h_{m-1} \circ \cdots \circ h_1$$

e.g.,
$$h_i : x \mapsto \sigma(W_i x)$$

 $\sigma(v)_i = \frac{1}{1 + \exp(-v_i)},$

 $h_i: x \mapsto r(W_i x)$ $r(v)_i = \max\{0, v_i\}$





Representation learning

Depth provides an effective way of representing useful features.

Rich non-parametric family

Depth provides parsimonious representions.

Nonlinear parameterizations provide better rates of approximation.

Some functions require much more complexity for a shallow representation.

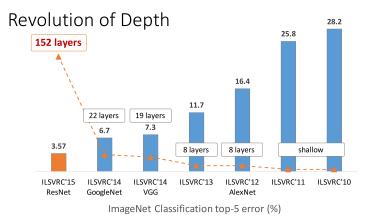
But...

- Optimization?
 - Nonlinear parameterization.
 - Apparently worse as the depth increases.

- Deep residual networks
 - Representing with near-identities
 - Global optimality of stationary points
- Optimization in deep linear residual networks
 - Gradient descent
 - Symmetric maps and positivity
 - Regularized gradient descent and positive maps

Deep residual networks

- Representing with near-identities
- Global optimality of stationary points
- Optimization in deep linear residual networks
 - Gradient descent
 - Symmetric maps and positivity
 - Regularized gradient descent and positive maps



(Deep Residual Networks. Kaiming He. 2016)

Revolu	ition of Depth
AlexNet, 8 layers	11x11 conv, 96, /4, pool/2
(ILSVRC 2012)	5x5 conv, 256, pool/2

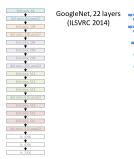
3x3 conv, 384 3x3 conv, 384 3x3 conv, 256, pool/2 fc, 4096 fc, 4096

(Deep Residual Networks. Kaiming He. 2016)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

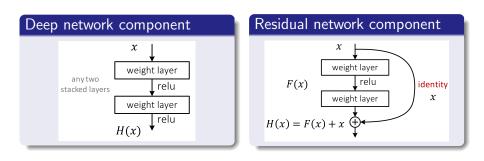


(Deep Residual Networks. Kaiming He. 2016)

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015)

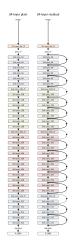
(Deep Residual Networks. Kaiming He. 2016)



(Deep Residual Networks. Kaiming He. 2016)

Advantages

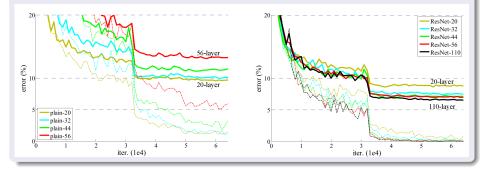
- With zero weights, the network computes the identity.
- Identity connections provide useful feedback throughout the network.



(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

Deep Residual Networks

Training deep plain nets vs deep residual nets: CIFAR-10



(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

Large improvements over plain nets (e.g., ImageNet Large Scale Visual Recognition Challenge, Common Objects in Context Detection Challenge).

Products of near-identity matrices

Every invertible* A can be written as

$$A = (I + A_m) \cdots (I + A_1),$$

where $||A_i|| = O(1/m)$.

(Hardt and Ma, 2016)

Provided det(A) > 0.

*

Products of near-identity matrices

Por a linear Gaussian model,

$$y = \mathbf{A}x + \epsilon, \qquad \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}),$$

consider choosing A_1, \ldots, A_m to minimize quadratic loss:

$$\mathbb{E}\|(I+A_m)\cdots(I+A_1)x-y\|^2.$$

If $||A_i|| < 1$, every stationary point of the quadratic loss is a global optimum:

$$\forall i, \ \nabla_{A_i} \mathbb{E} \| (I + A_m) \cdots (I + A_1) x - y \|^2 = 0$$

$$\Rightarrow \qquad \mathbf{A} = (I + A_m) \cdots (I + A_1).$$

(Hardt and Ma, 2016)

