Introduction to Time Series Analysis. Lecture 3. Peter Bartlett

Last lecture:

- 1. Stationarity
- 2. Autocovariance, autocorrelation
- 3. MA, AR, linear processes

Introduction to Time Series Analysis. Lecture 3. Peter Bartlett

- 1. Review: Autocovariance, linear processes
- 2. Sample autocorrelation function
- 3. ACF and prediction
- 4. Properties of the ACF

Mean, Autocovariance, Stationarity

A time series $\{X_t\}$ has **mean function** $\mu_t = E[X_t]$ and **autocovariance function**

$$\gamma_X(t+h,t) = \text{Cov}(X_{t+h}, X_t)$$

= $\text{E}[(X_{t+h} - \mu_{t+h})(X_t - \mu_t)].$

It is **stationary** if both are independent of t.

Then we write $\gamma_X(h) = \gamma_X(h, 0)$.

The autocorrelation function (ACF) is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}(X_{t+h}, X_t).$$

Linear Processes

An important class of stationary time series:

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j}$$

where $\{W_t\} \sim WN(0, \sigma_w^2)$

and μ, ψ_j are parameters satisfying

$$\sum_{j=-\infty}^{\infty} |\psi_j| < \infty.$$

Linear Processes

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j}$$

Examples:

- White noise: $\psi_0 = 1$.
- MA(1): $\psi_0 = 1, \psi_1 = \theta$.
- AR(1): $\psi_0 = 1$, $\psi_1 = \phi$, $\psi_2 = \phi^2$, ...

Estimating the ACF: Sample ACF

Recall:

Suppose that $\{X_t\}$ is a stationary time series.

Its mean is

$$\mu = \mathrm{E}[X_t].$$

Its autocovariance function is

$$\gamma(h) = \operatorname{Cov}(X_{t+h}, X_t)$$
$$= \operatorname{E}[(X_{t+h} - \mu)(X_t - \mu)].$$

Its autocorrelation function is

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)}.$$

Estimating the ACF: Sample ACF

For observations x_1, \ldots, x_n of a time series,

the sample mean is
$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$
.

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}),$$

for -n < h < n.

The sample autocorrelation function is

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

Estimating the ACF: Sample ACF

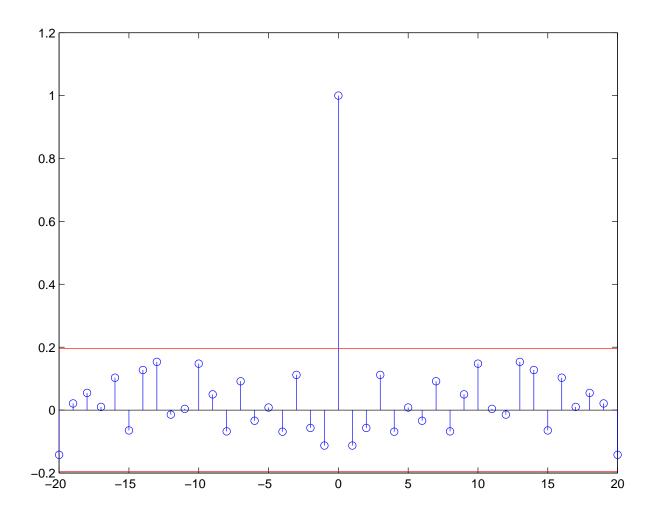
Sample autocovariance function:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}).$$

 \approx the sample covariance of $(x_1, x_{h+1}), \dots, (x_{n-h}, x_n)$, except that

- \bullet we normalize by n instead of n-h, and
- we subtract the full sample mean.

Sample ACF for white Gaussian (hence i.i.d.) noise



Red lines=c.i.

Sample ACF

We can recognize the sample autocorrelation functions of many non-white (even non-stationary) time series.

