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Abstract

We study online learning under logarithmic loss with regular parametric models. In this setting, each strategy corresponds to
a joint distribution on sequences. The minimax optimal strategy is the normalized maximum likelihood (NML) strategy. We show
that the sequential normalized maximum likelihood (SNML) strategy predicts minimax optimally (i.e. as NML) if and only if the
joint distribution on sequences defined by SNML is exchangeable. This property also characterizes the optimality of a Bayesian
prediction strategy. In that case, the optimal prior distribution is Jeffreys prior for a broad class of parametric models for which
the maximum likelihood estimator is asymptotically normal. The optimal prediction strategy, normalized maximum likelihood,
depends on the number n of rounds of the game, in general. However, when a Bayesian strategy is optimal, normalized maximum
likelihood becomes independent of n. Our proof uses this to exploit the asymptotics of normalized maximum likelihood. The
asymptotic normality of the maximum likelihood estimator is responsible for the necessity of Jeffreys prior.
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I. INTRODUCTION

In online learning, the goal is to predict a sequence of outcomes, revealed one at a time, almost as well as a set of experts. We
consider online density estimation with log loss, where the forecaster’s prediction at each round takes the form of a probability
density over the next outcome, and the loss suffered is the negative logarithm of the forecast density of the outcome. The
aim is to minimize the regret, which is the difference between the cumulative loss of the forecaster (that is, the sum of these
negative logarithms) and that of the best expert in hindsight. The optimal strategy for sequentially assigning probability to
outcomes is known to be normalized maximum likelihood (NML) [16]—see Definition 4 below. NML suffers from two major
drawbacks: the horizon n of the problem needs to be known in advance, and the strategy can be computationally expensive
since it involves marginalizing over subsequences.

In this paper, we investigate the optimality of two alternative strategies, namely the Bayesian strategy and the sequential
normalized maximum likelihood (SNML) strategy; see Definitions 7 and 6 below. Previous work has studied the asymptotic
performance of these strategies, in the limit as the number of rounds goes to infinity.

We show for a very general class of parametric models that optimality of a Bayesian strategy implies that the strategy uses
Jeffreys prior. Furthermore we show that optimality of the Bayesian strategy is equivalent to optimality of sequential normalized
maximum likelihood, with the exchangeability of SNML sequences being a necessary and sufficient condition for optimality
of both strategies. The major regularity condition for these parametric families is that the maximum likelihood estimate is
asymptotically normal. This classical condition holds for a broad class of parametric models.

As an important consequence of these results, we see that the exchangeability of SNML sequences characterizes when NML
is independent of the horizon n. That is, optimal prediction is possible without advance knowledge of the length of the game
precisely when SNML is exchangeable.

Online density estimation with log loss has been widely studied in several communities, since it is closely related to universal
compression and portfolio optimization; see, for example, the textbooks [2, 6] and the review [13]. Shtarkov [17] proved that
NML is the unique optimal strategy for this problem. There are few models for which NML can be efficiently computed exactly:
Kontkanen and collaborators showed that it is possible for multinomial models and for finite bin histogram models [10, 11], and
Rissanen showed a similar result for certain linear regression models [15]. Clarke and Barron considered Bayesian strategies with
Jeffreys prior, and proved their asymptotic optimality for regular parametric families under certain constraints on the outcome
sequence [3, 4]. Slightly stronger results are known for horizon-dependent modifications to the Jeffreys prior [20, 18, 19].
SNML is also known to be asymptotically optimal, again under constraints on the outcome sequence [12]. In contrast to this
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previous work, which studies the asymptotic performance of these strategies in the limit as the horizon goes to infinity, we
consider when these strategies are exactly optimal for all finite horizons.

Earlier versions of this work appeared in the AISTAT and COLT conferences [7, 8]. Subsequent work [1] has led to a
characterization of the one-dimensional exponential family distributions for which the optimality property holds.

