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Model Selection: Click Prediction for Online Ads

Predict click/no-click given advertisement and webpage.

Training data from past click logs.

e.g.: Logistic regression with 16M parameters.

Webpage

Candidate
    Ads
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Prediction in a Probabilistic Setting

i.i.d. Z ,Z1, . . . ,Zn from Z.
Example:
Z = (X ,Y ), where
X contains features of advertisement and webpage.
Y indicates ‘click’ or ‘no click.’

Use data Z1, . . . ,Zn to choose fn ∈ A with small risk,

L(fn) = E`(fn,Z ).

Here, ` : A×Z → R+ is a loss function.

Choose fn from a class F .
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Prediction in a Probabilistic Setting

i.i.d. Z ,Z1, . . . ,Zn from Z.

Use data Z1, . . . ,Zn to choose fn ∈ A with small risk,

L(fn) = E`(fn,Z ).

Here, ` : A×Z → R+ is a loss function.
Examples:

1 `(f , (x , y)) = (y − f (x))2 for y ∈ {±1} and f : X → [0, 1]:
estimate probability of click.

2 `(f , (x , y)) = 1[y 6= f (x)] for y ∈ {±1} and f : X → {±1}:
decide most likely class label.

3 `(f , z) = − log f (z): estimate probability density.

Choose fn from a class F .
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Prediction in a Probabilistic Setting

i.i.d. Z ,Z1, . . . ,Zn from Z.
Use data Z1, . . . ,Zn to choose fn ∈ A with small risk,

L(fn) = E`(fn,Z ).

Here, ` : A×Z → R+ is a loss function.
Choose fn from a class F .
Examples:

1 Linear regression:

F = {x 7→ θ′x : θ ∈ Rp} .
2 Logistic regression:

F = {x 7→ σ(θ′x) : θ ∈ Rp} .
3 Support vector machines:

F = Reproducing kernel Hilbert space.
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Approximation-Estimation Trade-Off

Define the Bayes risk, L∗ = inff L(f ), where the infimum is
over measurable f .

We can decompose the excess risk as

L(f̂ )− L∗ =

(
L(f̂ )− inf

f ∈F
L(f )

)
︸ ︷︷ ︸

estimation error

+

(
inf
f ∈F

L(f )− L∗
)

︸ ︷︷ ︸
approximation error

.

Model selection: automatically choose F to optimize this
trade-off.
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Example 1: Norm of a linear predictor

θ

Many linear classification algorithms minimize:

min
θ∈Rp

n∑
i=1

` (yi , 〈θ, xi 〉) subject to ‖θ‖2 ≤ r .

Estimation and approximation errors depend on the bound r

Often select from a grid r1 ≤ r2 ≤ r3 ≤ . . .
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Example 1: Norm of a linear predictor

θ

Many linear classification algorithms minimize:

min
θ∈Rp

n∑
i=1

` (yi , 〈θ, xi 〉) subject to ‖θ‖2 ≤ r .

Estimation and approximation errors depend on the bound r

Often select from a grid r1 ≤ r2 ≤ r3 ≤ . . .
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Example 2: Feature selection

θ ∈ Rp, select subset of {1, 2, . . . , p} where θi 6= 0

Examples:

Natural language: Unigrams ≺ Bigrams ≺ · · · ≺ n-grams
Function fitting: polynomial degree, Fourier basis dim, . . .
Computer vision: hierarchy of wavelet filters

Approximation and estimation errors depend on
dimensionality.
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Example 2: Feature selection

θ ∈ Rp, select subset of {1, 2, . . . , p} where θi 6= 0

Examples:

Natural language: Unigrams ≺ Bigrams ≺ · · · ≺ n-grams
Function fitting: polynomial degree, Fourier basis dim, . . .
Computer vision: hierarchy of wavelet filters

Approximation and estimation errors depend on
dimensionality.
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The Model Selection Problem

Hierarchy of model classes, F1,F2,F3, . . .

