
Representation, Optimization and Generalization
in Deep Learning

Peter Bartlett

UC Berkeley

25 January, 2018

1 / 59

Deep neural networks

Game playing

(Jung Yeon-Je/AFP/Getty Images)

2 / 59

Deep neural networks

Image recognition

(Krizhevsky et al, 2012)

3 / 59

Deep neural networks

Speech recognition

(Graves et al, 2013)

4 / 59

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

5 / 59

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix)

hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
,

r(v)i = max{0, vi}

5 / 59

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix)

hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
,

r(v)i = max{0, vi}

5 / 59

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

5 / 59

Deep Networks

Deep compositions of nonlinear functions

h = hm ◦ hm−1 ◦ · · · ◦ h1

e.g., hi : x 7→ σ(Wix) hi : x 7→ r(Wix)

σ(v)i =
1

1 + exp(−vi)
, r(v)i = max{0, vi}

5 / 59

Deep Networks

Representation learning

Depth provides an effective way of representing useful
features.

Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.

Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.

Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?

6 / 59

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow
representation.

But...

Optimization?

Nonlinear parameterization.
Apparently worse as the depth increases.

Generalization?

What determines the statistical complexity of a deep network?
6 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

7 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

7 / 59

Outline

Deep residual networks
Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

8 / 59

Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)

9 / 59

Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)

10 / 59

Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)

11 / 59

Deeper Networks

(Deep Residual Networks. Kaiming He. 2016)

12 / 59

Deep Residual Networks

Deep network component

Residual network component

(Deep Residual Networks. Kaiming He. 2016)

13 / 59

Deep Residual Networks

Deep network component Residual network component

(Deep Residual Networks. Kaiming He. 2016)

13 / 59

Deep Residual Networks

Advantages

With zero weights, the network computes
the identity.

Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

14 / 59

Deep Residual Networks

Advantages

With zero weights, the network computes
the identity.

Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

14 / 59

Deep Residual Networks

Advantages

With zero weights, the network computes
the identity.

Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

14 / 59

Deep Residual Networks

Training deep plain nets vs deep residual nets: CIFAR-10

(Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. 2016)

15 / 59

Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

(http://image-net.org/)

First place:

Object detection: 16% better than next best

Object localization: 27% better than next best

16 / 59

Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

(http://image-net.org/)

First place:

Object detection: 16% better than next best

Object localization: 27% better than next best

16 / 59

Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

First place:

Detection: 11% better than next best

Segmentation: 12% better than next best

17 / 59

Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

First place:

Detection: 11% better than next best

Segmentation: 12% better than next best

17 / 59

Deep Residual Networks

Why?

What is behind the success of residual networks?

What is important for their performance?

18 / 59

Some intuition: linear functions

Products of near-identity matrices

1 Every invertible∗ A can be written as

A = (I + Am) · · · (I + A1),

where ‖Ai‖ = O(1/m).

(Hardt and Ma, 2016)

∗
Provided det(A) > 0.

19 / 59

Some intuition: linear functions

Products of near-identity matrices

2 For a linear Gaussian model,

y = Ax + ε, ε ∼ N (0, σ2I),

consider choosing A1, . . . ,Am to minimize quadratic loss:

E‖(I + Am) · · · (I + A1)x − y‖2.
If ‖Ai‖ < 1, every stationary point of the quadratic loss is a global
optimum:

∀i , ∇Ai
E‖(I + Am) · · · (I + A1)x − y‖2 = 0

⇒ A = (I + Am) · · · (I + A1).

(Hardt and Ma, 2016)

20 / 59

Some intuition: linear functions

Products of near-identity matrices

2 For a linear Gaussian model,

y = Ax + ε, ε ∼ N (0, σ2I),

consider choosing A1, . . . ,Am to minimize quadratic loss:

E‖(I + Am) · · · (I + A1)x − y‖2.

If ‖Ai‖ < 1, every stationary point of the quadratic loss is a global
optimum:

∀i , ∇Ai
E‖(I + Am) · · · (I + A1)x − y‖2 = 0

⇒ A = (I + Am) · · · (I + A1).

