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Last lecture:
1. Stationarity

2. Autocovariance, autocorrelation

3. MA, AR, linear processes
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1. Review: Autocovariance, linear processes

2. Sample autocorrelation function

3. ACF and prediction
4. Properties of the ACF




M ean, Autocovariance, Stationarity I

A time series{ X, } hasmean function p; = E[X}]
andautocovariance function

YX (t + h, t) = COV(X,H_}L, Xt)
= E[(Xern — pen) (Xe — p)].

It is stationary if both are independent af
Then we writeyx (h) = vx (h,0).
Theautocorrelation function (ACF) is

_ x(h)

pX(h) v x (O)

— COFI’(XtH“ Xt)




Linear Processes.

An important class of stationary time series:

Xt =p+ Z YiWi—;

Jj=—00
where  {W;} ~ WN(0,02)

and  u,, are parameters satisfying




Linear Processes'

=p+ Y Wi

j=—00

Examples:

e White noise:y, = 1.

e MA(1): g = 1,91 = 0.

e AR(1): 1o = 1,91 = ¢, 12 = ¢°, ...




‘ Estimating the ACF: Sample ACF I

Recall: Suppose that X, } is a stationary time series.
Its mean is

p=E[Xy].

Its autocovariance function is

’Y(h) = COV(XH_h, Xt>
= E[(X¢n — ) (X — )]

Its autocorrelation function is




‘ Estimating the ACF: Sample ACF I

For observations,, ..., x,, of atime series,

. 1 «
the sample mean is T=-)
n t=1

Thesample autocovariance function is

n—|h|

=3 @ — D) — 7).

t=1

Thesample autocorrelation function is

for—n < h < n.




‘ Estimating the ACF: Sample ACF I

Sample autocovariance function:

n—|h|

§0) = — 3 @ — 2w — 7).

t=1

~ the sample covariance @f1,xn11), ..., (Tn_hn,T,), €XCept that
e We normalize by instead ofn — h, and
e Wwe subtract the full sample mean.




‘ Sample ACF for white Gaussian (hencel.i.d.) noise'
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SampIeACFI

We can recognize the sample autocorrelation functions ofyman-white
(even non-stationary) time series.

Timeseries: Sample ACF:
White Zero
Trend Slow decay
Periodic Periodic
MA(Q) Zero for |h| > ¢

AR(p) Decays to zero exponentially
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Sample ACF: Trend
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‘SampIeACF: Trend'
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Timeseries:
White
Trend

Periodic
MA(Q)
AR(p)

SampIeACFI

Sample ACF:
Zero

Slow decay
Periodic

Zero for|h| > ¢

Decays to zero exponentially
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Sample ACF: Periodic
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Sample ACF: Periodic

— - signal
—©— signal plus noise
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Sample ACF: Periodic

100 (why?)
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Timeseries:
White
Trend

Periodic
MA(Q)
AR(p)

SampIeACFI

Sample ACF:
Zero

Slow decay
Periodic

Zero for |h| > ¢

Decays to zero exponentially
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ACF: MA(L)

MA(1): X =Z,+6Z,_,

0]

Q 0/(1+6%)
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‘ Sample ACF: MA(1) I

T T
O ACF
O Sample ACF
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Timeseries:
White
Trend

Periodic
MA(Q)
AR(p)

SampIeACFI

Sample ACF:
Zero

Slow decay
Periodic

Zero for|h| > ¢

Decays to zero exponentially
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ACF: AR(1)

AR(2): Xt = (pXt_1 + Zt
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Sample ACF: AR(1)I

T T
O ACF
O Sample ACF
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ACF and prediction

—©— white noise
-©- MA(1)

O ACF
O Sample ACF
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ACF of aMA(1) process'
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ACF and least squares prediction I

Best least squares estimateYofs EY:

min E(Y — ¢)* = E(Y — EY)~.

C

Best least squares estimateYofyiven X is E[Y | X|:

min (Y — f(X))? = min E [E[(Y — £(X))?|]]

= E [E[(Y — E[Y]X])?|X]]
— var[Y| X].