Data Z1,Z2, . . . ,Zn

Fk

Z1

Z2

i∗

Zn

F1
F3F2

Want i∗ that optimizes estimation-approximation trade-off

L(f̂i )− L(f ∗) = (L(f̂i )− inf
f ∈Fi

L(f ))︸ ︷︷ ︸
Estimation error

+ ( inf
f ∈Fi

L(f )− L(f ∗))︸ ︷︷ ︸
Approximation error
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The Model Selection Problem

Given function classes F1,F2, . . . ,, use the data Z1, . . . ,Zn to
choose f̂ ∈ ⋃i Fi that gives a good trade-off between the
approximation error and the estimation error.

Example: Complexity-penalized model selection.

f i
n = arg min

f ∈Fi

Ln(f ),

f̂ = minimizer of Ln(f i
n ) + γi (n),

where γi (n) is a complexity penalty and Ln is the empirical risk:

Ln(f ) =
1

n

n∑
i=1

`(f ,Zi ).
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A Simple Oracle Inequality

Theorem

Suppose that we have risk bounds for each Fi : w.p. 1− δ,

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
.

If f̂ is chosen via complexity regularization:

f i
n = arg min

f ∈Fi

Ln(f ), f̂ = minimizer of Ln(f i
n ) + γi (n),

then with probability 1− δ,

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log i

n

)
.
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A Simple Oracle Inequality

Notice that, for each Fi satisfying

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
,

we have L(f i
n ) ≤ inf

f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ

n
.

But complexity regularization gives f̂ satisfying

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log i

n

)
.

Thus, f̂ gives a near-optimal trade-off between the
approximation error and the (bound on) estimation error, with
only a log i penalty.
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Fast Rates

These oracle inequalities rely on uniform convergence: bounds on

sup
f ∈Fi

|L(f )− Ln(f )| .

Typical fluctuations are of the order

|L(f )− Ln(f )| = O

(
1√
n

)
.

In some cases, these rates cannot be improved, and additive
penalties that scale as

sup
f ∈Fi

|L(f )− Ln(f )| = Ω

(
1√
n

)
give optimal oracle inequalities.
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Fast Rates

However, in many cases, we can obtain faster rates.
e.g., with high probability, for all f ∈ F ,

L(f )− L(f ∗) ≤ 2 (Ln(f )− Ln(f ∗)) + O

(
log n

n

)
,

where L(f ∗) = minf ∈F L(f ). In these cases, choosing

f̂ = arg min
f ∈F

Ln(f )

gives L(f ) ≤ L(f ∗) + O(log n/n).
Examples: Convex losses [Lee, B., Williamson, 1998; B., Jordan,
McAuliffe, 2006], classification with low noise [Mammen and
Tsybakov, 2004; Tsybakov, 2004].
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Oracle Inequalities with Fast Rates for Complexity
Regularization

It turns out that we can use complexity regularization to exploit
these faster rates, provided the Fi are ordered by inclusion.

Theorem (B., 2008)

For F1 ⊆ F2 ⊆ · · · and γ1(n) ≤ γ2(n) ≤ · · · , if

sup
i

sup
f ∈Fi

(L(f )− L(f ∗i )− 2 (Ln(f )− Ln(f ∗i ))− γi (n)) ≤ 0,

sup
i

sup
f ∈Fi

(Ln(f )− Ln(f ∗i )− 2 (L(f )− L(f ∗i ))− γi (n)) ≤ 0,

then L(f̂ ) ≤ inf
i

(L(f ∗i ) + 9γi (n)) ,

where f̂ minimizes Ln(f i
n ) + 7γi (n)/2 and f ∗i = arg minf ∈Fi

L(f ).
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Oracle Inequalities with Fast Rates for Complexity
Regularization

This is striking:

Ln(f i
n ) fluctuates on a scale 1/

√
n.

But adding a tiny penalty γi (n) = O(log n/n) gives L(f̂ )
within O(log n/n) of the best!

The explanation: the fluctuations for different Fi are correlated,
because the empirical minimizers are chosen using the same data
and the Fi are ordered by inclusion.
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Large Scale Data Analysis

Joint work with Alekh Agarwal, John Duchi and Clément Levrard.

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.
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Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Information retrieval: Web search
108 websites.
1010 pages.
109 queries/day.
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Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Natural language processing:
Spelling correction
Google Linguistics Data
Consortium n-gram corpus:
1011 sentences.
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Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Computer vision: Captions
Facebook:
1011 photos.
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Large Scale Data Analysis

Observation:

For many prediction problems, the amount of data available is
effectively unlimited.

