Representation, Optimization and Generalization

in Deep Learning

Peter Bartlett

UC Berkeley

25 January, 2018

Deep neural networks

Game playing

Google DeepMind
Challenge Match

(Jung Yeon-Je/AFP /Getty Images)

Deep neural networks

Image recognition

(Krizhevsky et al, 2012)

Deep neural networks

Speech recognition

90 100 110 120 130 140 150 160 170 180

h# ae | s | a f ch lpaula] ih |wlah| z [bclp] iy | aa pfpct|p| aa |1 |ax|

v

(Graves et al, 2013)

Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

0.5

Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

eg., hi @ x — o(W;x) hi : x — r(Wix)
1
. : . 0, v;
o(v); 1+ exp(—v)) r(v); = max{0, v;}

Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

hi : x — r(Wix)

1
I - 0, v
o(v); T+ exp(—v)’ r(v); = max{0, v;}
v
1 10
L]
0.5
:
2
L | o 1 1 J . L
-6 -4 -2 0 2 4 6 -10 -5

Deep Networks

Representation learning

Rich non-parametric family

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family

Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

@ Generalization?

Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

@ Generalization?
o What determines the statistical complexity of a deep network?

59

@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures

@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures

Deeper Networks

Revolution of Depth

[152 layers ‘

\ 16.4

11.7

\
\
7.3

' 6.7

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)

(Deep Residual Networks. Kaiming He. 2016)

9/59

Deeper Networks

Revolution of Depth

AlexNet, 8 layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012)
5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

[__fei000]

(Deep Residual Networks. Kaiming He. 2016)

10/59

Deeper Networks

Revolution of Depth

-
AlexNet,8layers — ¥ VGG, 19layers — y —— GoogleNet,22 layers e
(ILSVRC 2012) ¥ (ILSVRC 2014) v (ILSVRC 2014) -
PR A— £2
£ 2 R 2—
PR A— £2
$2 R ZE—
P 2N $2
¥
¥
)
¥
v
e
¥
L2
R Z—

(Deep Residual Networks. Kaiming He. 2016)

11/59

Deeper Networks

Revolution of Depth

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

(Deep Residual Networks. Kaiming He. 2016)

12/59

Deep Residual Networks

Deep network component
X

anytwo
stacked layers

weight layer

H(x)

(Deep Residual Networks. Kaiming He. 2016)

13/59

Deep Residual Networks

Deep network component Residual network component

weight layer

anytwo

stacked layers F(x) identity
i x
H =F ®
H(x) () =F(x)+x

(Deep Residual Networks. Kaiming He. 2016)

13/59

Deep Residual Networks

Advantages

@ With zero weights, the network computes
the identity.

14 /59

Deep Residual Networks

Advantages

@ With zero weights, the network computes
the identity.

@ Identity connections provide useful feedback
throughout the network.

14 /59

Deep Residual Networks

Sadayerplain 3eayer residunl

Advantages

@ With zero weights, the network computes
the identity.

@ Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)

14 /59

Deep Residual Networks

ing deep plain vs deep residual nets:

ResNet-20

ResNet-32
—ResNet-44
= ResNet-56
=ResNet-110

error (%)

5| — plain-20 N - s
plain-32
— plain-44
— plain-56
0 1 2 5 6 % 1 2 3 4 6

3
iter. (le4)

3
iter. (le4)

(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)

15/59

Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

v

(http://image-net.org/)

16 /59

Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

(http://image-net.org/)

First place:
@ Object detection: 16% better than next best
@ Object localization: 27% better than next best

16 /59

Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

17/59

Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

First place:
@ Detection: 11% better than next best

@ Segmentation: 12% better than next best

17 /59

Deep Residual Networks

@ What is behind the success of residual networks?

@ What is important for their performance?

18 /59

Some intuition: linear functions

Products of near-identity matrices

© Every invertible® A can be written as
A=(1+Ap) - (I + A1),

where [|Aj|| = O(1/m).

(Hardt and Ma, 2016)

* .
Provided det(A) > 0.