Similarly, the best least squares estimat&qf, ;, given X, is
f(Xn) — E[Xn+h|Xn]-
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ACF and least squares prediction I

Suppose thak = (X, ..., X,,1) IS jointly Gaussian:

1 1 INv—1
— - - - - .
fx(x) CORENRE exp ( 2(:1; ) (x ,u))
Then the joint distribution of X,,, X, 1) IS

2
Hn On POnOn+h

N 2
Hn-+h POnOn+h On+h

and the conditional distribution of,,. ;, given X, is

Onth
N (Un—kh TP it <xn - :un)v Ji—l—h(l - /02)) .

On
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ACF and least squares prediction I

So for Gaussian and stationaf; }, the best estimate of .., given
X, = x, 1S

f(@n) = p+ p(h)(xn — 1),
and the mean squared error is

E(Xntn — f(Xn))? = 0*(1 = p(h)?).

Notice:
e Prediction accuracy improves ggh)| — 1.
e Predictor is linear;f (x) = u(1 — p(h)) + p(h)z.
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ACF and least squareslinear prediction I

Consider dinear predictor of X,,. 1 given X,, = z,,. Assume first that
{ X} is stationary with &,, = 0, and predictX,, ., with f(z,) = ax,.
The best linear predictor minimizes

E(X,n —aX,)? =E(X2,,) — E(2aX, 11 X,) + E (a*X?)

= 0% — 2avy(h) + a*0?,
and this is minimized whea = p(h), that is,
f(zn) = p(h)Xn.
For this optimal linear predictor, the mean squared error is
E(Xnyn — [(Xn))? = 02 = 2p(h)y(h) + p(h)*c”
= (1= p(h)?).
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ACF and least squareslinear prediction I

Consider the followindinear predictor of X,, ., given X,, = z,,, when
{X,} is stationary and K,, = u:

f(xn) = alrn — p) +b.

The linear predictor that minimizes

E(Xntn — (a(Xn — p) + b))’

hasa = p(h), b = pu, that s,

fan) = p(h)(Xn — p) + p.

For this optimal linear predictor, the mean squared erragan

E(Xpsn — f(Xn))* = 0*(1 = p(h)?).
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‘ L east squares prediction of X, ;, given X, I

f(Xn) = pu+ph)(Xn — ).
E(f(Xn) = Xngn)® =0 (1 — p(h)?).

o If {X,} is stationary,f is theoptimal linear predictor.

o If {X;} is also Gaussiary; is theoptimal predictor.

e Linear prediction is optimal for Gaussian time series.

e Over all stationary processes with that value 0f) ando?, the optimal
mean squared error is maximized by the Gaussian process.

e Linear prediction needs only second order statistics.

e Extends to longer historiesX,,, X,, — 1,...).
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Properties of the autocovariance function I

For the autocovariance functionof a stationary time seriesX; },
1. v(0) >0, (variance is non-negative)

2. |v(h)] < ~(0), (from Cauchy-Schwarz)

3. v(h) =~(—h), (from stationarity)

4. ~ is positive semidefinite.

Furthermore, any functiofy : Z — R that satisfies (3) and (4) is the
autocovariance of some stationary time series.
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Properties of the autocovariance function I

A function f : Z — R is positive semidefinité for all n, the matrixF,,
with entries(F),); ; = f(¢ — 7), is positive semidefinite.

A matrix F,, € R™*™ is positive semidefinite if, for all vectors € R",

a' Fa > 0.

To see thaty is psd, consider the variance @Y+, ..., X, )a.
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Properties of the autocovariance function I

For the autocovariance functionof a stationary time seriesX; },

4. ~ is positive semidefinite.

Furthermore, any functiofy : Z — R that satisfies (3) and (4) is the
autocovariance of some stationary time series (in pa#rcalGaussian
process).

e.g.: (1) and (2) follow from (4).
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