Time series: Sample ACF:

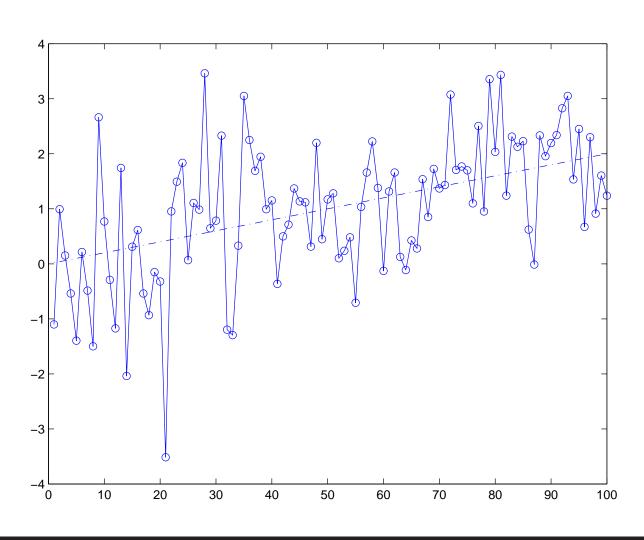
White zero

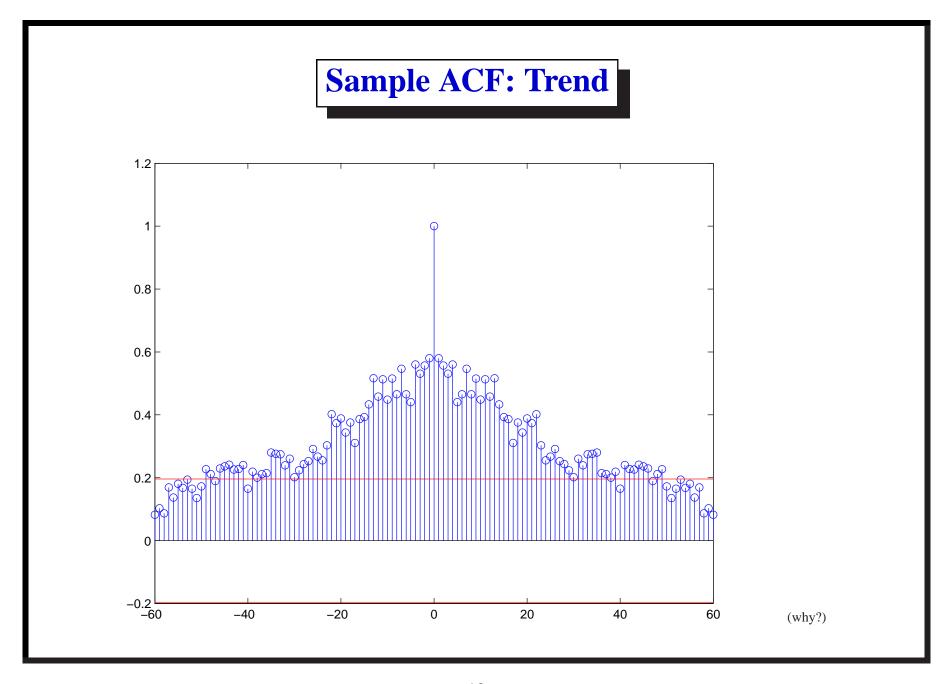
Trend Slow decay

Periodic Periodic

MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially





Sample ACF

Time series: Sample ACF:

