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Deep neural networks

Game playing
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Deep neural networks

Image recognition

(Krizhevsky et al, 2012)



Deep neural networks

Speech recognition
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Deep Networks

Deep compositions of nonlinear functions
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Deep Networks

Representation learning
Depth provides an effective way of representing useful

features.

Rich non-parametric family
Depth provides parsimonious representions.
Nonlinear parameterizations provide better rates of
approximation.
Some functions require much more complexity for a shallow

representation.

But...
@ Optimization?
o Nonlinear parameterization.
e Apparently worse as the depth increases.

@ Generalization?
o What determines the statistical complexity of a deep network?
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@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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Deeper Networks
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012)
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Deeper Networks

Revolution of Depth
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Deeper Networks

Revolution of Depth

AlexNet, 8 layers VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Deep network component Residual network component

weight layer

anytwo

stacked layers F(x) identity
i x
H =F ®
H(x) () =F(x)+x

(Deep Residual Networks. Kaiming He. 2016)
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Deep Residual Networks

Sadayerplain  3eayer residunl

Advantages

@ With zero weights, the network computes
the identity.

@ Identity connections provide useful feedback
throughout the network.

(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)
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Deep Residual Networks

ing deep plain vs deep residual nets:
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(Kaiming He, Xiangyu Zhang, Shaoging Ren, Jian Sun. 2016)
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Deep Residual Networks: Competition Successes

ImageNet Large Scale Visual Recognition Challenge

(http://image-net.org/)

First place:
@ Object detection: 16% better than next best
@ Object localization: 27% better than next best
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Deep Residual Networks: Competition Successes

COCO (Common Objects in Context)

(http://mscoco.org/)

First place:
@ Detection: 11% better than next best

@ Segmentation: 12% better than next best
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Deep Residual Networks

@ What is behind the success of residual networks?

@ What is important for their performance?
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Some intuition: linear functions

Products of near-identity matrices

© Every invertible® A can be written as
A=(1+Ap) - (I + A1),

where [|Aj|| = O(1/m).

(Hardt and Ma, 2016)

* .
Provided det(A) > 0.
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Some intuition: linear functions

Products of near-identity matrices

@ For a linear Gaussian model,

y = Ax + ¢, e ~ N(0,021),
consider choosing A1, ..., A, to minimize quadratic loss:

E[|(/ + Am) - (I + A)x =yl
If ||A;]] < 1, every stationary point of the quadratic loss is a global
optimum:
Vi, VAEI( + Am) - (/ +An)x —y|* =0
= =+ An)--- (I + A).

v

(Hardt and Ma, 2016)
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@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?

Steve Evans Phil Long
Berkeley, Stat/Math Google
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,
hmo hm_10---0hy =h,

so that all layers compute near-identity functions:

log m
|hi —1d||, = O( - )

Definition: the Lipschitz seminorm of f satisfies, for all x, y,
1F(x) = FWI < Il lIx =yl
Think of the functions h; as near-identity maps that might be computed as

hi(x) = x + 1470(852
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Representing with near-identities

Theorem

Consider a function h: R? — R? on a bounded domain X c R¢.
Suppose that it is

@ Differentiable,
@ Invertible,
© Smooth: For some v > 0 and all x, y, u,
IDh(y) = Dh(x)|| < erlly — x]|.
Q Lipschitz inverse: For some M >0, ||h71||, < M.
@ Positive orientation: For some xp, det(Dh(xp)) > 0.

Then for all m, there are m functions hy, ..., h, : RY — R? satisfying
||hi —1d||, = O(log m/m) and hp o hp_10---0hy = hon X.

e Dh is the derivative; ||Dh(y)|| is the induced norm:

f(x
7)) = sup { L4l - 1x| > 0},

23 /58



Representing with near-identities

© Assume h(0) = 0 and Dh(0) = Id (else shift and linearly transform).

@ Construct the h; so that h(a1x)
hi(x) = T

h(axx

halhu (o)) = "2

i+ () - ) = hEm).

am

© Picka,,=1s0 h,o---0hy = h.
@ Ensure that a; is small enough that h; ~ Dh(0) = Id.

© Ensure that a; and aj;; are sufficiently close that h; ~ Id.

@ Show |lh; —1d||, is small on small and large scales (c.f. a; — aj_1).
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Representing with near-identities

Result

The computation of a smooth invertible map h can be spread throughout
a deep network,

hmohm—lo"'ohlzh?

so that all layers compute near-identity functions:

log m
I —1all, = 0 (°£™).

e Deeper networks allow flatter nonlinear functions at each layer.
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@ Deep residual networks

o Representing with near-identities
o Global optimality of stationary points

@ What determines the statistical complexity of a deep network?
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Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,

Q) = ZE[IH(X) - Y3,

define the minimizer h*(x) = E[Y|X = x].
Consider a function h = hp o --- o hy, where |[h; —Id||, <e < 1.
Then for all i,

(1 )m 1
| Dy, Q(A)|| > N (Q(h) — Q(h)).

e e.g., if (X,Y) is uniform on a training sample,
then Q is empirical risk and h* an empirical risk minimizer.
e Dy, Q is a Fréchet derivative; ||hl| is the induced norm.
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Stationary points

What the theorem says

o If the composition h is sub-optimal and each function h; is a
near-identity, then there is a downbhill direction in function space: the
functional gradient of @ wrt h; is non-zero.