Outline

Deep residual networks

- Representing with near-identities
- Global optimality of stationary points
- Optimization in deep linear residual networks

Steve Evans Berkeley, Stat/Math

Phil Long Google arXiv:1804.05012

Result

The computation of a smooth invertible map h can be spread throughout a deep network,

$$h_m \circ h_{m-1} \circ \cdots \circ h_1 = h,$$

so that all layers compute near-identity functions:

$$\|h_i - \mathrm{Id}\|_L = O\left(\frac{\log m}{m}\right).$$

Definition: the Lipschitz seminorm of f satisfies, for all x, y,

 $||f(x) - f(y)|| \le ||f||_L ||x - y||.$

Think of the functions h_i as near-identity maps that might be computed as

$$h_i(x) = x + A\sigma(Bx).$$

Theorem

Consider a function $h : \mathbb{R}^d \to \mathbb{R}^d$ on a bounded domain $\mathcal{X} \subset \mathbb{R}^d$. Suppose that h is

- Differentiable,
- Invertible,
- Smooth: For some $\alpha > 0$ and all x, y, u, $\|Dh(y) - Dh(x)\| \le \alpha \|y - x\|.$
- Lipschitz inverse: For some M > 0, $||h^{-1}||_L \le M$.
- Solution Positive orientation: For some x_0 , $det(Dh(x_0)) > 0$.

Then for all *m*, there are *m* functions $h_1, \ldots, h_m : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $\|h_i - \operatorname{Id}\|_L = O(\log m/m)$ and $h_m \circ h_{m-1} \circ \cdots \circ h_1 = h$ on \mathcal{X} .

• *Dh* is the derivative; $\|Dh(y)\|$ is the induced norm: $\|f\| := \sup \left\{ \frac{\|f(x)\|}{\|x\|} : \|x\| > 0 \right\}.$

Representing with near-identities

Key ideas

• Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the h_i so that

$$h_1(x) = \frac{h(a_1x)}{a_1}$$
$$h_2(h_1(x)) = \frac{h(a_2x)}{a_2}$$
$$\vdots$$
$$m(\cdots(h_1(x))\cdots) = \frac{h(a_mx)}{a_m},$$

• Ensure that a_1 is small enough that $h_1 \approx Dh(0) = \text{Id.}$

() Ensure that a_i and a_{i+1} are sufficiently close that $h_i \approx \text{Id.}$

5 Show $||h_i - \text{Id}||_I$ is small on small and large scales (c.f. $a_i - a_{i-1}$).

Result

The computation of a smooth invertible map h can be spread throughout a deep network,

$$h_m \circ h_{m-1} \circ \cdots \circ h_1 = h,$$

so that all layers compute near-identity functions:

$$\|h_i - \mathrm{Id}\|_L = O\left(\frac{\log m}{m}\right).$$

• Deeper networks allow flatter nonlinear functions at each layer.

- Deep residual networks
 - Representing with near-identities
 - Global optimality of stationary points
- Optimization in deep linear residual networks

Result

For (X, Y) with an arbitrary joint distribution, define the squared error,

$$Q(h) = \frac{1}{2}\mathbb{E} \|h(X) - Y\|_2^2,$$

define the minimizer $h^*(x) = \mathbb{E}[Y|X = x]$. Consider a function $h = h_m \circ \cdots \circ h_1$, where $\|h_i - \mathrm{Id}\|_L \le \epsilon < 1$. Then for all *i*,

$$\|D_{h_i}Q(h)\| \geq rac{(1-\epsilon)^{m-1}}{\|h-h^*\|} \left(Q(h)-Q(h^*)
ight).$$

e.g., if (X, Y) is uniform on a training sample, then Q is empirical risk and h* an empirical risk minimizer.
D_{hi}Q is a Fréchet derivative; ||h|| is the induced norm.