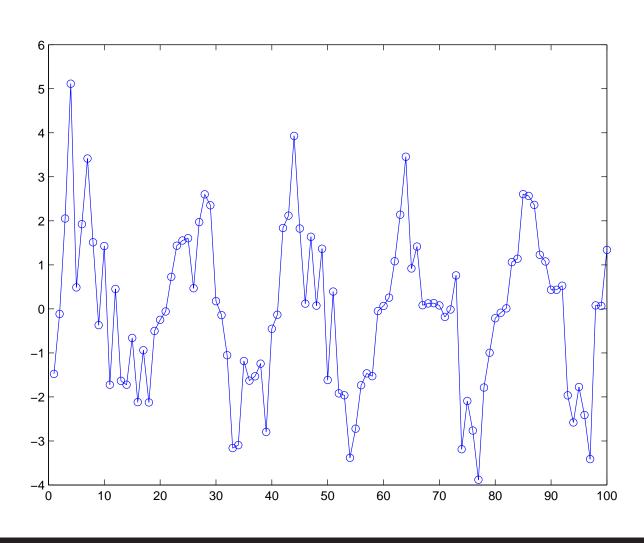
White zero

Trend Slow decay

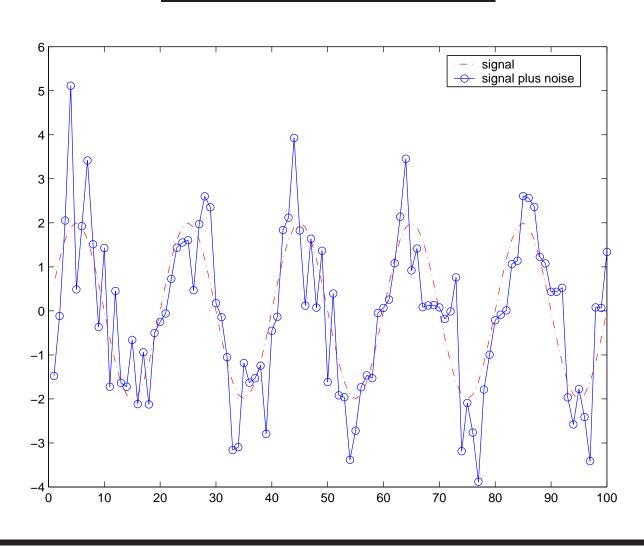
Periodic Periodic

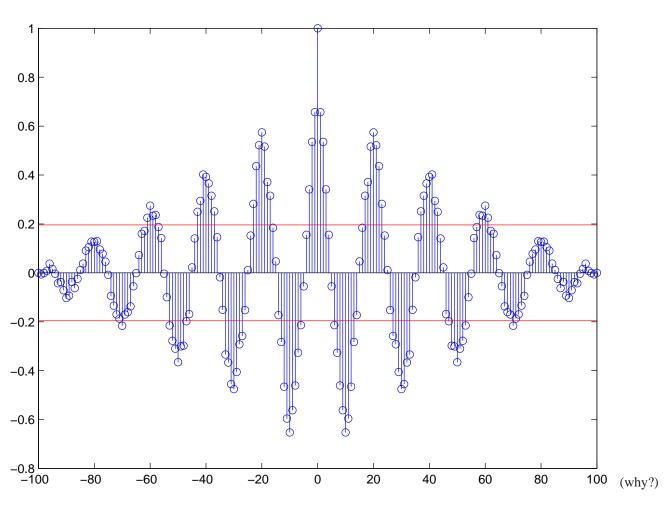
MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially



Sample ACF: Periodic





Sample ACF

Time series: Sample ACF:

