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Image recognition
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Deep neural networks

Speech recognition

90 100 110 120 130 140 150 160 170 180

h# ae | s | a f ch lpaula] ih |wlah| z [bclp] iy | aa pfpct|p| aa |1 |ax|

v

(Graves et al, 2013)




Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg




Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg




Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

0.5




Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

eg., hi @ x — o(W;x) hi : x — r(Wix)
1
. : . 0, v;
o(v); 1+ exp(—v)) r(v); = max{0, v;}




Deep Networks

Deep compositions of nonlinear functions

h=hpohy 10---0hg

hi : x — r(Wix)

1
I - 0, v
o(v); T+ exp(—v)’ r(v); = max{0, v;}
v
1 10
L]
0.5
:
2
L | o 1 1 J . L
-6 -4 -2 0 2 4 6 -10 -5




Deep Networks

Representation learning

Rich non-parametric family




Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family




Deep Networks

Representation learning
Depth provides an effective way of representing useful
features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.
Rich non-parametric family

Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of

approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.
v

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

@ Generalization?




Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

@ Generalization?
o What determines the statistical complexity of a deep network?
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Deeper Networks

Revolution of Depth
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012)
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Deeper Networks

Revolution of Depth
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Deep network component
X

anytwo
stacked layers

weight layer

H(x)

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Deep network component Residual network component

weight layer

anytwo

stacked layers F(x) identity
i x
H =F ®
H(x) () =F(x)+x

(Deep Residual Networks. Kaiming He. 2016)
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Advantages

@ With zero weights, the network computes
the identity.

@ Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)

14 /59



Deep Residual Networks

ing deep plain vs deep residual nets:
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Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

v

(http://image-net.org/)
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ImageNet Large Scale Visual Recognition Challenge

(http://image-net.org/)

First place:
@ Object detection: 16% better than next best
@ Object localization: 27% better than next best
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Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

First place:
@ Detection: 11% better than next best

@ Segmentation: 12% better than next best
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Deep Residual Networks

@ What is behind the success of residual networks?

@ What is important for their performance?
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Some intuition: linear functions

Products of near-identity matrices

© Every invertible® A can be written as
A=(1+Ap) - (I + A1),

where [|Aj|| = O(1/m).

(Hardt and Ma, 2016)

* .
Provided det(A) > 0.
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Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + ¢, e ~ N(0,021),
consider choosing A1, ..., A, to minimize quadratic loss:

E[|(/ + Am) - (I + A)x =yl
If ||A;]] < 1, every stationary point of the quadratic loss is a global
optimum:
Vi, VAEI( + Am) - (/ +An)x —y|* =0
= =+ An)--- (I + A).

v

(Hardt and Ma, 2016)
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@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?

Steve Evans Phil Long
Berkeley, Stat/Math Google
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmo hm_10---0hy =h,

so that all layers compute near-identity functions:

log m
|hi —1d||, = O( - )

v

Think of the functions h; as near-identity maps that might be computed as

hi(x) = x + Ac(Bx) .
——

As the network gets deeper, the functions x — Ao (Bx) can get flatter.
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Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
[[hi —1d||, = O(log m/m)

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},

23 /59



Representing with near-identities
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Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
||hi —1d||, = O(log m/m) and hp o hp_10---0hy = hon X.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},

23 /59
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Representing with near-identities

© Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () - ) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

© Ensure that a; and aj;; are sufficiently close that h; ~ Id.

@ Show |lh; —1d||, is small on small and large scales (c.f. a; — aj_1).
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'ohlzh?

so that all layers compute near-identity functions:

log m
I —1all, = 0 (°£™).

e Deeper networks allow flatter nonlinear functions at each layer.
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@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?
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Stationary points

For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
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Stationary points

What the theorem says

@ If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

@ Thus every stationary point is a global optimum.

@ There are no local minima and no saddle points.
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Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

o Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

@ We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.

29 /59



Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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Stationary points

Proof ideas (1)
If |f —1d||, <« <1 then
© f is invertible.
Q |fllL<l+aand|f . <1/(1-a).
© For F(g)=fog, |[DF(g)—Id| < a.
© For a linear map h (such as DF(g) —Id), ||h|| = ||h]|..

e ||7]| denotes the induced norm: ||g|| := sup{M x| > O}.

Il
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Stationary points

Proof ideas (2)

© Projection theorem implies

Q(h) = %IE |h(X) — h*(X)||3 + constant.
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Stationary points

Proof ideas (2)
© Projection theorem implies
1
Q(h) = §E |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

@ It is possible to choose a direction A s.t. ||[A| =1 and
Dy, Q(h)(A) = cE [|h(X) = h*(X)]5 -
© Because the hjs are near-identities,

(1 —E)m_l
c> ————.
lh = h||

e cv, is the evaluation functional, ev,(f) = f(x).



Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?
Related to Polyak-tojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

@ Do stochastic gradient methods produce near-identities?
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@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

@ Want to choose a function f such that P(f(x) # y) is small (near
optimal).
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VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "
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with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Theorem

Consider the class F of {—1,1}-valued functions computed by a network

with L layers, p parameters, and k computation units with the following
nonlinearities:
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VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O (p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q Sigmoid: VCdim(F) = O (p?k?).
(Karpinsky and Maclntyre, 1994))
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Generalization in Neural Networks: Number of Parameters

NIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.