19/59

Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + €, e ~ N(0,021),

v

(Hardt and Ma, 2016)

20 /59

Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + €, e ~ N(0,021),
consider choosing A1, ..., A, to minimize quadratic loss:

E[|(1 + Am) -+ (I + Ar)x — y|%.

v

(Hardt and Ma, 2016)

20 /59

Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + ¢, e ~ N(0,021),
consider choosing A1, ..., A, to minimize quadratic loss:

E[|(/ + Am) - (I + A)x =yl
If ||A;]] < 1, every stationary point of the quadratic loss is a global
optimum:
Vi, VAEI(+ Am) - (/ +An)x —y|* =0
= =+ An)--- (I + A).

v

(Hardt and Ma, 2016)

20 /59

@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?

Steve Evans Phil Long
Berkeley, Stat/Math Google

21/59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm_lo...oh1:h7

so that all layers compute near-identity functions:

log m
|hi —1d||, = O< -)

22 /59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'oh1:h7

so that all layers compute near-identity functions:

log m
|hi —1d||, = O(-)

Definition: the Lipschitz seminorm of f satisfies, for all x, y,

IO = FDII < Ul Llx = vl

22 /59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'oh1:h7

so that all layers compute near-identity functions:

log m
|hi —1d||, = O(-)

v

Think of the functions h; as near-identity maps that might be computed as

hi(x) = x + Ac(Bx) .
——

22 /59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmo hm_10---0hy =h,

so that all layers compute near-identity functions:

log m
|hi —1d||, = O(-)

v

Think of the functions h; as near-identity maps that might be computed as

hi(x) = x + Ac(Bx) .
——

As the network gets deeper, the functions x — Ao (Bx) can get flatter.

22 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,

© Smooth: For some v > 0 and all x, y, u,
IDh(y) — Dh(x)|| < elly — x|.

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,

© Smooth: For some v > 0 and all x, y, u,
IDh(y) — Dh(x)|| < elly — x|.

e Dh is the derivative; ||Dh(y)]| is the induced norm:
f(x
7)) = sup { L4l - 1x| > 0}

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7]} = sup { L4l - 1x| > 0}

23 /59

Representing with near-identities

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,

@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7]} = sup { L4l - 1x| > 0}

23 /59

Representing with near-identities

Theorem

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
[[hi —1d||, = O(log m/m)

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},

23 /59

Representing with near-identities

Theorem

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
||hi —1d||, = O(log m/m) and hp o hp_10---0hy = hon X.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},

23 /59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).
@ Construct the h; so that h(a1x)

hi(x) = ——=

ai

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
h(x) = T

h(axx

h2(h1(X)) = g

a

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
h(x) = T
h(axx
halhu (o)) = "2
h(amx)

him(- - (hi(x)) - --) ,

am

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
h(x) = T
h(axx
halhu (o)) = "2
h(amx)

him(- - (hi(x)) - --) ,

am

© Picka,,=1s0 h,o---0hy = h.

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () -) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

24°/59

Representing with near-identities

© Assume h(0) =0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () -) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

© Ensure that a; and aj;; are sufficiently close that h; ~ Id.

24°/59

Representing with near-identities

© Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () -) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

© Ensure that a; and aj;; are sufficiently close that h; ~ Id.

@ Show |lh; —1d||, is small on small and large scales (c.f. a; — aj_1).

24 /59

Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'ohlzh?

so that all layers compute near-identity functions:

log m
I —1all, = 0 (°£™).

e Deeper networks allow flatter nonlinear functions at each layer.

25 /59

@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?

26 /59

Stationary points

For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].

27 /59

Stationary points

For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.

27 /59

Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.

27 /59

Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

)ml

(1-
| Dy, Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.

27 /59

Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1)m 1
| Dy, Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.

27 /59

Stationary points

What the theorem says

28 /59

Stationary points

What the theorem says

@ If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

28 /59

Stationary points

What the theorem says

@ If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

@ Thus every stationary point is a global optimum.

28 /59

Stationary points

What the theorem says

@ If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

@ Thus every stationary point is a global optimum.

@ There are no local minima and no saddle points.

28 /59

Stationary points

What the theorem says

29 /59

Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

29 /59

Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

o Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

29 /59

Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

o Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

@ We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 /59

Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1)m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.

30/59

Stationary points

Proof ideas (1)
If |f —Id||, <« <1 then

31/59

Stationary points

Proof ideas (1)
If |f —Id||, <« <1 then
© f is invertible.