(Hardt and Ma, 2016)

20 / 59

Some intuition: linear functions

Products of near-identity matrices

2 For a linear Gaussian model,

y = Ax + ε, ε ∼ N (0, σ2I),

consider choosing A1, . . . ,Am to minimize quadratic loss:

E‖(I + Am) · · · (I + A1)x − y‖2.
If ‖Ai‖ < 1, every stationary point of the quadratic loss is a global
optimum:

∀i , ∇Ai
E‖(I + Am) · · · (I + A1)x − y‖2 = 0

⇒ A = (I + Am) · · · (I + A1).

(Hardt and Ma, 2016)

20 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

Steve Evans
Berkeley, Stat/Math

Phil Long
Google

21 / 59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

22 / 59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

Definition: the Lipschitz seminorm of f satisfies, for all x , y ,

‖f (x)− f (y)‖ ≤ ‖f ‖L‖x − y‖.

22 / 59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

Think of the functions hi as near-identity maps that might be computed as

hi (x) = x + Aσ(Bx)︸ ︷︷ ︸ .

As the network gets deeper, the functions x 7→ Aσ(Bx) can get flatter.

22 / 59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

Think of the functions hi as near-identity maps that might be computed as

hi (x) = x + Aσ(Bx)︸ ︷︷ ︸ .
As the network gets deeper, the functions x 7→ Aσ(Bx) can get flatter.

22 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m)

and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Theorem

Consider a function h : Rd → Rd on a bounded domain X ⊂ Rd .
Suppose that it is

1 Differentiable,

2 Invertible,

3 Smooth: For some α > 0 and all x , y , u,
‖Dh(y)− Dh(x)‖ ≤ α‖y − x‖.

4 Lipschitz inverse: For some M > 0, ‖h−1‖L ≤ M.

5 Positive orientation: For some x0, det(Dh(x0)) > 0.

Then for all m, there are m functions h1, . . . , hm : Rd → Rd satisfying
‖hi − Id‖L = O(logm/m) and hm ◦ hm−1 ◦ · · · ◦ h1 = h on X .

• Dh is the derivative; ‖Dh(y)‖ is the induced norm:

‖f ‖ := sup
{
‖f (x)‖
‖x‖ : ‖x‖ > 0

}
.

23 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id

(else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2

...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).

24 / 59

Representing with near-identities

Key ideas

1 Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

2 Construct the hi so that
h1(x) =

h(a1x)

a1

h2(h1(x)) =
h(a2x)

a2
...

hm(· · · (h1(x)) · · ·) =
h(amx)

am
,

3 Pick am = 1 so hm ◦ · · · ◦ h1 = h.

4 Ensure that a1 is small enough that h1 ≈ Dh(0) = Id.

5 Ensure that ai and ai+1 are sufficiently close that hi ≈ Id.

6 Show ‖hi − Id‖L is small on small and large scales (c.f. ai − ai−1).
24 / 59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hm ◦ hm−1 ◦ · · · ◦ h1 = h,

so that all layers compute near-identity functions:

‖hi − Id‖L = O

(
logm

m

)
.

• Deeper networks allow flatter nonlinear functions at each layer.

25 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

26 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].

Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

27 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].

Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.

• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

27 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.

Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.

• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

27 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.

• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

27 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

27 / 59

Stationary points

What the theorem says

If the composition h is sub-optimal and each function hi is a
near-identity, then there is a downhill direction in function space: the
functional gradient of Q wrt hi is non-zero.

Thus every stationary point is a global optimum.

There are no local minima and no saddle points.

28 / 59

Stationary points

What the theorem says

If the composition h is sub-optimal and each function hi is a
near-identity, then there is a downhill direction in function space: the
functional gradient of Q wrt hi is non-zero.

Thus every stationary point is a global optimum.

There are no local minima and no saddle points.

28 / 59

Stationary points

What the theorem says

If the composition h is sub-optimal and each function hi is a
near-identity, then there is a downhill direction in function space: the
functional gradient of Q wrt hi is non-zero.