Information retrieval: Web search

Natural language processing: Spelling correction

Computer vision: Captions
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Large Scale Data Analysis

Observation:

For many prediction problems, performance is limited by
computational resources, not sample size.

Information retrieval: Web search

Natural language processing: Spelling correction

Computer vision: Captions
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Large Scale Data Analysis

Example:

Peter Norvig, “Internet-Scale Data Analysis”:
On a spelling correction problem, trivial prediction rules,
estimated with a massive dataset perform much better than
complex prediction rules (which allow only a dataset of
modest size).

Given a limited computational budget,
what is the best trade-off?

That is, should we spend our computation on gathering more
data, or on estimating richer prediction rules?
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Computation versus sample size

Recall: Complexity-penalized model selection.

f i
n = arg min

f ∈Fi

Ln(f ),

f̂ = minimizer of Ln(f i
n ) + γi (n),

where γi (n) is a complexity penalty and Ln is the empirical risk:

Ln(f ) =
1

n

n∑
i=1

`(f ,Zi ).
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Computation versus sample size

Complexity regularization involves computation of the
empirical risk minimizer for each Fi :

f i
n = arg min

f ∈Fi

Ln(f ), f̂ = minimizer of Ln(f i
n ) + γi (n),

So computation typically grows linearly with number of
classes.

The oracle inequality gives the best trade-off for a given
sample size:

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + 2γi (n) + c

√
log 1/δ + log i

n

)
.
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Scaling of penalties with computation

Recall

γi (n) is the complexity penalty for the class Fi with sample size n.

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

computation T =⇒ sample size ni (T ) for Fi

We set pi (T ) = γi (ni (T )).
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Recall

γi (n) is the complexity penalty for the class Fi with sample size n.
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

In more detail:
with computation T , we can ensure that, with high probability,

sup
f ∈Fi

∣∣L(f )− Lni (T )(f )
∣∣ ≤ γi (ni (T )),

hence
L(f i

ni (T )) ≤ inf
f ∈Fi

L(f ) + O(pi (T )).
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

Our goal: A computational oracle inequality:
f̂ compares favorably with each model, estimated using the entire
computational budget.

L(f̂ ) ≤ min
i

 inf
f ∈Fi

L(f ) + O(pi (T ))︸ ︷︷ ︸
c.f. estimate f using the entire budget

 .
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Scaling of penalties with computation

Define

pi (T ) as the complexity penalty for the class Fi with
computational budget T .

Our goal: A computational oracle inequality:
f̂ compares favorably with each model, estimated using the entire
computational budget.

L(f̂ ) ≤ min
i

 inf
f ∈Fi

L(f ) + O

(
pi

(
T

log T

))
︸ ︷︷ ︸

c.f. estimate f using almost the entire budget

 .
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Näıve solution: grid search

Allocate budget T/K to each model F1, . . . ,FK .

Use a sample of size ni (T/K ) for Fi .

Choose

f i
ni

= arg min
f ∈Fi

Lni (f ),

f̂ = minimizer of Lni (f i
ni

) + γi (ni ) .

Satisfies oracle inequality

L(f̂ ) ≤ min
i

(
inf
f ∈Fi

L(f ) + pi

(
T

K

))
.
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Model selection from nested classes

Suppose that the models are ordered by inclusion:

F1 ⊆ F2 ⊆ · · ·

Examples:

Fi = {fθ : θ ∈ Rp, ‖θ‖ ≤ ri} , r1 ≤ r2 ≤ · · · .
Fi = {fθ : θ ∈ Rpi , ‖θ‖ ≤ 1} , p1 ≤ p2 ≤ · · · .

Suppose that we have risk bounds for each Fi : w.p. 1− δ,

sup
f ∈Fi

|L(f )− Ln(f )| ≤ γi (n) + c

√
log 1/δ

n
.
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Exploiting structure of nested classes

Want to exploit monotonicity of risks and penalties

Excess risk, R∗i = inff ∈Fi
L(f )− L∗: Penalty, γi (n):

i

R
∗ i

i
γ
i(
n
)
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Coarse grid sets

Want to spend computation on only few classes.
Use monotonicity to interpolate for the rest.
Partition based on penalty values.

i

γ
i(
n
)

Coarse GridFj Fj+1F1F2

(1 + λ)j

(1 + λ)2

1 + λ

1

(1 + λ)(j+1)
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Coarse grids for model selection

Assume

1 Loss is bounded:
`(f ,Z ) ∈ [0,B].

2 Computation grows at least linearly with sample size:

n1(T ) = O(T ).