31/59

Stationary points

Proof ideas (1)
If |f —Id||, <« <1 then
© f is invertible.
Q |flt<l+aand |f Y. <1/(1-aq).

31/59

Stationary points

Proof ideas (1)

If |f —Id||, <« <1 then
@ f is invertible.
Q |fll.<1+aand|f Y. <1/(1-a)
© For F(g) =fog, |[DF(g)—1d|| < a.

31/59

Stationary points

Proof ideas (1)

If |f —Id||, <« <1 then
@ f is invertible.
Q |fll.<1+aand|f Y. <1/(1-a)
© For F(g) =fog, |[DF(g)—1d|| < a.

e ||7]| denotes the induced norm: ||g|| := sup { leCall . [Ix]| > O}.

Il

31/59

Stationary points

Proof ideas (1)
If |f —1d||, <« <1 then
© f is invertible.
Q |fllL<l+aand|f . <1/(1-a).
© For F(g)=fog, |[DF(g)—Id| < a.
© For a linear map h (such as DF(g) —Id), ||h|| = ||h]|..

e ||7]| denotes the induced norm: ||g|| := sup{M x| > O}.

Il

31/59

Stationary points

Proof ideas (2)

© Projection theorem implies

Q(h) = %IE |h(X) — h*(X)||3 + constant.

32/59

Stationary points

Proof ideas (2)

© Projection theorem implies

Q(h) = %IE |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

32/59

Stationary points

Proof ideas (2)

© Projection theorem implies

Q(h) = %IE |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

e ev, is the evaluation functional, evy(f) = f(x). e

Stationary points

Proof ideas (2)
© Projection theorem implies
1
Q(h) = §E |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

@ It is possible to choose a direction A s.t. ||[A| =1 and

Dy Q(h)(A) = cE|lh(X) = h*(X)]|3 -

e cv, is the evaluation functional, ev,(f) = f(x).

Stationary points

Proof ideas (2)
© Projection theorem implies
1
Q(h) = §E |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

@ It is possible to choose a direction A s.t. ||[A| =1 and
Dy, Q(h)(A) = cE [|h(X) = h*(X)]5 -
© Because the hjs are near-identities,

(1 —E)m_l
c> ————.
lh = h||

e cv, is the evaluation functional, ev,(f) = f(x).

Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1)m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.

33 /59

Deep compositions of near-identities

@ If the mapping is not invertible?

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?
Related to Polyak-tojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

34 /59

Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?
Related to Polyak-tojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

@ Do stochastic gradient methods produce near-identities?

34 /59

@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures

35/59

VC Theory

36 /59

VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

36 /59

VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

36 /59

VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

@ Want to choose a function f such that P(f(x) # y) is small (near
optimal).

36 /59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ((VOdim(F) +1og(1/3))) "

37 /59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ((VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

37 /59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ((VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

37 /59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ((VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters

37 /59

VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ((VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth

37 /59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {—1,1}-valued functions computed by a network

with L layers, p parameters, and k computation units with the following
nonlinearities:

38 /59

VC-Dimension of Neural Networks

Theorem

Consider the class F of {—1,1}-valued functions computed by a network

with L layers, p parameters, and k computation units with the following
nonlinearities:

Q Piecewise constant (linear threshold units): VCdim(F) = O (p).

(Baum and Haussler, 1989)

38 /59

VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network

with L layers, p parameters, and k computation units with the following
nonlinearities:

Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).

(B., Harvey, Liaw, Mehrabian, 2017)

38 /59

VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network

with L layers, p parameters, and k computation units with the following
nonlinearities:

Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)

@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)

© Piecewise polynomial: VCdim(F) = O (pLZ).

(B., Maiorov, Meir, 1998)

38 /59

VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q Sigmoid: VCdim(F) = O (p?k?).
(Karpinsky and Maclntyre, 1994))

38 /59

Generalization in Neural Networks: Number of Parameters

NIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.

40
Misclassification
probability (%) 30
20] 1 {
1
10

156 208 260 312 364

Number of weights

Number of patterns

39 /59

@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures

40 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},
if yf(x) > 0 then f classifies x correctly.
o We call yf(x) the margin of f on x.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

o We call yf(x) the margin of f on x.