Thus every stationary point is a global optimum.

There are no local minima and no saddle points.

28 / 59

Stationary points

What the theorem says

If the composition h is sub-optimal and each function hi is a
near-identity, then there is a downhill direction in function space: the
functional gradient of Q wrt hi is non-zero.

Thus every stationary point is a global optimum.

There are no local minima and no saddle points.

28 / 59

Stationary points

What the theorem says

The theorem does not say there are no local minima of a deep
residual network of ReLUs or sigmoids with a fixed architecture.

Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 / 59

Stationary points

What the theorem says

The theorem does not say there are no local minima of a deep
residual network of ReLUs or sigmoids with a fixed architecture.

Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 / 59

Stationary points

What the theorem says

The theorem does not say there are no local minima of a deep
residual network of ReLUs or sigmoids with a fixed architecture.

Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 / 59

Stationary points

What the theorem says

The theorem does not say there are no local minima of a deep
residual network of ReLUs or sigmoids with a fixed architecture.

Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

30 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (1)

If ‖f − Id‖L ≤ α < 1 then

1 f is invertible.

2 ‖f ‖L ≤ 1 + α and ‖f −1‖L ≤ 1/(1− α).

3 For F (g) = f ◦ g , ‖DF (g)− Id‖ ≤ α.

4 For a linear map h (such as DF (g)− Id), ‖h‖ = ‖h‖L.

• ‖f ‖ denotes the induced norm: ‖g‖ := sup
{
‖g(x)‖
‖x‖ : ‖x‖ > 0

}
.

31 / 59

Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X)− h∗(X)‖22 + constant.

2 Then
DhiQ(h) = E [(h(X)− h∗(X)) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X)− h∗(X)‖22 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f) = f (x).

32 / 59

Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X)− h∗(X)‖22 + constant.

2 Then
DhiQ(h) = E [(h(X)− h∗(X)) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X)− h∗(X)‖22 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f) = f (x).

32 / 59

Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X)− h∗(X)‖22 + constant.

2 Then
DhiQ(h) = E [(h(X)− h∗(X)) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X)− h∗(X)‖22 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f) = f (x).
32 / 59

Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X)− h∗(X)‖22 + constant.

2 Then
DhiQ(h) = E [(h(X)− h∗(X)) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X)− h∗(X)‖22 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f) = f (x).
32 / 59

Stationary points

Proof ideas (2)

1 Projection theorem implies

Q(h) =
1

2
E ‖h(X)− h∗(X)‖22 + constant.

2 Then
DhiQ(h) = E [(h(X)− h∗(X)) · evX ◦ Dhih] .

3 It is possible to choose a direction ∆ s.t. ‖∆‖ = 1 and

DhiQ(h)(∆) = cE ‖h(X)− h∗(X)‖22 .

4 Because the hjs are near-identities,

c ≥ (1− ε)m−1

‖h − h∗‖
.

• evx is the evaluation functional, evx(f) = f (x).
32 / 59

Stationary points

Result

For (X ,Y) with an arbitrary joint distribution, define the squared error,

Q(h) =
1

2
E ‖h(X)− Y ‖22 ,

define the minimizer h∗(x) = E[Y |X = x].
Consider a function h = hm ◦ · · · ◦ h1, where ‖hi − Id‖L ≤ ε < 1.
Then for all i ,

‖DhiQ(h)‖ ≥ (1− ε)m−1

‖h − h∗‖
(Q(h)− Q(h∗)) .

• e.g., if (X ,Y) is uniform on a training sample,
then Q is empirical risk and h∗ an empirical risk minimizer.
• DhiQ is a Fréchet derivative; ‖h‖ is the induced norm.

33 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?

e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?

Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?

If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?

Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.

What if it cannot?

Implications for optimization?

Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?

Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?

Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?
Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Deep compositions of near-identities

Questions

If the mapping is not invertible?
e.g., h : Rd → R?
If h can be extended to a bi-Lipschitz mapping to Rd , it can be
represented with flat functions at each layer.
What if it cannot?

Implications for optimization?
Related to Polyak- Lojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

Do stochastic gradient methods produce near-identities?