II. DEFINITIONS AND NOTATION

The goal of online learning is to predict a sequence of outcomes x; € X almost as well as a set of experts. We use z! to
denote (z1, 22, ,Tt), 29 to denote the empty sequence, and z]!, to denote (T, Tymt1,- -+ , Ty ). At round ¢, the forecaster’s
prediction is a conditional probability density q;(:|x'~1), where the density is with respect to a fixed measure A on . For
example, if X is discrete, A could be the counting measure; for X' = R<, X\ could be Lebesgue measure. The loss that the
forecaster suffers at that round is — log g;(x | astfl), where z; is the outcome revealed after the forecaster’s prediction. The
difference between the cumulative loss of the prediction strategy and the best expert in a reference set is called the regret. The
goal is to minimize the regret in the worst case over all possible data sequences. In this paper, we consider i.i.d. parametric
constant experts parametrized by 6 € ©.

Definition 1 (Parametric Constant Model). A constant expert is an i.i.d. stochastic process, that is, a joint probability distribution
p on sequences of elements of X such that for all t > 0 and for all x in X, p (xt ‘rt’l) = p(x¢). A parametric constant
model (©,(X,%), \,pp) is a parameter set ©, a measurable space (X,X), a measure X on X, and a parameterized function
po 1 X — [0,00) for which, for all 8 € ©, py is a probability density on X with respect to \. It defines a set of constant
experts via pg (' ’xt_l) = pg (z1).

For convenience, we will often refer to a parametric constant model as just pg.

A strategy q is any sequential probability assignment ¢;(- | z!~1) that, given a history x'~!, defines the conditional density
of z; € X with respect to the measure \. It defines a joint distribution ¢ on sequences of elements of A in the obvious way,

q(z") = H ge(wela' ™).
t=1

In general, a strategy depends on the sequence length n. We denote such strategies by ¢(").

Definition 2 (Regret). The regret of a strategy q¢\"™) on a sequence =™ of length n with respect to a parametric constant model
Do IS
n n
R(z",¢™) =3 ~log g™ (a]at™1) — inf ; — log pg (a4 ]2t~1)

t=1

= sup log 7p9(x”)
0cO g™ (zm)
We consider a generalization of the regret of Definition 2. This is because some strategies are only defined conditioned on
a fixed initial sequence of observations ™~ !. For such cases, we define the conditional regret of =™, given a fixed initial
sequence ™!, in the following way [see 6, chap. 11].

Definition 3 (Conditional Regret). Given a sequence x™~', the conditional regret of a strategy ¢™ on a sequence Ty, 1S

Rz}, ¢ |a™ ) = ; ~log (" (aeJe' ") — jnf ; —logpy (|2 ")
= sup log Po(z")

Notice that the strategy ¢(™ defines only the conditional distribution ¢(™ (z? | 2~ 1). We call such a strategy a conditional
strategy. In what follows, where we consider a conditional strategy, we assume that ™! is such that these conditional
distributions are always well defined.

Definition 4 (NML). Given a fixed horizon n, the normalized maximum likelihood (NML) strategy is defined via the joint
probability distribution
p(”) (I") — SUDPgpco pg(iL’n)
nml fX" SUpgee Po (yn) d)\n(yn) ’

provided that the integral in the denominator exists. For t < n, the conditional probability distribution is

(n) (.t
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(n)

nml

(n)

(@'Y are marginalized joint probability distributions of p(n) (z™):

nml

P = [ e,

where p," (z') and p

(n)

The regret of the NML strategy achieves the minimax bound, that is, ¢(™ = Dy MiNiMizes maxgn R(z™,q™). This

follows from the fact that NML is an equalizer.

Definition 5 (Equalizer). A strategy is called an equalizer if, for all n, its regrets with respect to py on all sequences x" of
length n are equal.

We will use the fact that NML is the only equalizer; we include the proof of this for completeness [see, for e.g., 6, chap. 6].
Lemma ILI.1. Any equalizer is minimax optimal and is identical to NML.

Proof. Let strategy p{™ be an equalizer and let g™ be a strategy different from p(™. Then for some 2™ we have p(") (z™) >
q™ (z™) which in turn makes the regret of q™ for 2" larger than that of p™. If sequence w™ maximizes the regret of ¢(™)
then

R (w”,q(")) >R (z”,q(”)) >R (z",p(")) =R <w",p(")) .

