Introduction to Time Series Analysis. Lecture 25.

. Lagged regression models.
. Review: lagged regression in the time domain
. Cross spectrum. Coherence.

. Lagged regression in the frequency domain.




‘Lagged regression models'

Consider a lagged regression model of the form

oo

Yi= > BuXen+ Vi,

h=—o0

whereX; Is an observed input time serids,is the observed output time
series, and/; Is a stationary noise process.

This is useful for

|dentifying the (best linear) relationship between twodigeries.

Forecasting one time series from the other.




L agged regression models: Agenda'

Multiple, jointly stationary time series in the time domain
cross-covariance function, sample CCF.

Lagged regression in the time domain: model the input segract
the white time series driving it (‘prewhitening’), regrasgh
transformed output series.

Multiple, jointly stationary time series in the frequenayndain:
Cross spectrum, coherence.

Lagged regression in the frequency domain: Calculate {hat’sm
spectral density, and the cross-spectral density betwgen and
output, and find the transfer function relating them, in tlegjiency
domain. Then the regression coefficients are the inversadfou
transform of the transfer function.




Review: Cross—covariance'

The cross-covariance function of two jointly stationary processdsX;} and
{Yi}is

Yoy (h) = B[(Xern — p2) (Ve — p1y)] -
Their cross-correlation function is

Yoy (1)

oy (h) = .
Pl = O 0)

SO0 pzy(h) = pya(—h).
Example: ForY; = 8X;_, + W, for stationary{ X, }, white uncorr{ W, },

’Ya:y(h) — BQ%:(h +£).

If ¢ > 0, we sayX; leadsY;.
If ¢/ <0, we sayX; lagsY;.




‘ Review: lagged regression in thetime domain I

Suppose we wish to fit a lagged regression model of the form

Yi=a(B)X;+n = ZOéth—j + Mt
j=0

whereX; is an observed input time serids,is the observed output time
series, and, is a stationary noise process, uncorrelated \iith

1. Fit,(B), ¢.(B) to model the input seriegX, }.

2. Prewhiten the input series by applying the inverse operator
¢2(B)/0(B):

¢ (B)

Y: = a(B)W; + 0.(B) ny




‘ Review: Lagged regression in the time domain I

3. Calculate the cross-correlationgfwith W,

to give an indication of the behavior ef B) (for instance, the delay).

4. Estimate the coefficients af{ B) and hence fit an ARMA model for
the noise series;.




\ Coherence'

To analyze lagged regression in the frequency domain, weéd the notion
of coherence, the analog of cross-correlation in the frequency domain.

Define thecross-spectrum as the Fourier transform of the cross-correlatio

fazy(y): Z ,ny(h)e—%riuhj

h=—o0

1/2 |
oy () = / Foy (1),
—1/2

(provided thad ,~  __ |yay(h)] < 00).
Notice thatf,, () can be complex-valued.

AISO, 7y (h) = Yy (—h) IMplies fyo (1) = fuy (1),




\ Coherence.

The sguared coherence function is

2 o @)
Poa) = 5 ) f )

Compare this with the correlatign, , = Cov(Y, X))/, /oZo2. We can

think of the squared coherence at a frequemag the contribution to
squared correlation at that frequency.

(Recall the interpretation of spectral density at a fregyenas the
contribution to variance at that frequency.)




Estimating squared coherence.

Recall that we estimated the spectral density using the sradsquared
modulus of the DFT of the series,

A MU

f)=7 X IX i)

I=—(L—1)/2
(L—1)/2

> X — U)X (v — 1/n)".

[=—(L—1)/2

We can estimate the cross spectral density using the sanpesagtimate,

) ()2
foyi) == Y X —1/n)Y (v, —1/n)".

[=—(L—1)/2




\ Coherence.

