
Introduction to Time Series Analysis. Lecture 24.

1. Review: parametric spectral estimation

2. Lagged regression models.

3. Cross-covariance function, sample CCF.

4. Lagged regression in the time domain: prewhitening.
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Review: Parametric spectral density estimation

Given datax1, x2, . . . , xn,

1. Estimate the AR parametersφ1, . . . , φp, σ
2
w (for example, using

Yule-Walker or maximum likelihood),

and choose a suitable model orderp (for example, using

AICc = (n + p)/(n − p − 2) or SIC= p log n/n).

2. Use the estimateŝφ1, . . . , φ̂p, σ̂
2
w to compute the estimated spectral

density:

f̂y(ν) =
σ̂2

w
∣

∣

∣
φ̂ (e−2πiν)

∣

∣

∣

2
.
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Review: Parametric spectral density estimation

For largen,

Var(f̂(ν)) ≈ 2p

n
f2(ν).

Bias-variance trade-off:

As p increases, the bias decreases—we can model more complex

spectra—but the variance increases.

Advantage over nonparametric: betterfrequency resolution of a small

number of peaks. This is especially important if there is more than one peak

at nearby frequencies.

Disadvantage: inflexibility (bias).
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Lagged regression models

Consider a lagged regression model of the form

Yt =
∞
∑

h=−∞

βhXt−h + Vt,

whereXt is an observed input time series,Yt is the observed output time

series, andVt is a stationary noise process.

This is useful for

• Identifying the (best linear) relationship between two time series.

• Forecasting one time series from the other.

(We might wantβh = 0 for h < 0.)
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Lagged regression models

Yt =
∞
∑

h=−∞

βhXt−h + Vt.

In the SOI and recruitment example, we might wish to identifyhow the

values of the recruitment series (the number of new fish) is related to the

Southern Oscillation Index.

Or we might wish to predict future values of recruitment fromthe SOI.

5



Lagged regression models: Agenda

• Multiple, jointly stationary time series in the time domain:
cross-covariance function, sample CCF.

• Lagged regression in the time domain: model the input series, extract
the white time series driving it (‘prewhitening’), regresswith
transformed output series.

• Multiple, jointly stationary time series in the frequency domain:
cross spectrum, coherence.

• Lagged regression in the frequency domain: Calculate the input’s
spectral density, and the cross-spectral density between input and
output, and find the transfer function relating them, in the frequency
domain. Then the regression coefficients are the inverse Fourier
transform of the transfer function.
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Cross-covariance

Recall that the autocovariance function of a stationary process{Xt} is

γx(h) = E [(Xt+h − µx)(Xt − µx)] .

Thecross-covariance function of two jointly stationary processes{Xt} and

{Yt} is

γxy(h) = E [(Xt+h − µx)(Yt − µy)] .

(Jointly stationary= constant means, autocovariances depending only on

the lagh, and cross-covariance depends only onh.)
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Cross-correlation

Thecross-correlation function of jointly stationary{Xt} and{Yt} is

ρxy(h) =
γxy(h)

√

γx(0)γy(0)
.

Notice thatρxy(h) = ρyx(−h) (butρxy(h) 6≡ ρxy(−h)).

Example: Suppose thatYt = βXt−ℓ + Wt for {Xt} stationary and

uncorrelated with{Wt}, andWt zero mean and white. Then{Xt} and{Yt}
are jointly stationary, withµy = βµx,

γxy(h) = βγx(h + ℓ).

If ℓ > 0, we sayxt leads yt.

If ℓ < 0, we sayxt lags yt.
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Sample cross-covariance and sample CCF

γ̂xy(h) =
1

n

n−h
∑

i=1

(xt+h − x̄)(yt − ȳ)

for h ≥ 0 (andγ̂xy(h) = γ̂yx(−h) for h < 0).

The sample CCF is

ρ̂xy(h) =
γ̂xy(h)

√

γ̂x(0)γ̂y(0)
.
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Sample cross-covariance and sample CCF

If either of{Xt} or {Yt} is white, thenρ̂xy(h) ∼ AN(0, 1/
√

n).

Notice that we can look for peaks in the sample CCF to identifya leading or

lagging relation. (Recall that the ACF of the input series peaks ath = 0.)

Example: CCF of SOI and recruitment (Figure 1.14 in text) hasa peak at

h = −6, indicating that recruitment att has its strongest correlation with

SOI at timet − 6. Thus, SOI leads recruitment (by 6 months).
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Lagged regression in the time domain (Section 5.6)

Suppose we wish to fit a lagged regression model of the form

Yt = α(B)Xt + ηt =
∞
∑

j=0

αjXt−j + ηt,

whereXt is an observed input time series,Yt is the observed output time

series, andηt is a stationary noise process, uncorrelated withXt.

One approach (pioneered by Box and Jenkins) is to fit ARIMA models for

Xt andηt, and then find a simple rational representation forα(B).
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Lagged regression in the time domain

Yt = α(B)Xt + ηt =

∞
∑

j=0

αjXt−j + ηt,

For example:

Xt =
θx(B)

φx(B)
Wt,

ηt =
θη(B)

φη(B)
Zt,

α(B) =
δ(B)

ω(B)
Bd.

Notice the delayBd, indicating thatYt lagsXt by d steps.
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Lagged regression in the time domain

How do we choose all of these parameters?

1. Fit θx(B), φx(B) to model the input series{Xt}.

2. Prewhiten the input series by applying the inverse operator

φx(B)/θx(B):

Ỹt =
φx(B)

θx(B)
Yt = α(B)Wt +

φx(B)

θx(B)
ηt.
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Lagged regression in the time domain

3. Calculate the cross-correlation ofỸt with Wt,

γỹ,w(h) = E





∞
∑

j=0

αjWt+h−jWt



 = σ2
wαh,

to give an indication of the behavior ofα(B) (for instance, the delay).

4. Estimate the coefficients ofα(B) and hence fit an ARMA model for

the noise seriesηt.
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Lagged regression in the time domain

Why prewhiten?

The prewhitening step inverts the linear filterXt = θx(B)/φx(B)Wt. Then

the lagged regression is between the transformedYt and a white seriesWt.

This makes it easy to determine a suitable lag.

For example, in the SOI/recruitment series, we treat SOI as an input,

estimate an AR(1) model, prewhiten it (that is, compute the inverse of our

AR(1) operator and apply it to the SOI series), and consider the

cross-correlation between the transformed recruitment series and the

prewhitened SOI. This shows a large peak at lag -5 (corresponding to the

SOI series leading the recruitment series). Examples 5.7 and 5.8 in the text

then considerα(B) = B5/(1 − ω1B).
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Lagged regression in the time domain

This sequential estimation procedure (φx, θx, thenα, thenφη, θη) is rather

ad hoc. State space methods offer an alternative, and they are also

convenient for vector-valued input and output series.
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