This means that for any strategy ¢(™) different from p(™), the maximum regret of ¢(™) over all sequences of length n is strictly
greater than the maximum regret of p("), therefore p(n) has the minimum value of the maximum regret, that is, it is the unique
minimax optimal strategy.

NML is an equalizer, because its regret on a sequence x" is

R(a?,p",) = log sup po(a™) —logp{") (™)
S

= log / sup pg(y") dA" (y"),
X" €O

which does not depend on z”. Thus, NML is the unique minimax optimal strategy. O

Note that pg;)l ; might not be defined if the normalization is infinite. In many cases where this occurs, for a suitable sequence

2™~ 1 and for all n > m, we can define the conditional probabilities

pU (@ 2™

_ Supgce Po(z")
fX71—nL+1 Sup@e@ pG (xm_17 y;,’)T:L) d)\n—m"rl (y;r’)l’b)

For these cases, conditional NML again attains the minimax bound, that is, ¢(™ = pg;)ﬂ minimizes max,» R(z%,,q™ |z

This follows from the fact that conditional NML equalizes the conditional regret. The same argument as the proof of Lemma II.1
shows that any conditional strategy with the equalizing property is optimal and is identical to conditional NML [see also 0,
chap. 11].

m—l).

Definition 6 (SNML). The sequential normalized maximum likelihood (SNML) strategy has

—1y Supgeo Po(")
Psnmi(2e | 277) = fX supgee Po(zt=1, yi) dX(yt)

Notice that this update does not depend on the sequence length. Under mild conditions, the regret of SNML is no more
than a constant (independent of n) larger than the minimax regret [12]. Once again, ps,m,; is not defined if the integral in the
denominator is infinite. In many cases, for a sequence ™! and for all n > m, the appropriate conditional probabilities are
properly defined. We restrict our attention to these cases.

Definition 7 (Bayesian). For a prior distribution ™ on ©, the Bayesian strategy with m is defined as

pr(zh) = / po(z") dn(0).
0cO
The conditional probability distribution is defined in the obvious way,

pr(z")
Pr (mtfl) .

We denote the conditional Bayesian strategy for a fixed x™ 1 as py(z?, | 2™ 1).

prlwe] a7 =

Jeffreys prior [9] has the appealing property that it is invariant under reparameterization.



Definition 8 (Jeffreys prior). For a parametric model py, Jeffreys prior is the distribution over the parameter space © that is
proportional to \/|1(0)|, where I is the Fisher information at 0 (that is, the variance of the score, /00 1npy(X), where X
has density py).

Our main theorem uses the notion of exchangeability of stochastic processes.

Definition 9 (Exchangeable). A stochastic process is called exchangeable if the joint probability does not depend on the order
of observations, that is, for any n > 0, any 2™ € X", and any permutation o on {1,...,n}, the density of x™ is the same as
the density of x" permuted by o.

When we consider the conditional distribution p(z?, | 2™~ !) defined by a conditional strategy, we are interested in ex-
changeability of the conditional stochastic process, that is, invariance under any permutation that leaves ™' unchanged.

The asymptotic normality of the maximum likelihood estimator is the major regularity condition of the parametric models
that is required for our main result to hold.

Definition 10 (Asymptotic Normality of MLE). Consider a parametric constant model pg. We say that the parametric model
has an asymptotically normal MLE if, for all 6, in the interior of ©,

Vi (Bny = 80) 5 N (0,17 (80)

where 1(0) is the Fisher information at 0, =™ is a sample path of pe,, and é(wn) is the maximum likelihood estimate of 0 given
x", that is, 0,»y maximizes pg(x™).

Asymptotic normality holds for parametric models that are appropriately regular; for typical regularity conditions, see for
example, Theorem 3.3 in [14].

For parametric models whose maximum likelihood estimates take values in a countable set, we need the notion of a lattice
MLE.

