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The authors have contributed three significant papers that provide, among other insights, an
understanding of the consistency of several “large margin” methods for pattern classification. In
two-class classification, the aim is to find a function f : X — R that accurately predicts a binary
response variable Y € {£1} using the covariate X € X, in the sense that R(f) = E{(Y f(X)), the
risk of the thresholded function, is minimized. Here, ¢(z) denotes the indicator function of the event
z < 0. Large margin classification methods use some loss function ¢ : R — R, typically convex,
and seek a function f from some class F that minimizes the ¢-risk, Ry(f) = E¢(Y f(X)), that is,
the expected loss evaluated at the margin Y f(X). These methods typically minimize the empirical
¢-risk, R¢( f), or a regularized version thereof. Many successful pattern classification methods fall
in this class, including AdaBoost and other greedy algorithms for forming ensembles of classifiers,
and support vector machines. We can categorize them according to the loss function ¢, the class
of functions F, and the algorithm used to approximately minimize Ry.

The three papers in this issue demonstrate the consistency of various methods of this kind.

e The consistency result in the paper by Zhang applies to several loss functions, and concerns
kernel methods, which choose a function f from a reproducing kernel Hilbert space H of
functions on X’ to minimize a regularized empirical ¢-risk,

Ry(f) + Clif I

where || - || is the Hilbert space norm. This is equivalent (for some A) to choosing f from
the function class

Fr(H,A) ={f e H: (Iflln < A}

so as to minimize f?¢( f).

e The paper by Lugosi and Vayatis considers the loss function ¢(a) = exp(—«), the function
class

fb(gv)‘) = {Zazgz : HO‘HI < )‘79’5 € g} )

where G € {£1} has finite VC-dimension, and an algorithm that minimizes empirical ¢-risk.
The Adaboost algorithm is similar, but without the constraint on the coefficients.

e The paper by Jiang also considers the exponential loss function, the function class

k
Fi(k) = {Zaigi 19i € g} ;
i=1

and the Adaboost algorithm, which chooses the «;, g; sequentially, to greedily minimize em-
pirical ¢-risk.

We can identify three key steps in proving consistency results of this kind. The first involves a
“comparison theorem,” relating the excess risk R(f) — R* to the excess ¢-risk, Ry(f) — Rj,. Here,
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R* is the Bayes risk, that is, the infimum over all measurable f of R(f), and R}, = infy Ry(f) is
the analogous quantity for the ¢-risk. A result of this kind is present in all three papers: Zhang’s
Theorem 2.1 gives an explicit inequality relating the two excess risks; Lugosi and Vayatis’s Lemma 5
gives a limiting result; and Jiang’s Lemma 1 gives a related comparison, via the Lo(P) distance
between f and f} = argminy Ry(f).

The second and third steps are more conventional in consistency proofs. The second step is to
show that the functions used by the method are rich enough to approximate f;, the measurable
function that minimizes ¢-risk. As formulated above, this involves showing that

U Ze(H, ), | Fo(G,2), and ] (k)

A>0 A>0 k>0

are sufficiently rich.

The third step is to choose a sequence of subsets F,, C F with suitably restricted complexity
as a function of the sample size n, so that the ¢-risk of the estimated fn € F, converges to the
minimal value, infscr, Ry(f). For example, in the cases considered in these three papers, the set
Fn is defined as the set of combinations of k, functions from G, or the set of combinations of
functions from G with the coefficient vector having one-norm no more than \,, or a ball of radius
An in an RKHS H. (In the last case, fn is chosen to minimize a combination of the empirical ¢-risk
and a regularization term involving the RKHS norm.)

This third step is a little more involved in the case of Jiang’s consistency result, since that result
involves an algorithm that does not minimize an objective function involving the empirical risk.
Thus, it is essential to show that, under certain conditions, the algorithm finds a good function
quickly.

It is interesting to consider what properties of the loss function ¢ allow comparison theorems, and
hence consistency results, for large margin methods in general. Jiang’s result is for the exponential
loss function, and the proof exploits a smoothness assumption on the joint probability distribution
that ensures that the optimal fg is continuous. Lugosi and Vayatis assume that ¢ is differentiable,
strictly convex, monotonic, and has a certain limiting behavior. Zhang assumes that ¢ satisfies
three conditions:

1. For any n # 1/2, any minimizer o* of the conditional ¢-risk, n¢(a) + (1 — n)¢(—a) has the
same sign as 7 — 1/2. Thus, a pointwise minimization of the conditional ¢-risk leads to a
function that gives the correct sign everywhere.

2. ¢ is convex.

3. The minimal conditional ¢-risk,

H(n) = inf (ng(a) + (1 —n)p(—a)),

aceR

decreases polynomially with [1/2 — 7|.



Note that the first condition is implied by Lugosi and Vayatis’s assumptions (as can be verified by
a short calculation), and thus holds a fortiori for the exponential function studied by Jiang. The
condition is clearly the weakest possible condition that can be imposed on ¢ if we are to obtain
consistency—if the minimizer of ¢-risk yields the wrong sign at a given point, then it is easy to
concoct a probability distribution that has zero excess ¢-risk but non-zero excess risk. Surprisingly,
it turns out that this condition is not only necessary but is also sufficient for obtaining a general
comparison theorem—no other conditions are needed. We provide a brief overview of this result
here; see Bartlett et al. (2003) for a detailed presentation.
We begin by defining the following functional transform of a loss function ¢:

Definition 1. Given ¢ : R — [0, 00), define the function ¢ : [0, 1] — [0, c0) by

s (5) ().

where
H(n) = ;g&(W(aH(l—n)cﬁ(—a))
H™(n) = a:a(zig_fl)go(mﬁ(awr(1—n)¢(—a))-

The t-transform is defined to be the function 1 : [0,1] — [0, 00) that is the convex closure of ).