White zero

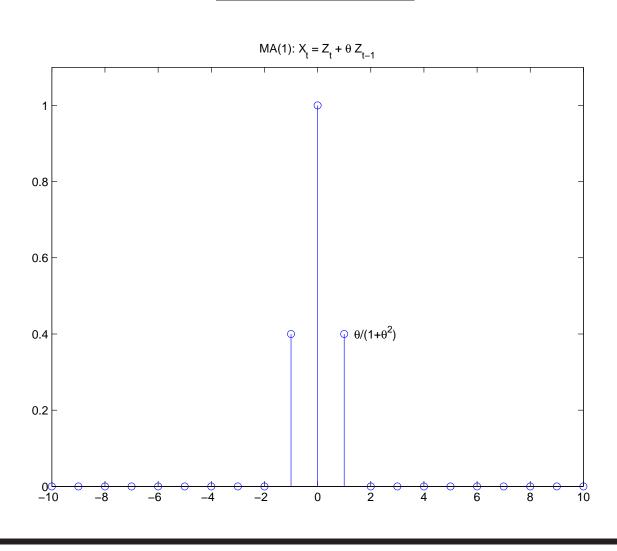
Trend Slow decay

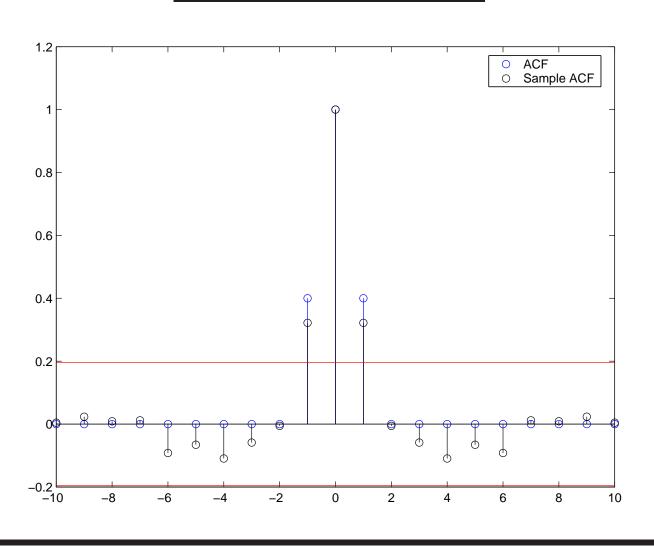
Periodic Periodic

MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially

ACF: MA(1)





Sample ACF

Time series: Sample ACF:

White zero

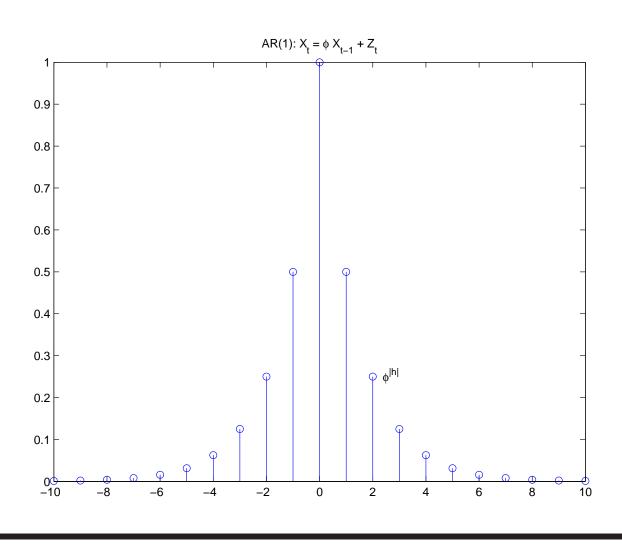
Trend Slow decay

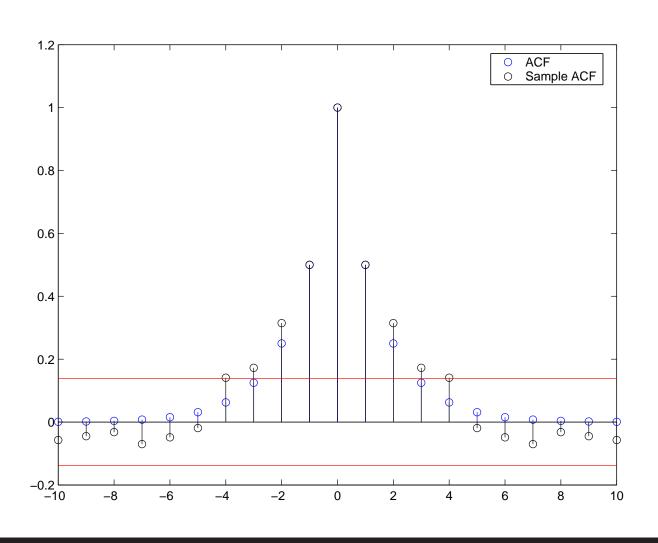
Periodic Periodic

MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially

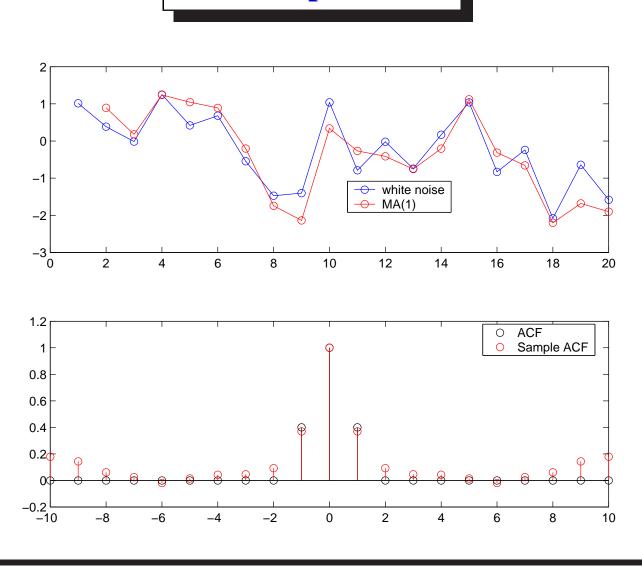
ACF: AR(1)



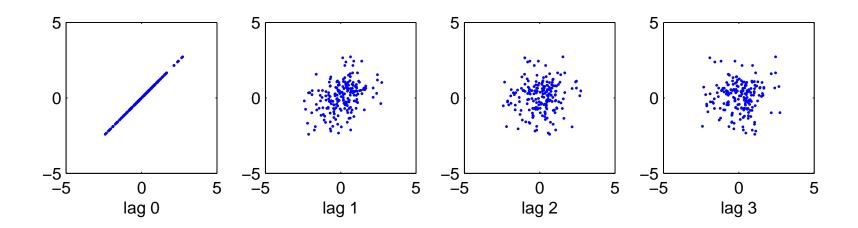


Introduction to Time Series Analysis. Lecture 3.

- 1. Sample autocorrelation function
- 2. ACF and prediction
- 3. Properties of the ACF



ACF of a MA(1) process



ACF and least squares prediction

Best least squares estimate of Y is EY:

$$\min_{c} E(Y - c)^2 = E(Y - EY)^2.$$

Best least squares estimate of Y given X is E[Y|X]:

$$\min_{f} E(Y - f(X))^{2} = \min_{f} E\left[E[(Y - f(X))^{2}|X]\right]$$
$$= E\left[E[(Y - E[Y|X])^{2}|X]\right]$$
$$= var[Y|X].$$

Similarly, the best least squares estimate of X_{n+h} given X_n is $f(X_n) = E[X_{n+h}|X_n]$.

ACF and least squares prediction

Suppose that $X = (X_1, \dots, X_{n+h})$ is jointly Gaussian:

$$f_X(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)'\Sigma^{-1}(x-\mu)\right).$$

Then the joint distribution of (X_n, X_{n+h}) is

$$N\left(\left(\begin{array}{c}\mu_n\\\mu_{n+h}\end{array}\right),\left(\begin{array}{ccc}\sigma_n^2&\rho\sigma_n\sigma_{n+h}\\\rho\sigma_n\sigma_{n+h}&\sigma_{n+h}^2\end{array}\right)\right),$$

and the conditional distribution of X_{n+h} given X_n is

$$N\left(\mu_{n+h} + \rho \frac{\sigma_{n+h}}{\sigma_n}(x_n - \mu_n), \sigma_{n+h}^2(1 - \rho^2)\right).$$

ACF and least squares prediction

So for Gaussian and stationary $\{X_t\}$, the best estimate of X_{n+h} given

$$X_n = x_n$$
 is

$$f(x_n) = \mu + \rho(h)(x_n - \mu),$$

and the mean squared error is

$$E(X_{n+h} - f(X_n))^2 = \sigma^2(1 - \rho(h)^2).$$

Notice:

- Prediction accuracy improves as $|\rho(h)| \to 1$.
- Predictor is linear: $f(x) = \mu(1 \rho(h)) + \rho(h)x$.