Definition 11 (Lattice MLE). Consider a parametric model py with § € © C R® The parametric model is said to have a
lattice MLE with diminishing step-size d., if the d,, are positive and diminish to zero as n goes to infinity and there is a real
number b such that for any 0, the possible maximum likelihood estimates for py from n i.i.d. random variables are points in
O that are of the form (b+ kid,,b+ kody, -+ ,b+ kady,), for some integers ki, ko, , kq.

We are now ready to state and prove our main results.

III. MAIN RESULTS

First, we show in Theorem I77.1 that SNML and NML are equivalent if and only if ps,.,; is exchangeable. This happens
only if NML is horizon-independent. We then show in Theorem I1I.2, that in parametric models with an asymptotically
normal MLE, the optimality of a Bayesian strategy implies that the strategy uses Jeffreys prior. Furthermore we show that the
optimality of a Bayesian strategy is equivalent to the optimality of SNML. Note that NML is the unique optimal strategy, so
when we say that some other strategy is equivalent to NML, that is the same as saying that strategy predicts optimally. In
short, either both SNML and the Bayesian strategy with Jeffreys prior predict optimally or neither does. We emphasize that
these results are non-asymptotic: the equivalences we consider are for all sequence lengths n.

Theorem III.1. SNML is equivalent to NML and hence is minimax optimal if and only if pspmi is exchangeable.

Proof. Fix the ™. Write the conditional regret under SNML in the following way.

m—l) m—l)

= R(:Ennmpsnml | X

= log suppp(z") — log psnmi(zy, | =
6cO

Rsnml (xn ‘ x
mfl)
py(z"™)

Psnml (J?:Ln | l.m,—l)’

= log

where 6 is the maximum likelihood estimate of z". Now we show that the regret of SNML is independent of x,,:

m—l) m—l)

1|33

= Psnml (an | xn_l)psnml (x:bn_
_ py(z")
[ supy po(z"—1,x

Psnmil (JI:;I | X

)dxpsnml(xnm_l ‘ xm—l)-

Combining the two previous equations, we get:

_ supy po(z" 1, z) dx
R 2" z™ ) =1o J .
ot (@[ 7) =08 ST o)
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Therefore the regret is independent of the last observation. Now, we show that if p,,,; is exchangeable, then the regret becomes
independent of other observations, which implies that it is an equalizer (Definition 5) and hence, according to Lemma II.1,
equivalent to NML. Let y™ = 2™~ !2" be a sequence of observations where 27 is different from z”,. We show that the
regret of y™ is equal to that of z”. Under any permutation of x}, supyco Do (z™) does not change due to the fact that
po(z™) = H?Zl po(x;). On the other hand pgpmi(-| 2™~ 1) is exchangeable meaning that pgy; (xﬁl | xm’l) is permutation
invariant. Consequently, for any permutation o of z" that leaves ™! fixed, Rgpmi(2™| 2™ 1) = Reppu(o(z™) | 2™ 1),
These two properties give us the following.

Repmi(z™71, x| 2™ = Rt (2™ 2 oo T 1, U | z™ 1)
= Reanmit (™ Yy Tt 1y -y T 1, T | ™)
= Ronmt (2" Ym, Tt 1 -+, T 15 Ymgr | 271
= Rsmnl(xnkla Ymos Ym+1> Tt 2s - - > L1y Trnp1 | Imil)-

Continuing inserting ,,,; at the last position and swapping it with z,,, 1; we see that R (2" | 2™ 1) = Repmu(y™ | y™ 1)
(remember ™! = 2™~!). This means that SNML is an equalizer (Definition 5) and hence, according to Lemma II.1, it is
equivalent to conditional normalized maximum likelihood. Now, we prove the other direction. If SNML is equivalent to NML,
meaning that for any n > m and any z,,

(n)
m—l) M

pgz?u(xm_l)

Pormi (@l | 2™ 1) = pT (a7 | @

then SNML is exchangeable. This is because

n
Poma(@™) ocsup [ po(as),
b =1
which makes the probability permutation invariant and hence exchangeable. That is for any n and z}, the conditional probability
Psnmi (27, | ®™~1) is invariant over permutations of z7 O

m*

Theorem IIL.2. Suppose we have a parametric model pg with an asymptotically normal MLE. Assume that the MLE has a
density with respect to Lebesgue measure or that the model has a lattice MLE with diminishing step-size d.,,. Also assume that
I(0), the Fisher information at 6 is continuous in 0, and that, for all x, pg(z) is continuous in 0. Also fix m > 0 and 2™,
and assume that pg;)ﬂ(x?nmm_l) and pr(z1|x™ 1Y) are well defined, where T is the Jeffreys prior. Then the following are
equivalent.
(a) NML = Bayesian:

There is a prior ™ on © such that for all n > m and all x7},,

P (@l ™) = pa(al ™).