What the theorem says

- If the composition h is sub-optimal and each function h_i is a near-identity, then there is a downhill direction in function space: the functional gradient of Q wrt h_i is non-zero.
- Thus every stationary point is a global optimum.
- There are no local minima and no saddle points.

What the theorem says

- The theorem does not say there are no local minima of a deep residual network of ReLUs or sigmoids with a fixed architecture.
- Except at the global minimum, there is a downhill direction in function space. But this direction might be orthogonal to functions that can be computed with this fixed architecture.
- We should expect suboptimal stationary points in the ReLU or sigmoid parameter space, but these cannot arise because of interactions between parameters in different layers; they arise only within a layer.

Result

For (X, Y) with an arbitrary joint distribution, define the squared error,

$$Q(h) = \frac{1}{2}\mathbb{E} \|h(X) - Y\|_2^2,$$

define the minimizer $h^*(x) = \mathbb{E}[Y|X = x]$. Consider a function $h = h_m \circ \cdots \circ h_1$, where $\|h_i - \mathrm{Id}\|_L \le \epsilon < 1$. Then for all *i*,

$$\|D_{h_i}Q(h)\| \geq rac{(1-\epsilon)^{m-1}}{\|h-h^*\|} \left(Q(h)-Q(h^*)
ight).$$

e.g., if (X, Y) is uniform on a training sample, then Q is empirical risk and h* an empirical risk minimizer.
D_{hi}Q is a Fréchet derivative; ||h|| is the induced norm.

Proof ideas (1)

- If $\|f \operatorname{Id}\|_L \le \alpha < 1$ then
 - f is invertible.
 - **2** $||f||_L \le 1 + \alpha$ and $||f^{-1}||_L \le 1/(1-\alpha)$.
 - For $F(g) = f \circ g$, $||DF(g) \mathrm{Id}|| \le \alpha$.
 - For a linear map h (such as DF(g) Id), $||h|| = ||h||_L$.

• ||f|| denotes the induced norm: $||g|| := \sup \left\{ \frac{||g(x)||}{||x||} : ||x|| > 0 \right\}.$

Stationary points

Proof ideas (2)

Projection theorem implies

$$Q(h) = rac{1}{2}\mathbb{E}\left\|h(X) - h^*(X)
ight\|_2^2 + ext{constant.}$$

2 Then

$$\mathcal{D}_{h_i}Q(h) = \mathbb{E}\left[(h(X) - h^*(X)) \cdot \operatorname{ev}_X \circ \mathcal{D}_{h_i}h
ight].$$

③ It is possible to choose a direction Δ s.t. $\|\Delta\| = 1$ and

$$D_{h_i}Q(h)(\Delta) = c\mathbb{E} \|h(X) - h^*(X)\|_2^2.$$

• Because the h_i s are near-identities,

$$c \geq rac{(1-\epsilon)^{m-1}}{\|h-h^*\|}.$$

• ev_x is the evaluation functional, $ev_x(f) = f(x)$.

Result

For (X, Y) with an arbitrary joint distribution, define the squared error,

$$Q(h) = \frac{1}{2}\mathbb{E} \|h(X) - Y\|_2^2,$$

define the minimizer $h^*(x) = \mathbb{E}[Y|X = x]$. Consider a function $h = h_m \circ \cdots \circ h_1$, where $\|h_i - \mathrm{Id}\|_L \le \epsilon < 1$. Then for all *i*,

$$\|D_{h_i}Q(h)\| \geq rac{(1-\epsilon)^{m-1}}{\|h-h^*\|} \left(Q(h)-Q(h^*)
ight).$$

e.g., if (X, Y) is uniform on a training sample, then Q is empirical risk and h* an empirical risk minimizer.
D_{hi}Q is a Fréchet derivative; ||h|| is the induced norm.

Questions

• If the mapping is not invertible?

e.g., $h : \mathbb{R}^d \to \mathbb{R}$?