Note that it is straightforward to compute the i-transform for all of the examples of loss
functions ¢ studied in the three papers in this issue.
The importance of the ¥-transform is shown by the following theorem.

Theorem 2. For any nonnegative loss function ¢, any measurable f : X — R and any probability
distribution on X x {£1},

(R(f) — RY) < Rg(f) — Ryg.

This theorem establishes a general quantitative relationship between the excess ¢-risk and the
excess risk.

For this relationship to be useful in particular applications we need to show that v has particular
properties—properties that arise from conditions that are imposed on ¢. In particular, let us
introduce the condition described above—that pointwise minimization of the conditional ¢-risk
leads to a function that gives the correct sign. We express this condition in the following way:

Definition 3. We say that ¢ is classification-calibrated if, for any n # 1/2,
H™(n) > H(n).

Equivalently, ¢ is classification-calibrated if for any sequence («;) such that lim; oo {no(a;) +
(1—=n)o(—ay)} = H(n), we have lim;_, o, sign(a;(n—1/2)) = 1. In particular, if the infimum H(n) is



achieved at a minimizing value o*, then this value must have the correct sign. Thus, this condition
is essentially an elaboration of Zhang’s first condition. As pointed out by Lin (2001), it can be
viewed as a variant of Fisher consistency that is appropriate for classification.

We have the following result:

Theorem 4. The following conditions are equivalent:
1. ¢ is classification-calibrated.
2. For any sequence (0;) in [0, 1],

¥(0;) — 0 if and only if 6; — 0.

3. For every sequence of measurable functions f; : X — R and every probability distribution P,
Ry(fi) — Ry implies R(f;) — R".

Thus we see that we obtain a meaningful general comparison theorem under the weakest possible
condition on the loss function ¢. In addition, it can be shown that for a given ¢, the -transform
is optimal in the sense that everywhere on its domain, the bound given by Theorem 2 cannot be
improved in general.

Note in particular that we have not assumed that ¢ is convex. If we do assume that ¢ is
convex then we can say more—in particular, the function 1/; in Definition 1 is then necessarily
closed and convex, and thus the i-transform is specified directly via the variational representation
(@) =H ((1+6)/2) — H((1+6)/2). Moreover, if ¢ is convex, then it is possible to show that it
is classification-calibrated if and only if it is differentiable at 0 and ¢'(0) < 0.

The comparison theorem in Theorem 2, and the analogous comparison theorems in the three
papers in this issue, suggest a general framework for studying pattern classification methods that
involve a surrogate loss function. It is common to view the excess risk as a combination of an
estimation term and an approximation term:

* . . *

RUp) -~ = (R - inf /(o)) + (inf Ao - 7).

However, choosing a function with risk near minimal over a class F—that is, finding an f for which
the estimation term above is close to zero—is, in a minimax setting, equivalent to the problem
of minimizing empirical risk. For typical classes F of interest, this problem is computationally
infeasible. Even worse, for the function classes typically used by boosting and kernel methods, the
estimation term in this expression does not converge to zero for the minimizer of the empirical risk.
On the other hand, the comparison theorems we are considering suggest splitting the upper bound
on excess risk into an estimation term and an approximation term:

Y(R(f) = R") < Ry(f) — Ry = (R¢(f) — inf R¢(g)) + (inf Ry(g) — Rj;) . (1)
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We can view the function ¢ provided by the comparison theorem as quantifying the penalty incurred
by using the surrogate loss function ¢ in place of the 0-1 loss, and linking the excess risk to the
approximation error and estimation error associated with the ¢-risk.

In many cases it is possible to minimize the ¢-risk efficiently over a convex class F, and hence
find an f € F for which this upper bound on risk is near minimal. This holds despite the fact that
finding an f € F with near-minimal risk is typically computationally infeasible.

Another interesting question raised by Theorem 2 and by the papers in this issue is that of
convergence rates. Zhang’s paper makes a start in this direction for kernel methods, and this is
continued in his more recent work with Mannor and Meir concerning boosting methods (Mannor
et al., 2002). Recently, Tsybakov (2001) has considered empirical risk minimization in pattern
classification problems with low noise—specifically, where the Px-probability that P(Y = 1]|X) is
near 1/2 is small. He showed that the risk of the empirical minimizer converges to its minimal
value surprisingly quickly in these cases. It turns out that, under Tsybakov’s low noise condition,
the relationship between excess risk and excess ¢-risk presented in Theorem 2 can be improved
(Bartlett et al., 2003). In that case, if the loss function ¢ is uniformly convex and F is convex, then
the excess risk converges to its minimal value (the approximation error term in (1)) surprisingly
quickly.

The problem of classification has been a fruitful domain in which to explore connections between
statistical and computational science. Efficient algorithms can be designed to solve large-scale clas-
sification problems by exploiting tools from convex optimization, and the statistical consequences
of using these tools are beginning to be understood. The three papers in this issue represent
significant progress on the general problem of incorporating considerations of computational com-
plexity in statistical theory, providing hints of general tradeoffs between statistical accuracy and
computational resources that are only beginning to be explored.
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