(b) NML = SNML.:

For all n > m and all z7),,

(n)

Prgt (@i |21

= Psnml (x?n|xm71)
(c) NML = Bayesian with Jeffreys prior:
If m denotes Jeffreys prior on ©, for all n > m and all x},,

Pgi,)ll(affiz\xm’l) = pa(zl|2™ ).
(d) Psnmi(-|z™ 1) is exchangeable.
(e) SNML = Bayesian:
There is a prior m on © such that for all n > m and all z}},

77L—1)

Psnmi (T, |7 =pw($3@|xm_l)~

(f) SNML = Bayesian with Jeffreys prior:
If w denotes Jeffreys prior on ©, for all n > m and all

n
m’

-1 —1
Remark IIL.3. A version of this theorem, applicable to exponential families, can be proved using an extension of de Finetti’s
theorem due to Diaconis and Freedman [5]. For details of this result and its proof, refer to the conference version [7].



Proof. Fix ™~ so that all of the relevant conditional distributions are defined. We prove that (a), (b), and (c) are equivalent,
and that (d), (e), and (f) are equivalent. The equivalence of (b) and (d) is Theorem III.1.
(a) = (b): NML being equivalent to a Bayesian strategy means that NML is horizon-independent. Hence for any m—1 <t < mn,

P (a2t = pr(aat™Y)

=p0) (]t )

= Psnml (:Et ‘mt_1)7

which means that NML is equivalent to SNML.
(b) = (c): We use the asymptotic normality property to prove this below.
(c) = (a): This is immediate.
(d) = (e): We know that (d) and (b) are equivalent, and that (b) implies (a), but (b) and (a) together imply (e).
(e) = (d): Since SNML is Bayesian, pspmi(z") = [ T[]}, po (x;) d7(6) for some prior distribution 7 on ©. As []""_, pe (;)
does not depend on the order of observations, SNML is exchangeable.
(e) = (f): (e) implies (d), which implies both (b) and (c), and together these imply (f).
(f) = (e): This is immediate.
The heart of the proof is verifying that
(b) = (o):
Equivalence of SNML and NML implies the following is true for all n:

Ponmi(zt ] ™) = p) (at | ™) )
T sy palat e
f SUPo pg(xm—17 yn_m+1)d An—m+1 (y"—m-l-l)
fpé(mt"yn—t) (xt7 y"*t)d an—t (ynft)
. fpé (™, yn—m)d An—mtl (yn—m+l)

(z™ yn—mm)

3)

where é(xt7y'rL7t) is the maximum likelihood estimate upon observing the sequence (zf,y™~%) and ) is either the Lebesgue
measure as in the case where observations are continuous or the counting measure for discrete observations. We will use this
observation to exploit the asymptotics of the maximum likelihood estimator. We emphasize again that we will show that NML
is equivalent to a Bayesian strategy with Jeffreys prior for every n > m. We let ¢(0, o) be a hypercube with center 6 and sides
equal to « defined in the following way, where 6 = (6, ,04) :
o o o o o o
c(0,0)= [0 = 5,00+ 5) x [2= 5.0+ 5) oo x [a— 5,00+ ).
( ) ) 1 2 y V1 2 2 2 s U2 2 d 2 yVd 2
Furthermore, in case of continuous MLE, we let h,, = % where §,, is positive and diminishes to zero as n goes to infinity;
for the case of lattice MLE we let h,, = min (dn, %) and let §,, = \/n X h,. Note that, in this latter case, our construction
guarantees that §,, converges to zero as n goes to infinity and that in each hypercube ¢(6, h,,) there is only one MLE, namely