If *h* can be extended to a bi-Lipschitz mapping to \mathbb{R}^d , it can be represented with flat functions at each layer. What if it cannot?

- Implications for optimization? Related to Polyak-Łojasiewicz function classes; proximal algorithms for these classes converge quickly to stationary points.
- Regularized gradient methods for near-identity maps?

Outline

Deep residual networks

Optimization in deep linear residual networks

- Gradient descent
- Symmetric maps and positivity
- Regularized gradient descent and positive maps

Dave Helmbold UCSC

Phil Long Google arXiv:1802.06093

Linear networks

- Consider $f_{\Theta} : \mathbb{R}^d \to \mathbb{R}^d$ defined by $f_{\Theta}(x) = \Theta_L \cdots \Theta_1 x$.
- Suppose $(x, y) \sim P$, and consider using gradient methods to choose Θ to minimize $\ell(\Theta) = \frac{1}{2}\mathbb{E} ||f_{\Theta}(x) y||^2$.

Assumptions

- $I \mathbb{E} x x^\top = I$
- **2** $y = \Phi x$ for some matrix Φ (wlog, because of projection theorem)

why wlog?

Define Φ as the minimizer of $\mathbb{E} \|\Phi x - y\|^2$ (the *least squares map*). Then the projection theorem implies

$$\begin{split} \mathbb{E} \|\Theta x - y\|^2 &= \mathbb{E} \|\Theta x - \Phi x\|^2 + 2\mathbb{E} (\Theta x - \Phi x)^\top (\Phi x - y) + \mathbb{E} \|\Phi x - y\|^2 \\ &= \mathbb{E} \|\Theta x - \Phi x\|^2 + \mathbb{E} \|\Phi x - y\|^2, \end{split}$$

so wlog we can assume $y = \Phi x$ and define, for linear f_{Θ} ,

$$\ell(\Theta) = \frac{1}{2} \mathbb{E} \|f_{\Theta}(x) - \Phi x\|^2.$$

Recall $f_{\Theta}(x) = \Theta_L \cdots \Theta_1 x = \Theta_{1:L} x$, where we use the notation $\Theta_{i:j} = \Theta_j \Theta_{j-1} \cdots \Theta_i$.

Gradient descent

$$\Theta^{(0)} = \left(\Theta_1^{(0)}, \Theta_2^{(0)}, \dots, \Theta_L^{(0)}\right) := (I, I, \dots, I)$$

$$\Theta_i^{(t+1)} := \Theta_i^{(t)} - \eta(\Theta_{i+1:L})^\top \left(\Theta_{1:L}^{(t)} - \Phi\right) (\Theta_{1:i-1}^{(t)})^\top$$

where η is a step-size.

Theorem

There is a positive constant c_0 and polynomials p_1 and p_2 such that if $\ell(\Theta^{(0)}) \leq c_0$ and $\eta \leq 1/p_1(d, L)$, after $p_2(d, L, 1/\eta) \log(1/\epsilon)$ iterations, gradient descent achieves $\ell(\Theta^{(t)}) \leq \epsilon$.

Lemma [Hardt and Ma] (Gradient is big when loss is big)

If, for all layers *i*, $\sigma_{\min}(\Theta_i) \ge 1 - a$, then $||\nabla_{\Theta}\ell(\Theta)||^2 \ge 4\ell(\Theta)L(1-a)^{2L}$.

Lemma (Hessian is small for near-identities)

For Θ with $||\Theta_i||_2 \leq 1 + z$ for all *i*,

 $\|\nabla_{\Theta}^2 \ell(\Theta)\|_F \leq 3Ld^5(1+z)^{2L}.$

Lemma (Stay close to the identity)

 $\mathcal{R}(t+1) \leq \mathcal{R}(t) + \eta (1+\mathcal{R}(t))^L \sqrt{2\ell(t)},$ where $\mathcal{R}(t) := \max_i ||\Theta_i^{(t)} - I||_2$ and $\ell(t) := \frac{1}{2} ||\Theta_{1:L}^{(t)} - \Phi||_F^2.$

Then for sufficiently small step-size η , the gradient update ensures that $\ell(t)$ decreases exponentially.