@ We can view a larger margin as a more confident correct classification.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

We call yf(x) the margin of f on x.

We can view a larger margin as a more confident correct classification.

Minimizing a continuous loss, such as
n
PUCIERO
i=1

encourages large margins.

41 /59

Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

o We call yf(x) the margin of f on x.
@ We can view a larger margin as a more confident correct classification.

@ Minimizing a continuous loss, such as
n
Z 2
i=1
encourages large margins.

o For large-margin classifiers, we should expect the fine-grained details
of f to be less important.

41 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

n training examples
(Xl, Yl), 8000 (Xn, Yn) € X x {:i:]_}

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

n training examples
(X1, Y1), (Xn, Yn) € X x {£1} fe FCRY

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

n training examples
(X1, Y1), (Xn, Yn) € X x {£1} fe FCRY

Pr(sign(f(X)) #Y)

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has
1 o ~ [[fat
Prisign(f(X)) £ Y) < | S 1YiF(X) <]+ 0 ())

; n
i=1

@ The bound depends on the margin loss plus an error term.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has
1 o ~ [[fat
Pr(sign(F(X)) # ¥) < - > 1(¥i#(X) < 1] + 6 (f(”))

; n
i=1

@ The bound depends on the margin loss plus an error term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has
1 o ~ [[fat
Pr(sign(F(X)) # ¥) < - > 1(¥i#(X) < 1] + 6 (f“)

; n
i=1

@ The bound depends on the margin loss plus an error term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

e fat () is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O (ftf“)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The bound depends on the margin loss plus an error term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

e fat () is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O (ftf“)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ Same ideas used to give rigorous dimension-independent

generalization bounds for SVMs (B. and Shawe-Taylor, 1999)

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O (ftf“)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs

(B. and Shawe-Taylor, 1999)
o ..

. and margins analysis of AdaBoost. (Schapire, Freund, B, Lee, 1998)

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Pr(sign(F(X)) # ¥) < - Y 1% (X) <]+ 0 (W)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The scale of functions f € F is important.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O (ftf“)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The scale of functions f € F is important.

e Bigger fs give bigger margins, so fat z() should be bigger.

42 /59

Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

Pr(sign(f(X)) # Y) < iz 1[Y:F(X)) <~]+ O (fdtﬂV))

n

i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The scale of functions f € F is important.

e Bigger fs give bigger margins, so fat z() should be bigger.

@ The output y of a sigmoid layer has ||y||oo < 1,
so ||w||1 < B controls the scale of f.

42 /59

Generalization: Margins and Size of Parameters

1996: Sigmoid networks

40
Misclassification
probability (%) 30

20 I 1 [;

156 208 260 312 364

Number of weights

Number of patterns

@ Qualitative behavior explained
by small weights theorem.

43 /59

ralization: Margins and Size of Parameters

1996: Sigmoid networks 2017: Deep RelLU network

Increasing the Network Size
20 (Number of Hidden Units)
Misclassification ol —
probability (%) 30 — Test (at convergence)
0.05|
20] I [i 004
10 B ooy n
156 208 260 312 364
0.02]
Number of weights %
Number of patterns 0 % Fladen g2 1< ¢
v

simons.berkeley.edu
@ Qualitative behavior explained
by small weights theorem.

43 /59

ralization: Margins and Size of Parameters

1996: Sigmoid networks 2017: Deep RelLU network

Increasing the Network Size
20 (Number of Hidden Units)
Misclassification ! a1 —Trainin: I
probability (%) 30 — Test (at convergence) |
0.05|
20 I I [008
! : n
10 5 0.03|
156 208 260 312 364
0.02
Number of weights %
Number of patterns TG o adan RIS
w
simons.berkeley.edu
@ Qualitative behavior explained @ How to measure the
by small weights theorem. complexity of a ReLU network?