34 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?
VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

35 / 59

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

36 / 59

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

36 / 59

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.

Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

36 / 59

VC Theory

Assume network maps to {−1, 1}.
(Threshold its output)

Data generated by a probability distribution P on X × {−1, 1}.
Want to choose a function f such that P(f (x) 6= y) is small (near
optimal).

36 / 59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

37 / 59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.

For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

37 / 59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

37 / 59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters

depends on nonlinearity and depth

37 / 59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F ⊆ {−1, 1}X .
For every prob distribution P on X × {−1, 1},
with probability 1− δ over n iid examples (x1, y1), . . . , (xn, yn),
every f in F satisfies

P(f (x) 6= y) ≤ 1

n
|{i : f (xi) 6= yi}|+

(c
n

(VCdim(F) + log(1/δ))
)1/2

.

For uniform bounds (that is, for all distributions and all f ∈ F ,
proportions are close to probabilities), this inequality is tight within a
constant factor.
For neural networks, VC-dimension:

increases with number of parameters
depends on nonlinearity and depth

37 / 59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

38 / 59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

38 / 59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

38 / 59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

38 / 59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {−1, 1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:

1 Piecewise constant (linear threshold units): VCdim(F) = Õ (p).
(Baum and Haussler, 1989)

2 Piecewise linear (ReLUs): VCdim(F) = Õ (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

3 Piecewise polynomial: VCdim(F) = Õ
(
pL2
)
.

(B., Maiorov, Meir, 1998)

4 Sigmoid: VCdim(F) = Õ
(
p2k2

)
.

(Karpinsky and MacIntyre, 1994)

38 / 59

Generalization in Neural Networks: Number of Parameters

NIPS 1996

39 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

40 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.

For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Large-Margin Classifiers

Consider a real-valued function f : X → R used for classification.

The prediction on x ∈ X is sign(f (x)) ∈ {−1, 1}.
For a pattern-label pair (x , y) ∈ X × {−1, 1},
if yf (x) > 0 then f classifies x correctly.

We call yf (x) the margin of f on x .

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as

n∑
i=1

(f (Xi)− Yi)
2 ,

encourages large margins.

For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over

n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}

, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over

n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}

, every

f ∈ F ⊂ RX

has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over

n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}

, every

f ∈ F ⊂ RX

has

Pr(sign(f (X)) 6= Y)

≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The bound depends on the margin loss plus an error term.

Minimizing quadratic loss or cross-entropy loss leads to large margins.

fatF (γ) is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs (B. and Shawe-Taylor, 1999)

... and margins analysis of AdaBoost. (Schapire, Freund, B., Lee, 1998)

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs (B. and Shawe-Taylor, 1999)

... and margins analysis of AdaBoost. (Schapire, Freund, B., Lee, 1998)

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The scale of functions f ∈ F is important.

Bigger f s give bigger margins, so fatF (γ) should be bigger.

The output y of a sigmoid layer has ‖y‖∞ ≤ 1,
so ‖w‖1 ≤ B controls the scale of f .

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The scale of functions f ∈ F is important.

Bigger f s give bigger margins, so fatF (γ) should be bigger.

The output y of a sigmoid layer has ‖y‖∞ ≤ 1,
so ‖w‖1 ≤ B controls the scale of f .

42 / 59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1,Y1), . . . , (Xn,Yn) ∈ X × {±1}, every f ∈ F ⊂ RX has

Pr(sign(f (X)) 6= Y) ≤ 1

n

n∑
i=1

1[Yi f (Xi) ≤ γ] + Õ

(√
fatF (γ)

n

)
.

2. If functions in F are computed by two-layer sigmoid networks with each
unit’s weights bounded in 1-norm, that is, ‖w‖1 ≤ B, then

fatF (γ) = Õ((B/γ)2).

The scale of functions f ∈ F is important.

Bigger f s give bigger margins, so fatF (γ) should be bigger.

The output y of a sigmoid layer has ‖y‖∞ ≤ 1,
so ‖w‖1 ≤ B controls the scale of f .