- Deep residual networks
- Optimization in deep linear residual networks
 - Gradient descent
 - Symmetric maps and positivity
 - Regularized gradient descent and positive maps

Definition (positive margin matrix)

A matrix A has margin $\gamma > 0$ if, for all unit length u, we have $u^{\top}Au > \gamma$.

Theorem

Suppose Φ is symmetric.

(a) There is an absolute positive constant c_3 such that if Φ has margin $0 < \gamma < 1$, $L \ge c_3 \ln(||\Phi||_2/\gamma)$, and $\eta \le \frac{1}{L(1+||\Phi||_2^2)}$, after $t = \text{poly}(L, ||\Phi||_2/\gamma, 1/\eta) \log(d/\epsilon)$ iterations, gradient descent achieves $\ell(f_{\Theta(t)}) \le \epsilon$. (b) If Φ has a negative eigenvalue $-\lambda$ and L is even, then gradient descent satisfies $\ell(\Theta^{(t)}) \ge \lambda^2/2$ (as does any penalty-regularized version of gradient descent).

Proof idea

(a) A set of symmetric matrices \mathcal{A} is *commuting normal* if there is a single unitary matrix U such that for all $A \in \mathcal{A}$, $U^{\top}AU$ is diagonal. Clearly, $\{\Phi, \Theta_1^{(0)}, \Theta_2^{(0)}, \dots, \Theta_L^{(0)}\} = \{\Phi, I\}$ is commuting normal. The gradient update keeps $\bigcup_{i,t} \{\Phi, \Theta_i^{(t)}\}$ commuting normal. So the dynamics decomposes:

$$\hat{\lambda}^{(t+1)} = \hat{\lambda}^{(t)} + \eta(\hat{\lambda}^{(t)})^{L-1} (\lambda^{L} - (\hat{\lambda}^{(t)})^{L}).$$

(b) The eigenvalues stay positive.

- Deep residual networks
- Optimization in deep linear residual networks
 - Gradient descent
 - Symmetric maps and positivity
 - Regularized gradient descent and positive maps

Theorem

For any Φ with margin γ , there is an algorithm (*power projection*) that, after $t = \text{poly}(d, ||\Phi||_F, \frac{1}{\gamma}) \log(1/\epsilon)$ iterations, produces $\Theta^{(t)}$ with $\ell(\Theta^{(t)}) \leq \epsilon$.

Power projection algorithm idea

- **1** Take a gradient step for each Θ_i .
- **2** Project $\Theta_{1:L}$ onto the set of linear maps with margin γ .
- Set $\Theta_1^{(t+1)}, \ldots, \Theta_L^{(t+1)}$ as the balanced factorization of $\Theta_{1:L}$.

Balanced factorization

We can write any matrix A, with singular values $\sigma_1, \ldots, \sigma_d$, as $A = A_L \cdots A_1$, where the singular values of each A_i are $\sigma_1^{1/L}, \ldots, \sigma_d^{1/L}$. (Idea: Write the polar decomposition A = RP (i.e., R unitary, P psd); set $A_i = R^{1/L}P_i$, with $P_i = R^{(i-1)/L}P^{1/L}R^{-(i-1)/L}$.)

- Gradient descent
 - converges if $\ell(0)$ sufficiently small,
 - converges for a positive symmetric map,
 - cannot converge for a symmetric map with a negative eigenvalue.
- Regularized gradient descent converges for a positive map.
- Convergence is linear in all cases.
- Deep nonlinear residual networks?

- Deep residual networks
 - Representing with near-identities
 - Global optimality of stationary points
- Optimization in deep linear residual networks
 - Gradient descent
 - Symmetric maps and positivity
 - Regularized gradient descent and positive maps