Also, we can estimate the squared coherence using theswatss|

A

Fue0)P
fx(l/)fy(y)

Pya(V) =

(Knowledge of the asymptotic distribution pf . (v) under the hypothesis of no
coherencep, .. () = 0, allows us to test for coherence.)
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‘ L agged regression modelsin the frequency domain I

Consider a lagged regression model of the form

Yi= > BiXe;j+ W

j=—00

whereX; is an observed input time serids,is the observed output time
series, and/; is a stationary noise process.

We'd like to estimate the coefficients that determine the relationship
between the lagged values of the input seAgsand the output series.
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‘ L agged regression modelsin the frequency domain I

The projection theorem tells us that the coefficients thatimize the mean
squared error,

2
E||Y:— 2: B Xi—;

j=—00

satisfy the orthogonality conditions

E||Yi— ) BiXi ;| Xen| =0, k=0,+1,+2, ...

j=—0c

j=—00
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‘ L agged regression modelsin the frequency domain I

We could solve these equations for theusing the sample autocovariance
and sample cross-covariance. But it is more convenientdée@ssmates of
the spectra and cross-spectrum.

(Convolution with{ 3, } in the time domain is equivalent to multiplication
by the Fourier transform df3, } in the frequency domain. Let’s verify this.)

We replace the autocovariance and cross-covariance vatimierse

Fourier transforms of the spectral density and cross-sge¢nsity in the
orthogonality conditions,

j=—00
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‘ L agged regression modelsin the frequency domain I

This gives, fork = 0, +1, +£2, .. .,

1/2 o0 1/2

> B e = [ g ),

-1/2 ;2 —1/2

1/2 . 1/2 .
/ BQWZVkB(I/)fx(I/)dV _ / 627mykfya:(V),

—1/2 —1/2

whereB(v) = > 72 e”?™"/ 3; is the Fourier transform of the
coefficient sequence;.
Since the Fourier transform is unigue, the orthogonalityditions are

equivalent to

Bw)fe(v) = fyz(v).
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‘ L agged regression modelsin the frequency domain I

We can write the mean squared error at the solution as follpwhy?)

E (Yt — Z ﬁthg) Yi| =7(0) — Z BiVay(—7)

j=—o00 j=—00

1/2
_ / (3 () — B) fy(v)) d

—1/2

/ 11//22 £, () (

o (

—1/2

/1/2
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‘ L agged regression modelsin the frequency domain I

1/2
MSE = / fy(v) (1 — pix(y)) dv.

—1/2

Thus,p,.(v)? indicates how the component of the variance Bf} at a
frequencyv is accounted for by X; }. Compare this with the corresponding
decomposition for random variables:

E(y — 2)? = 02(1— p2,).
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‘ L agged regression modelsin the frequency domain I

We can estimate thé; in the frequency domain:

1§(Vk):: f? <Vk).

fe(Vg)

We can approximate the inverse Fourier transfornaf),
. vz
B :/ e*™I B(v)dy

—1/2

via the sum,

1 M-—1
b= g 3 BT

This gives a periodic sequence—we might truncatg-ati/ /2.
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‘ L agged regression modelsin the frequency domain I

Here is the approach:

1. Estimate the spectral density and cross-spectral gensit

2. Compute the transfer functios(v).

3. Take the inverse Fourier transform to obtain the impuwtsponse
function 3;.
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‘ L agged regression modelsin the freqguency domain I

It is often useful to consider both representations

Y: = Z aj Xi—j, X = Z B;Yi—j,

J=—00C J]J=—

since there might be a more parsimonious representatiamnmstof one
than the other. (Just as a small AR model often cannot be well

approximated by a small MA model.)
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‘ L agged regression modelsin the frequency domain I

In the X; =SOI/Y; =Recruitment example (Example 4.23), we obtain

Yy = 22X 5 — 15X — 11Xy 7 — 10X4_g — 7 X4_g — - - - + Wy,
Xt — 00121/t+4 - 00181/;54_5 + ‘/;5,

and the latter is equivalent to

(1 -0.667B)Y; = —56B°X, + Uy,.
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Overview.
. Lagged regression models.

. Review: lagged regression in the time domain

. Cross spectrum. Coherence.

. Lagged regression in the frequency domain.
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