40
Misclassification
probability (%) 30
20 ] 1 {
1
10

156 208 260 312 364

Number of weights

Number of patterns
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@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

o We call yf(x) the margin of f on x.
@ We can view a larger margin as a more confident correct classification.

@ Minimizing a continuous loss, such as
n
Z 2
i=1
encourages large margins.

o For large-margin classifiers, we should expect the fine-grained details
of f to be less important.
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2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ Same ideas used to give rigorous dimension-independent
generalization bounds for SVMs

(B. and Shawe-Taylor, 1999)
o ..

. and margins analysis of AdaBoost. (Schapire, Freund, B, Lee, 1998)
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Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

Pr(sign(f(X)) # Y) < iz 1[Y:F(X)) <~]+ O ( fdtﬂV))

n

i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The scale of functions f € F is important.

e Bigger fs give bigger margins, so fat z() should be bigger.

@ The output y of a sigmoid layer has ||y||oo < 1,
so ||w||1 < B controls the scale of f.
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Generalization: Margins and Size of Parameters

1996: Sigmoid networks

40
Misclassification
probability (%) 30

20 I 1 [ ;
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Number of weights

Number of patterns

@ Qualitative behavior explained
by small weights theorem.
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Increasing the Network Size
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1996: Sigmoid networks 2017: Deep RelLU network

Increasing the Network Size
20 (Number of Hidden Units)
Misclassification ! a1 —Trainin: I
probability (%) 30 — Test (at convergence) |
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20 I I [ 008
! : n
10 5 0.03|
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Number of weights %
Number of patterns TG o adan RIS
w
simons.berkeley.edu
@ Qualitative behavior explained @ How to measure the
by small weights theorem. complexity of a ReLU network?
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@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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Explaining Generalization Failures

CIFAR10

6: frog 9: truck 9: truck 4: deer 1: automobile

i il H

wh Toix
1: automobile 2: bird 7: horse 8: ship 3:cat
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= ]
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4: deer 7: horse 7: horse 2: bird 9: truck
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9: truck 9: truck 3:cat 2: bird 6: frog
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45 /59



Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=—& true labels
2.0 o—e random labels |
9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps

v

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, ‘Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
@ Need to account for the scale of the neural network functions.

@ What is the appropriate notion of the size of these functions?
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, NIPS 2017.
arXiv:1706.08498

Dylan Foster
Cornell

Matus Telgarsky
UIuC
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Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
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Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

e Multiclass margin function for f : X — R™, y € {1,..., m}:

M(F(x).y) = F(x)y = max F(x);
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

1< = rl
PRME(0, V) S0) < S 1M((X). Y) <] 46 (7 ﬁ).

v

Network with L layers, parameters Az, ..., A;:

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee ))

Scale of fa: Ra ::H;L:l HA:H*
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Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PM(A(X), V) <0) < & 3 1m0, Y) < 21+ 0 ().

i=1

Definitions
Network with L layers, parameters Az, ..., A;:

| A\

fA(X) = O'L(ALJLfl(ALfl e 01(A1X) cee ))

1A I

3/2
Scale of fa: Ra =[], l|Aill« (z%) .

(Assume o; is 1-Lipschitz, inputs normalized.)

50 /59



Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=—& true labels
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9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps
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(Chiyuan Zhang, Samy Bengio, Moritz Hardt, ‘Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on CIFAR10

—  cifar
- rand label
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled cumulative margins on MNIST

mni
10— mnistrand

-0.075 -0.050 -0.025 0.000 0.025 0.050 0075

54 /59



Generalization in Deep Networks

With high probability, every f4 with Rq < r satisfies

n

1 = rL
PHME(X), Y) S0) < S 1M((X). Y) <] 4.0 (%)

Network with L layers, parameters A;, ..., A;r:

fA(X) = O'(A[_O'Lfl(ALfl 600 0'1(A1X) 0oo ))

L 2/3\ 3/2
Scale of fa: Ra =] [.—; [|Aill« (2,4:1 %) :
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Explaining Generalization Failures

/_.___—.—-—
=@~ cifar Lipschitz [ ]
=@~ cifar [random] Lipschitz /
[
/ (] @
/./_. .. °
R ~—— /
o= [ ] [ J L4
epoch 10 epoch 100
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Explaining ralization Failures

———— excess risk 0.9 A

/WN' o—
WA
=A= cifar excess risk /

=@~ cifar Lipschitz

A

==A= cifar [random] excess risk
=@~ cifar [random] Lipschitz

/

—— excess risk 0.3 - -
A~ XA A 7 A

;——/\A‘/_;A://i_—-f/‘._/
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»
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Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.
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Generalization in Neural Networks

o With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Recent work by Golowich, Rakhlin, and Shamir give bounds with
improved dependence on depth.

@ Lower bounds?

@ Regularization: explicit control of operator norms?

@ Role of depth?

@ Interplay with optimization? )
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@ Deep residual networks

o Representing with near-identities
e Deeper networks allow flatter functions at each layer.
o Global optimality of stationary points
e With flat functions, stationary points are global minima.

@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
e Understanding generalization failures
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