3 Penalty decreases no faster than 1/n:

γ1(n) = Ω

(
1

n

)
.
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Coarse grids for model selection

Then

We can ignore Fi with γi (ni (T )) > B.

We can cover all smaller classes with a coarse grid of size
s = O(log(BT )).

Definition (Coarse grid)

For S ⊆ N, a set Ŝ ⊆ S is a coarse grid of size s for S if |Ŝ | = s
and for each i ∈ S there is an index j ∈ Ŝ such that

γi

(
ni

(
T

s

))
≤ γj

(
ni

(
T

s

))
≤ 2γi

(
ni

(
T

s

))
.
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Coarse grids for model selection

Then

We can ignore Fi with γi (ni (T )) > B.

We can cover all smaller classes with a coarse grid of size
s = O(log(BT )).

Include a new class only after penalty increases sufficiently.

s = log

(
B

γ1(n1(T ))

)
= O (log BT ) suffices.
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Complexity regularization on a coarse grid

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.
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Complexity regularization on a coarse grid

Theorem

For a nested hierarchy satisfying the uniform convergence bounds,
with high probability,

L(f̂ ) ≤ min
i

{
inf
f ∈Fi

L(f ) + O

(
γi

(
ni

(
T

s

)))}
≤ min

i

{
inf
f ∈Fi

L(f ) + O

(
pi

(
T

log T

))}

Computational cost of model selection scales logarithmically
with T .

Peter Bartlett Large Scale Model Selection



Model selection
Large scale model selection

Summary and open problems

Computational oracle inequalities
Fast rates

1 Model selection
Prediction problems
Model selection
Oracle inequalities
Fast rates
Oracle inequalities with fast rates

2 Large scale model selection
Computational oracle inequalities
Fast rates

3 Summary and open problems

Peter Bartlett Large Scale Model Selection



Model selection
Large scale model selection

Summary and open problems

Computational oracle inequalities
Fast rates

Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with fast rates?
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Computational Oracle Inequalities?

Can we obtain computational oracle inequalities with fast rates?

Previous Algorithm

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.
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Computational Oracle Inequalities?

Previous Algorithm

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s)(f )

f̂ = arg min
f ∈{f j :j∈Ŝ}

Lnj (T/s)(f ) + γj

(
nj

(
T

s

))
.

Obstacle: The oracle inequality relies on the use of the same data.
But to best use our computational budget, we should gather more
data for simpler classes.
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Algorithm for Fast Rates

Given a coarse grid Ŝ with cardinality s:

1 Allocate budget T/s to each class in S .

2 Choose

f i = arg min
f ∈Fi

Lni (T/s2)(f )

3 Define f̂ as the f i with the largest index i such that for all
smaller j ,

Lni (f i ) + γi (ni ) ≤ inf
f ∈Fj

Lni (f ) + γj (ni ) .

The same data is used in comparing f i with functions from smaller
classes.
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Computational Oracle Inequalities

Theorem

For a nested hierarchy exhibiting fast rates, with high probability,

L(f̂ ) ≤ min
i

{
inf
f ∈Fi

L(f ) + O

(
pi

(
T

log2 T

))}
.
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Open problems

For nested hierarchies, the analysis relied on a coarse
multiplicative cover of the penalty values. If the penalties are
data-dependent, when is this approach possible?

What other structures on function classes lead to good
computational oracle inequalities?

How do computational constraints affect the optimal
performance in other estimation problems?
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Summary

For large-scale problems, data is cheap but computation is
precious.

Computational oracle inequalities for model selection:
select a near-optimal model without wasting much
computation on other models.

A nested complexity hierarchy ensures cost logarithmic in
computational budget.

Faster rates are sometimes possible:
More complicated complexity regularization schemes ensure
cost polylogarithmic in computational budget.

If not nested, cost of model selection is linear in size of
hierarchy.
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