@ Thus every stationary point is a global optimum.
@ There are no local minima and no saddle points.

@ Whenever Q(h) > Q(h*), steep directions in h+— Q(h) must witness
steep directions at any layer.
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Stationary points

What the theorem says

@ The theorem does not say there are no local minima of a deep
residual network of RelLUs or sigmoids with a fixed architecture.

o Except at the global minimum, there is a downhill direction in
function space. But this direction might be orthogonal to functions
that can be computed with this fixed architecture.

@ We should expect suboptimal stationary points in the ReLU or
sigmoid parameter space, but these cannot arise because of
interactions between parameters in different layers; they arise only
within a layer.
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Stationary points

Result
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Stationary points

Proof ideas (1)
If |f —1d||, <« <1 then
© f is invertible.
Q |fllL<l+aand|f . <1/(1-a).
© For F(g)=fog, |[DF(g)—Id| < a.
© For a linear map h (such as DF(g) —Id), ||h|| = ||h]|..

e ||7]| denotes the induced norm: ||g|| := sup{M x| > O}.

Il
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Stationary points

Proof ideas (2)
© Projection theorem implies
1
Q(h) = §E |h(X) — h*(X)||3 + constant.

@ Then
Dp,Q(h) = E[(h(X) — h*(X)) - evx o Dy,h].

@ It is possible to choose a direction A s.t. ||[A| =1 and
Dy, Q(h)(A) = cE [|h(X) = h*(X)]5 -
© Because the hjs are near-identities,

(1 —E)m_l
c> ————.
lh = h||

e cv, is the evaluation functional, ev,(f) = f(x).



Stationary points

Result
For (X, Y) with an arbitrary joint distribution, define the squared error,
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Deep compositions of near-identities

@ If the mapping is not invertible?
eg., h:RI > R?
If h can be extended to a bi-Lipschitz mapping to RY, it can be
represented with flat functions at each layer.
What if it cannot?

@ Implications for optimization?
Related to Polyak-tojasiewicz function classes; proximal algorithms
for these classes converge quickly to stationary points.

@ Do stochastic gradient methods produce near-identities?
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@ Deep residual networks
o Representing with near-identities
o Global optimality of stationary points
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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VC Theory

@ Assume network maps to {—1,1}.
(Threshold its output)

e Data generated by a probability distribution P on X’ x {—1,1}.

@ Want to choose a function f such that with high probability
P(f(x) # y) is small (near optimal).

36 /58



VC Theory

Theorem (Vapnik and Chervonenkis)

Suppose F C {—1,1}*.

For every prob distribution P on X x {—1,1},

with probability 1 — ¢ over n iid examples (x1,y1), ..., (Xn, ¥n),
every f in F satisfies

P(F(x) # y) < + {7 £00) # i} + ( (VOdim(F) +1og(1/3))) "

@ For uniform bounds (that is, for all distributions and all f € F,
proportions are close to probabilities), this inequality is tight within a
constant factor.

@ For neural networks, VC-dimension:

e increases with number of parameters
e depends on nonlinearity and depth
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VC-Dimension of Neural Networks

Consider the class F of {—1,1}-valued functions computed by a network
with L layers, p parameters, and k computation units with the following
nonlinearities:
Q Piecewise constant (linear threshold units): VCdim(F) = O(p).
(Baum and Haussler, 1989)
@ Piecewise linear (ReLUs): VCdim(F) = O (pL).
(B., Harvey, Liaw, Mehrabian, 2017)
© Piecewise polynomial: VCdim(F) = O (pLZ).
(B., Maiorov, Meir, 1998)
Q Sigmoid: VCdim(F) = O (p?k?).
(Karpinsky and Maclntyre, 1994))
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Generalization in Neural Networks: Number of Parameters

NIPS 1996

Experimental Results

Neural networks with many parameters, trained
on small data sets, sometimes generalize well.

Eg: Face recognition (Lawrence et al, 1996)

m = 50 training patterns.

40
Misclassification
probability (%) 30
20 ] 1 {
1
10

156 208 260 312 364

Number of weights

Number of patterns
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@ Deep residual networks
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
e Understanding generalization failures
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Large-Margin Classifiers

@ Consider a real-valued function f : X — R used for classification.
@ The prediction on x € X is sign(f(x)) € {—1,1}.
e For a pattern-label pair (x,y) € X x {-1,1},

if yf(x) > 0 then f classifies x correctly.

o We call yf(x) the margin of f on x.
@ We can view a larger margin as a more confident correct classification.