42 / 59

Generalization: Margins and Size of Parameters

1996: Sigmoid networks

Qualitative behavior explained
by small weights theorem.

2017: Deep ReLU networks

simons.berkeley.edu

How to measure the
complexity of a ReLU network?

43 / 59

Generalization: Margins and Size of Parameters

1996: Sigmoid networks

Qualitative behavior explained
by small weights theorem.

2017: Deep ReLU networks

simons.berkeley.edu

How to measure the
complexity of a ReLU network?

43 / 59

Generalization: Margins and Size of Parameters

1996: Sigmoid networks

Qualitative behavior explained
by small weights theorem.

2017: Deep ReLU networks

simons.berkeley.edu

How to measure the
complexity of a ReLU network?

43 / 59

Outline

Deep residual networks

Representing with near-identities
Global optimality of stationary points

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

44 / 59

Explaining Generalization Failures

CIFAR10

http://corochann.com/

45 / 59

Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
46 / 59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

Need to account for the scale of the neural network functions.

What is the appropriate notion of the size of these functions?

47 / 59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

Need to account for the scale of the neural network functions.

What is the appropriate notion of the size of these functions?

47 / 59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

Need to account for the scale of the neural network functions.

What is the appropriate notion of the size of these functions?

47 / 59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

Need to account for the scale of the neural network functions.

What is the appropriate notion of the size of these functions?

47 / 59

Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.
B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster

Cornell

Matus Telgarsky

UIUC

48 / 59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.

(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

49 / 59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.
(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

49 / 59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.
(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

49 / 59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.
(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

49 / 59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

Measuring the size of functions computed by a network of ReLUs.
(c.f. sigmoid networks: the output y of a layer has ‖y‖∞ ≤ 1, so
‖w‖1 ≤ B keeps the scale under control.)

Large multiclass versus binary classification.

Definitions

Consider operator norms: For a matrix Ai ,

‖Ai‖∗ := sup
‖x‖≤1

‖Aix‖.

Multiclass margin function for f : X → Rm, y ∈ {1, . . . ,m}:

M(f (x), y) = f (x)y −max
i 6=y

f (x)i .

49 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤

1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ]

+ Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA

with RA ≤ r

satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗

∑L
i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Definitions

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σL(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
∑L

i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

(Assume σi is 1-Lipschitz, inputs normalized.)

50 / 59

Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
51 / 59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

How does this match the large margin explanation?

52 / 59

Explaining Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled margins on CIFAR10

53 / 59

Explaining Generalization Failures

If we rescale the margins by RA (the scale parameter):

Rescaled cumulative margins on MNIST

54 / 59

Generalization in Deep Networks

Theorem

With high probability, every fA with RA ≤ r satisfies

Pr(M(fA(X),Y) ≤ 0) ≤ 1

n

n∑
i=1

1[M(fA(Xi),Yi) ≤ γ] + Õ

(
rL

γ
√
n

)
.

Network with L layers, parameters A1, . . . ,AL:

fA(x) := σ(ALσL−1(AL−1 · · ·σ1(A1x) · · ·)).

Scale of fA: RA :=
∏L

i=1 ‖Ai‖∗
∑L

i=1

‖Ai‖
2/3
2,1

‖Ai‖
2/3
∗

3/2

.

55 / 59

Explaining Generalization Failures

epoch 10 epoch 100

cifar Lipschitz

cifar [random] Lipschitz

56 / 59

Explaining Generalization Failures

epoch 10 epoch 100

excess risk 0.3

excess risk 0.9

cifar excess risk

cifar Lipschitz

cifar [random] excess risk

cifar [random] Lipschitz

57 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

Role of depth?

Interplay with optimization?

58 / 59

Outline

Deep residual networks

Representing with near-identities
• Deeper networks allow flatter functions at each layer.
Global optimality of stationary points
• With flat functions, stationary points are global minima.

What determines the statistical complexity of a deep network?

VC theory: Number of parameters
Margins analysis: Size of parameters
Understanding generalization failures

59 / 59