0, the center. Furthermore we let: R
Sn(G,.’Et) = {yn—t ‘ g(wt7yn—t) S 0(9, hn)},

and we let:

(It,y‘n.ft)

"t ™) Ycu@t) Jsn@ary Pi (2t y" A (")
w(x,xr") = —m —m —m)\’
EC”(IWL) fS”(G,xm) pé(mnzwnfm) (Z‘"L7 yn )d An L (yn L)

where C,,(z!) is the largest collection of disjoint hypercubes of the form ¢(6, h,,) that fit in © with hypercube centers from
on, = {0 €Oy tsit é(zt’ynft) = 9}, ie. Cp(zt) = Uges (0, h,) for some S C ég, with Ugeg ¢(0,h,) C O and

‘Tt
Nocs (0, hy,) =0, and Uges c(6, hy,) having maximum coverage of ©. C,,(z™) is constructed similarly.

Note that due to d, converging to zero, C,(x!) converges to the whole set © as n goes to infinity. Consequently

| w(zt, 2™) — pfzzl(mﬂx’”)\ converges to zero as n goes to infinity. Therefore it would be enough to study asymptotic



behavior of w™(z!|x™). Now we construct a slightly different function than w™(z?, ™), which we call 4" (zt, m?):

ch ot fsn 0.zt p@(-rtvyn_t)dA”_t(y”_t)
(=*) (0,2%)

2@y Jsnoamy Po(@ YA (yrmm)
ZC (xt) fSn (0,3t) p@( )Pe(y ) AT t( " t)
e em fsn(e - po(z™)po(y" =) AT (y )
ZC (xt) p@ fsn(g zt) p@(y ) A" t( " t)

As the likelihood function pg(x®) is continuous in 6 for any sequence z° and the hypercubes diminish as n goes infinity we
get

’yn(LEt, xm) —

n t m _
nh_)rrgo|w at ™) ="z 2™)| =0

This means that we only need to study asymptotic behavior of the latter function, i.e. 7" (z?,2™). Now we let é(zt7Y7L7t)
be the random variable of the maximum likelihood estimate of n random variables all generated by py(-) with the initial ¢
observations fixed, i.e. z*. Then

Lm0 = po (B ey € cl6h)
57(6,2)

P (Vi1 (Bt yny =) € Va(c(0.h) —0))

po (Vi (Bt o) = 0) € c(0,5,))
F,i(0,5,)

Therefore

2oCn@t) po(x')Fye(0,0,)
2oc,(@my Po(x™)Fym(0,6,)

_ Xouwn P Tt X le(0: )
ZC (z™) pe(xm)ﬁ le(0, hy,)|
Eew Pol@)=igay X 1o(0: ha)

e o) TG < et6, )

X polat) T x 1e(8, )]

- >0 (@) Pe@”)% X |e(6, hy)|

Where |c(0, h,)| and |c¢(0,6,,)| denote the volumes of ¢(6, h,) and ¢(8,7,) respectively. As n goes to infinity é(zt’yn—t)
becomes independent of xt, this is because

n n

t n
. © 1 5 - . . lo Y;
Ozt yn—t) = argmax o c o (Zl_l 08 Py (%) + ijtﬂ BPo( J)> .

The first fraction converges to 0 as n goes to infinity. MLE’s asymptotic normality tells us that Fj: (6,4, ) converges to the

volume of a normal distribution with mean 0 and covariance matrix I~1(6) over the cube c(f,d,) as n goes to infinity.

Furthermore ng;(is’jyl) converges to the density of the aforementioned normal distribution at 0 which is K+/I(6) for some K.