@ Minimizing a continuous loss, such as
n
Z 2
i=1
encourages large margins.

o For large-margin classifiers, we should expect the fine-grained details
of f to be less important.
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Generalization: Margins and Size of Parameters

Theorem (B., 1996)

1. With high probability over n training examples
(X1, Y1), .., (Xn, Yn) € X x {£1}, every f € F C RY has

n

Prisign(F(X)) # Y) < - S 1[Yif(X) <4+ O ( ftf“)
i=1

2. If functions in F are computed by two-layer sigmoid networks with each
unit's weights bounded in 1-norm, that is, |w|; < B, then

fat () = O((B/7)?)-

@ The bound depends on the margin loss plus an error term.

@ Minimizing quadratic loss or cross-entropy loss leads to large margins.

e fat () is a scale-sensitive version of VC-dimension. Unlike the
VC-dimension, it need not grow with the number of parameters.
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ralization: Margins and Size of Parameters

1996: Sigmoid networks 2017: Deep RelLU network

Increasing the Network Size
20 (Number of Hidden Units)
Misclassification ! a1 —Trainin: I
probability (%) 30 — Test (at convergence) |
0.05|
20 I I [ 008
! : n
10 5 0.03|
156 208 260 312 364
0.02
Number of weights %
Number of patterns TG o adan RIS
w
simons.berkeley.edu
@ Qualitative behavior explained @ How to measure the
by small weights theorem. complexity of a ReLU network?
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@ Deep residual networks
@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
o Understanding generalization failures
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Explaining Generalization Failures

CIFAR10
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Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10

2.5 : : ; :
=—& true labels
2.0 o—e random labels |
9 »—= shuffled pixels
2 15 —— random pixels |
> 4— gaussian
g 1.0 .
>
©
0.5 .
0.0
0 5 10 15 20 25

thousand steps

v

(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
@ Need to account for the scale of the neural network functions.

@ What is the appropriate notion of the size of these functions?
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Generalization in Deep Networks

Spectrally-normalized margin bounds for neural networks.

B., Dylan J. Foster, Matus Telgarsky, 2017.
arXiv:1706.08498

Matus Telgarsky
UluC

Dylan Foster
Cornell
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Generalization in Deep Networks

New results for generalization in deep ReLU networks

@ Measuring the size of functions computed by a network of RelLUs.
(c.f. sigmoid networks: the output y of a layer has ||y|/cc < 1, so
|lw|l1 < B keeps the scale under control.)

@ Large multiclass versus binary classification.

v

o Consider operator norms: For a matrix A;,

[Aill+ == sup [[Aix].
lIxlI<1

e Multiclass margin function for f : X — R™, y € {1,..., m}:

M(F(x).y) = F(x)y = max F(x);




Generalization in Deep Networks

With high probability, every fa with Ry < r satisfies

PrM(fa(X), ¥) £ 0) < - 5 1IM(A(X). Y) < 21 +0 (7).

i=1

Definitions
Network with L layers, parameters A;, ..., A;r:

| A

fA(X) = O'(ALO'Lfl(ALfl ce 0'1(A1X) ce ))

Scale of fa: Ra :=[[;i_q [|Aillsy/2is |

(Assume o; is 1-Lipschitz, inputs normalized.)
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Explaining Generalization Failures

Stochastic Gradient Training Error on CIFAR10
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(Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals, 2017)
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Explaining Generalization Failures

Training margins on CIFAR10 with true and random labels

— cifar
- rand label

@ How does this match the large margin explanation?
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled margins on CIFAR10

—  cifar
- rand label
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Explaining Generalization Failures

If we rescale the margins by Ra (the scale parameter):

Rescaled cumulative margins on MNIST

mni
10— mnistrand

-0.075 -0.050 -0.025 0.000 0.025 0.050 0075
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Generalization in Deep Networks

With high probability, every fa with Ra < r satisfies

n

PrM(fa(X), ¥) £ 0) < - 5 1M((X). Y) < 11 +.0 ().

Network with L layers, parameters Ay, ..., A;:
fa(x) = o(Aror-1(Ar—1---01(A1x) - --)).

Scale of fa: Ra == [T |Aills/>2E, ||||i\\',||||5
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Explaining Generalization Failures

——— excess risk 0.9

=A== cifar excess risk

=@~ cifar Lipschitz
cifar Lipschitz/margin A

= A= cifar [random] excess risk

=@~ cifar [random] Lipschitz

——— excess risk 0.3 A /

_/\/" -—r _f/_/

oq——s—/o

epoch 10 epoch 100
| 1
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Generalization in Neural Networks

@ With appropriate normalization, the margins analysis is qualitatively
consistent with the generalization performance.

@ Margin bounds extend to residual networks.

@ Lower bounds?

@ Regularization: explicit control of operator norms?

@ Role of depth?

@ Interplay with optimization? )
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@ Deep residual networks

o Representing with near-identities
e Deeper networks allow flatter functions at each layer.
o Global optimality of stationary points
e With flat functions, stationary points are global minima.

@ What determines the statistical complexity of a deep network?

e VC theory: Number of parameters
e Margins analysis: Size of parameters
e Understanding generalization failures
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