43 /59

@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures

44 /59

Explaining Generalization Failures

CIFAR10

6: frog 9: truck 9: truck 4: deer 1: automobile

i il H

wh Toix
1: automobile 2: bird 7: horse 8: ship 3:cat

=l

=]

[L

4: deer 7: horse 7: horse 2: bird 9: truck
. s

9: truck 9: truck 3:cat 2: bird 6: frog

2P a

http://corochann.com/

45 /59

Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=—& true labels
2.0 o—e random labels |
9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps

v

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, ‘Benjamin Recht, and Oriol Vinyals, 2017)
46 /59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

47 /59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?

47 /59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?

@ Need to account for the scale of the neural network functions.

47 /59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
@ Need to account for the scale of the neural network functions.

@ What is the appropriate notion of the size of these functions?

47 /59

Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster
Cornell

Matus Telgarsky
UIuC

48 /59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.

49 /59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

49 /59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

49 /59

Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

e Multiclass margin function for f : X — R™, y € {1,..., m}:

M(F(x).y) = F(x)y = max F(x);

Generalization in Deep Networks

With high probability, every fa

50 /59

Generalization in Deep Networks

With high probability, every fa

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee))

50 /59

Generalization in Deep Networks

With high probability, every fa satisfies

Pr(M(fa(X),Y) <0) <

| A

Definitions
Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(AL(TLfl(ALfl e 01(A1X) cee))

50 /59

Generalization in Deep Networks

With high probability, every fa satisfies

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee))

50 /59

Generalization in Deep Networks

With high probability, every fa satisfies

LM((X). Y) <21+ 6 ().

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee))

50 /59

Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

1< = rl
PRME(0, V) S0) < S 1M((X). Y) <] 46 (7 ﬁ).

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee))

Scale of fa: Ra ::H;L:l HA:H*

50 /59

Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PM(A(X), V) <0) < & 3 1m0, Y) < 21+ 0 ().

i=1

Definitions
Network with L layers, parameters Az, ..., A;:

| A\

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee))

1A I

3/2
Scale of fa: Ra =[], l|Aill« (z%) .

(Assume o; is 1-Lipschitz, inputs normalized.)

50 /59

Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=—& true labels
2.0 o—e random labels |
9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps

v

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, ‘Benjamin Recht, and Oriol Vinyals, 2017)
51/59

Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?

52 /59

Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on CIFAR10

— cifar
- rand label

53 /59

Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled cumulative margins on MNIST

mni
10— mnistrand

-0.075 -0.050 -0.025 0.000 0.025 0.050 0075

54 /59

Generalization in Deep Networks

With high probability, every f4 with Rq < r satisfies

n

1 = rL
PHME(X), Y) S0) < S 1M((X). Y) <] 4.0 (%)

Network with L layers, parameters A;, ..., A;r:

fA(X) = O'(A[_O'Lfl(ALfl 600 0'1(A1X) 0oo))

L 2/3\ 3/2
Scale of fa: Ra =] [.—; [|Aill« (2,4:1 %) :

55 /59

Explaining Generalization Failures

/_.___—.—-—
=@~ cifar Lipschitz []
=@~ cifar [random] Lipschitz /
[
/ (] @
/./_. .. °
R ~—— /
o= [] [J L4
epoch 10 epoch 100
I I
V.

56 /59

Explaining ralization Failures

———— excess risk 0.9 A

/WN' o—
WA
=A= cifar excess risk /

=@~ cifar Lipschitz

A

==A= cifar [random] excess risk
=@~ cifar [random] Lipschitz

/

—— excess risk 0.3 - -
A~ XA A 7 A

;——/\A‘/_;A://i_—-f/‘._/

A
(] [J

»
»

epoch 10 epoch 100
1 1

57 /59

Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

58 /59

Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

58 /59

Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

58 /59

Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

@ Lower bounds?

58 /59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

Margin bounds extend to residual networks.

Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

Lower bounds?

Regularization: explicit control of operator norms?

58 /59

Generalization in Neural Networks

With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

@ Lower bounds?
@ Regularization: explicit control of operator norms?
@ Role of depth?

58 /59

Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

@ Lower bounds?

@ Regularization: explicit control of operator norms?

@ Role of depth?

@ Interplay with optimization?)

58 /59

@ Deep residual networks

o Representing with near-identities
e Deeper networks allow flatter functions at each layer.
o Global optimality of stationary points
e With flat functions, stationary points are global minima.

@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
e Understanding generalization failures

59 /59

