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Last lecture:
1. ACF, sample ACF

2. Properties of the sample ACF

3. Convergence in mean square
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‘AR(l) as a linear procesj

Let { X;} be the stationary solution t&§; — ¢.X;_1 = W}, where
Wt ~ WN(O, 0'2).

If || <1,

oo

Xy => W,

7=0

IS the unique solution:
e This infinite sum converges in mean square, sig¢e< 1 implies

22187 < oo

e |t satisfies the AR(1) recurrence.




AR(1) in terms of the back-shift operator'

We can write

Xt —oXp1 =Wy

(1—-¢B)X; =W,

\ 7

$(B)
N ¢(B)X: = W;

Recall thatB is the back-shift operato3 X; = X;_;.




AR(1) in terms of the back-shift operator'

Also, we can write




AR(1) in terms of the back-shift operator'

With these definitions:

we can check that(B) = ¢(B) ™

oo oo oo

T(B)p(B)=> ¢'B/(1-¢B)=> ¢/B —> ¢/B =1.

J=0 7=0 j=1
Thus, gb(B)Xt = W;
= 7(B)¢(B)X; = 7n(B)W;
S Xt = W(B)Wt




AR(1) in terms of the back-shift operator'

Notice that manipulating operators lik¢ B), =(B) is like manipulating
polynomials:

=1+ ¢z +¢*2° +¢°2° + -+,

1
1 — ¢z

provided|¢p| < 1 and|z| < 1.
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AR(1) and Causality'

Let X; be the stationary solution to

Xt — oX¢1 = W,

whereW; ~ WN(0,0?).

If |p] <1,




AR(1) and Causality'

If |¢| > 1, 7(B)W,; does not converge.
But we can rearrange

Xe =Xy 1 + Wy
1

1
as X1 = gXt — gwta

and we can check that the unique stationary solution is

X¢ = — Z I Wiyj.
j=1

But... X; depends offuture values ofiV;.
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Causality I

A linear procesq X; } is causal(strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -

11




AR(1) and Causality'

Causality is a property of X; } and {W,}.
Consider the AR(1) process defineddyB) X; = W; (with

¢(B) =1—¢B):
»(B)X: =W, iscausal
iff ol <1
Iff the root z; of the polynomialp(z) = 1 — ¢z satisfiegz,| > 1.

12



AR(1) and Causality'

Consider the AR(1) process B) X; = W, (with ¢(B) =1 — ¢ B):
If || > 1, we can define an equivalent causal model,

Xi— ¢ ' Xpoy = W,

wherelV, is a new white noise sequence.

13



AR(1) and Causality'

Is an MA(1) process causal?

14
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MA(1) and Invertibility I

Xe =Wy +0W_4
= (1+0B)W;.

If |#] < 1, we can write

(1+6B)"'X, =W,
(1-60B+60°B* —-0°B*> +-- )X, =W,

oo

=
j=0

That is, we can writél, as acausal function of X,.
We say that this MA(1) isnvertible.

16



MA(1) and Invertibility I

X =Wy +0Wy_4

If 16| > 1, the sumZ?‘;O(—e)th_j diverges, but we can write

Wt—l — —9_1Wt + 9_1Xt.

Just like the noncausal AR(1), we can show that

oo

Wy == (=) Xsy;.

j=1

That is, we can writél/; as a linear function ok, but it is not causal.
We say that this MA(1) is nanhvertible.

17



‘ Invertibility I

A linear procesg X;} is invertible (strictly, aninvertible
function of {W,}) if there is a

7T(B)27T0—|—7TlB—|—7TQBQ‘|‘°"

18




MA(1) and Invertibility I

Invertibility is a property of X;} and {W,}.
Consider the MA(1) process defined byB) X, = W, (with

$(B) =1 - ¢B):
X: = 0(B)W, s invertible
Iff 6] <1
Iff the root z; of the polynomiab(z) = 1 + 0z satisfiegz;| > 1.

19



MA(1) and Invertibility I

Consider the MA(1) procesk; = 0(B)W,; (with (B) = 1 + 6B):

If |#| > 1, we can define an equivalent invertible model in terms of a
new white noise sequence.

Is an AR(1) process invertible?

20
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AR(p): Autoregressive models of orderpI

An AR(p) process{ X, } is a stationary process that satisfies

Xe — 1 Xp—1 — - — QpXy—p = Wi,

where{W,} ~ WN(0, c?).

Equivalently, ¢(B)X; = W4,
where ¢(B)=1—¢p1B—---— ¢,B".

22



AR(p): Constraints on qb'

Recall: Forp =1 (AR(1)),¢(B) =1 — ¢ B.
This is an AR(1) model only if there issiationary solution to
»(B)X: = W4, which is equivalent togp, | # 1.

This is equivalent to the following condition af(z) = 1 — ¢ 2:

VzeR, ¢(2) =0 = 2z # +1
equivalentlyVz € C, ¢(z) =0 = |z] # 1,

whereC is the set of complex numbers.

23



AR(p): Constraints on qb'

Stationarity: Vz e C, ¢(2) =0 = |z| # 1,

whereC is the set of complex numbers.

¢(z) =1—¢1zhasonerootat; =1/¢; € R.
But the roots of a degree > 1 polynomial might be complex.

For stationarity, we want the roots ¢fz) to avoid theunit circle,
{ze C:|z| =1}.
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‘AR(p): Stationarity and causality I

Theorem: A (unique)stationary solution top(B) X; = W;
exists iff

B(z) =1 —drz—-— P =0 = [2| £ 1.

This AR(p) process isausal iff

d(2) =1—12— - —p2 =0 = |z| > 1.

25




Recall: Causality'

A linear procesq X; } is causal(strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -

26




AR(p): Roots outside the unit circle implies causal (Detaﬂ)'

1
& HYho>0 Vs <146, =

=

1

o, Vi > jo, |9;]1/7 < 15 6/2

Soif [z < 1= ¢(z) # 0, thenS,, = » 1;B7W, converges in mean
=0
square, so we have a stationary, causal time séfies ¢~ (B)W;.

27



‘ Calculating v for an AR(p): matching coefficients'

Example: X, = ¢(B)W, & (1 —-0.5B +0.6B%) X, = W,,
so 1=1(B)(1-05B+0.6B%)
& 1= (o + U1 B+ B +---)(1 —0.5B + 0.6B%)

< 1 = o,
0 =11 — 0.5,
0 =2 — 0.5¢1 + 0.6¢o,
0 = 15 — 0.5t + 0.6t}
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Calculating v for an AR(p): example'

l=1o, 0=v; (1<0),
0=1; —0.5¢;1 +0.69 2

1 =1y, 0 =1 (4 <0),
0= o(B)y;.

We can solve thedenear difference equationsin several ways:

e numerically, or

e by guessing the form of a solution and using an inductive fpiao
e by using the theory of linear difference equations.
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‘ Calculating v for an AR(p): general casﬂ

¢(B) Xt = Wr, A
0 1=1(B)o(B)
< 1= (po+1B+---)1—¢B—--—¢,BP)
A 1 = 1o,
0 =11 — 1o,
0 =12 — ¢191 — Pa2tbo,

L=1o, 0=1v¢; (j<0),
0 = ¢(B)y;.
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