Using a Riemann integral we get:
)\ I(0)do
lim " (2!, 2™) = J pola’

n— oo 'z pr xm \/7d9

IV. EXAMPLES
Example IV.1. Consider the parametric constant model consisting of Bernoulli distributions, with X = {0,1}, © = (0,1) and

p#(xn) _ M(Z?’zl zl)(l _ /1,)(”72?:1 zi)7



with parameter space (0,1). Note that this model has a lattice MLE with diminishing step-size 1/n because, for a fixed n, the
possible maximum likelihood estimates are

n—1

S

3
777.0.7
n

S|

n

S

SNML is not defined for n = 1. However if ™~ contains at least one 0 and one 1, the conditional SNML strategy is defined.
Fix x2 = 10. Consider x® = (10011) and y® = (10110). Then x° is a permutation of y° with the initial x* fixed. However
Psnmi (23| 22) = Penmi(011] 10) = 0.0930 # penmi(110| 10) = pepmi(v5 | ¥*) = 0.0932. This means that pemi( . | ©2)
is not exchangeable. The MLE is the empirical average which is asymptotically normal by the central limit theorem, hence
Theorem II1.2 can be applied here. This theorem tells us that SNML and NML cannot be equivalent and neither is equivalent
to a Bayesian strategy.

=

Example IV.2. In this example, X = R, © = R x RY, and the parametric family is the class of one-dimensional Gaussian
distributions with unknown mean and variance p and o2, i.e.

1 L oo p I
pmaz(:z:)exp{wm +§x77+10g0 .

The MLE is

262
_ e"zZnz 1
(2m (n = 1)) (572;—1 G ﬂnfl)z) ’
Normalizing we get:
r'(3) Iy N A
psnml($n|xn_1) = 1 2 o (n&n_l) 2 <1 + )
I'(3)T(%7) noy_
It can be shown [12] that for n > 1
1 1 T (n=t
R(x;lapsnml | ml) - R(xgilapsnml | 551) = n;_ logn - glog(n — 1) — 5 10g26 + 1‘((§))

This shows that the conditional SNML is an equalizer (Definition 5) and hence, according to Lemma Il.1, equivalent to the
conditional NML. Moreover, asymptotic normality holds for any i € R and any o € Rt and p,, ,2(x) is continuous in j and
o2, hence Theorem I11.2 can be applied. This shows that conditional SNML and NML are equivalent to a conditional Bayesian
strategy under Jeffreys prior. A direct computation of the Bayesian strategy with Jeffreys prior verifies this.

Example IV.3. In this example, X = R and the parametric family is the class of one-dimensional asymmetric student-
t distributions as defined in [21] with unknown skewness parameter o € (0,1) and fixed left and right tail parameters
v = vy =1, Le.

—1

%(1+(%)2) » for x <0,
pale) = ;(1—%(2(1”"&))2) forz>0.

The maximum likelihood estimator for asymmetric student-t distributions is asymptotically normal [21]. Note that additionally
Sor any x, po(x) is continuous in «, hence Theorem IIL2 is applicable to this example. Proposition 2 in [21] shows that
the Fisher information of p, is proportional to This means that Jeffreys prior is proportional to ————. After

VvVoa(l—a)

. Calculating the regret of the Bayesian strategy under Jeffreys prior shows that for a fixed

1
a(l—a)”
. . 1
normalization we get el
n > 0, the regret changes for different sequences of observations. For example, for n = 3, and sequence of observations
(1,1, —1) the maximum likelihood estimate of o is 0.4136 and the regret of the Bayesian strategy under Jeffreys prior is
1.1472. On the other hand if we observe (2,2, —2), the maximum likelihood estimate is 0.3777 with regret 1.1851. This means
that the Bayesian strategy under Jeffreys prior is not optimal because otherwise it would have resulted in equal regrets for
sequences of equal length. Furthermore Theorem II1.2 shows that no prior distribution on (0, 1) can make the Bayesian strategy
optimal and SNML can not be optimal either.



V. DISCUSSION

According to Theorem III.2, the property that guarantees the optimality of SNML and Bayesian strategies is exchangeability
of SNML sequences. The main question is then determining which families satisfy this optimality property. [1] showed that
in one-dimensional exponential family distributions, only three classes of natural exponential family distributions, namely the
Gaussian, Gamma, and the Tweedie exponential family of order 3/2, have exchangeable SNML strategies. The question remains
open for multi-dimensional exponential families, for other parametric models and for non-parametric families.
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