ACF and least squares linear prediction

Consider a **linear predictor** of X_{n+h} given $X_n = x_n$. Assume first that $\{X_t\}$ is stationary with $EX_n = 0$, and predict X_{n+h} with $f(x_n) = ax_n$. The best linear predictor minimizes

$$E(X_{n+h} - aX_n)^2 = E(X_{n+h}^2) - E(2aX_{n+h}X_n) + E(a^2X_n^2)$$
$$= \sigma^2 - 2a\gamma(h) + a^2\sigma^2,$$

and this is minimized when $a = \rho(h)$, that is,

$$f(x_n) = \rho(h)X_n.$$

For this optimal linear predictor, the mean squared error is

$$E(X_{n+h} - f(X_n))^2 = \sigma^2 - 2\rho(h)\gamma(h) + \rho(h)^2\sigma^2$$

= $\sigma^2(1 - \rho(h)^2)$.

ACF and least squares linear prediction

Consider the following **linear predictor** of X_{n+h} given $X_n = x_n$, when $\{X_n\}$ is stationary and $EX_n = \mu$:

$$f(x_n) = a(x_n - \mu) + b.$$

The linear predictor that minimizes

$$E(X_{n+h} - (a(X_n - \mu) + b))^2$$

has $a = \rho(h)$, $b = \mu$, that is,

$$f(x_n) = \rho(h)(X_n - \mu) + \mu.$$

For this optimal linear predictor, the mean squared error is again

$$E(X_{n+h} - f(X_n))^2 = \sigma^2(1 - \rho(h)^2).$$

Least squares prediction of X_{n+h} given X_n

$$f(X_n) = \mu + \rho(h)(X_n - \mu).$$

$$E(f(X_n) - X_{n+h})^2 = \sigma^2(1 - \rho(h)^2).$$

- If $\{X_t\}$ is stationary, f is the **optimal linear predictor**.
- If $\{X_t\}$ is also Gaussian, f is the **optimal predictor**.
- Linear prediction is optimal for Gaussian time series.
- Over all stationary processes with that value of $\rho(h)$ and σ^2 , the optimal mean squared error is maximized by the Gaussian process.
- Linear prediction needs only second order statistics.
- Extends to longer histories, $(X_n, X_n 1, \ldots)$.

Introduction to Time Series Analysis. Lecture 3.

- 1. Sample autocorrelation function
- 2. ACF and prediction
- 3. Properties of the ACF

Properties of the autocovariance function

For the autocovariance function γ of a stationary time series $\{X_t\}$,

- 1. $\gamma(0) \ge 0$, (variance is non-negative)
- 2. $|\gamma(h)| \le \gamma(0)$, 3. $\gamma(h) = \gamma(-h)$, (from Cauchy-Schwarz)
- (from stationarity)
- 4. γ is positive semidefinite.

Furthermore, any function $\gamma: \mathbb{Z} \to \mathbb{R}$ that satisfies (3) and (4) is the autocovariance of some stationary time series.

Properties of the autocovariance function

A function $f: \mathbb{Z} \to \mathbb{R}$ is *positive semidefinite* if for all n, the matrix F_n , with entries $(F_n)_{i,j} = f(i-j)$, is positive semidefinite.

A matrix $F_n \in \mathbb{R}^{n \times n}$ is positive semidefinite if, for all vectors $a \in \mathbb{R}^n$,

$$a'Fa \ge 0.$$

To see that γ is psd, consider the variance of $(X_1, \dots, X_n)a$.

Properties of the autocovariance function

For the autocovariance function γ of a stationary time series $\{X_t\}$,

- 1. $\gamma(0) \geq 0$,
- 2. $|\gamma(h)| \le \gamma(0)$, 3. $\gamma(h) = \gamma(-h)$,
- 4. γ is positive semidefinite.

Furthermore, any function $\gamma: \mathbb{Z} \to \mathbb{R}$ that satisfies (3) and (4) is the autocovariance of some stationary time series (in particular, a Gaussian process).

e.g.: (1) and (2) follow from (4).

Introduction to Time Series Analysis. Lecture 3.

- 1. Sample autocorrelation function
- 2. ACF and prediction
- 3. Properties of the ACF