
Introduction to Time Series Analysis. Lecture 23.

1. Review: The smoothed periodogram.

2. Examples.

3. Parametric spectral density estimation.
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Review: Periodogram

The periodogram is defined as

I(ν) = |X(ν)|2

= X2
c (ν) +X2

s (ν).

Xc(ν) =
1√
n

n
∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n
∑

t=1

sin(2πtνj)xt.

Under general conditions,Xc(νj),Xs(νj) are asymptotically independent

andN(0, f(νj)/2). Thus,EI(ν̂(n)) → f(ν), but Var(I(ν̂(n))) → f(ν)2.
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Review: Smoothed spectral estimators

f̂(ν) =
∑

|j|≤Ln

Wn(j)I(ν̂(n) − j/n),

where thespectral window function satisfiesLn → ∞, Ln/n→ 0,

Wn(j) ≥ 0,Wn(j) = Wn(−j),
∑

Wn(j) = 1, and
∑

W 2
n(j) → 0.

Thenf̂(ν) → f(ν) (in the mean square sense), and asymptotically

f̂(νk) ∼ f(νk)
χ2

d

d
,

whered = 2/
∑

W 2
n(j).
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Example: Southern Oscillation Index

Figure 4.4 in the text shows the periodogram of the SOI time series. The

SOI is the scaled, standardized, mean-adjusted, difference between monthly

average air pressure at sea level in Tahiti and Darwin:

SOI = 10
PTahiti − PDarwin

σ
− x̄.

For the time series in the text,n = 453 months.

The periodogram has a large peak atν = 0.084 cycles/sample. This

corresponds to0.084 cycles per month, or a period of1/0.084 = 11.9

months.

There are smaller peaks atν ≈ 0.02: I(0.02) ≈ 1.0. The frequency

ν = 0.02 corresponds to a period of50 months, or4.2 years.
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Example: Southern Oscillation Index

Consider the hypothesized El Niño effect, at a period of around four years.

The approximate 95% confidence interval at this frequency,

ν = 1/(4 × 12), is

2I(ν)

χ2
2(0.025)

≤ f(ν) ≤ 2I(ν)

χ2
2(0.975)

2 × 0.64

7.3778
≤ f(ν) ≤ 2 × 0.64

0.0506
0.17 ≤ f(ν) ≤ 25.5.

The lower extreme of this confidence interval is around the noise baseline,

so it is difficult to conclude much about the hypothesized El Niño effect.
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Example: Southern Oscillation Index

Figure 4.5 in the text shows the smoothed periodogram, withL = 9.

Again, there is a large peak atν = 0.08 cycles/month (period≈ 12 months).

There are smaller peaks at integer multiples of this frequency (harmonics).

There is also a peak atν = 0.0215 (period46.5 months):f̂(0.0215) ≈ 0.62.
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Example: Southern Oscillation Index

The approximate 95% confidence interval at the hypothesizedEl Niño
frequency is

2Lf̂(ν)

χ2
2L(0.025)

≤ f(ν) ≤ 2Lf̂(ν)

χ2
2L(0.975)

18 × 0.62

31.526
≤ f(ν) ≤ 18 × 0.62

8.231
0.354 ≤ f(ν) ≤ 1.36.

The lower extreme of this confidence interval is well above the noise
baseline (the level of the spectral density if the signal were white and the
energy were uniformly spread across frequencies).

The text modifies the number of degrees of freedom slightly, to account for the fact that the signal is padded with zeros to maken a highly composite

number, which simplifies the computation of the periodogram.

7



Choosing the bandwidth

A common approach is to start with a large bandwidth, and lookat the

effect on the spectral estimates as it is reduced (‘closing the window’). As

the bandwidth becomes too small, the variance gets large andthe spectral

estimate becomes more jagged, with spurious peaks introduced. But if it is

too small, the spectral estimate is excessively smoothed, and details of the

shape of the spectrum are lost.

The value ofL = 9 chosen in the text for Figure 4.5 corresponds to a

bandwidth ofB = L/n = 9/480 = 0.01875 cycles per month. This means

we are averaging over frequencies in a band of this width, so we are treating

the spectral density as approximately constant over this bandwidth.

Equivalently, we are not hoping to resolve frequencies morefinely than

about half of this bandwidth.
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Simultaneous confidence intervals

We derived the confidence intervals forf(ν) assuming thatν was fixed. But

in examining peaks, we might wish to chooseν after we’ve seen the data. If

we want to make statements about the probability thatk unlikely events

E1, . . . , Ek occur, we can use the Bonferroni inequality (also called the

union bound):

Pr

{

k
⋃

i=1

Ei

}

≤
k

∑

i=1

Pr{Ei},

and this probability is no more thankα if Pr{Ei} = α. For example, ifEi

represents the event thatf(νi) falls outside some confidence interval at level

α, then we can bound the probability that the spectral densityis far from our

estimates at any of the frequenciesν1, . . . , νk.
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Parametric versus nonparametric estimation

Parametric estimation= estimate a model that is specified by a fixed

number of parameters.

Nonparametric estimation= estimate a model that is specified by a number

of parameters that can grow as the sample grows.

Thus, the smoothed periodogram estimates we have considered are

nonparametric: the estimates of the spectral density can be parameterized

by estimated values at each of the Fourier frequencies. As the sample size

grows, the number of distinct frequency values increases.

The time domain models we considered (linear processes) areparametric.

For example, and ARMA(p,q) process can be completely specified with

p+ q + 1 parameters.
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Parametric spectral estimation

In parametric spectral estimation, we consider the class of spectral densities

corresponding to ARMA models.

Recall that, for a linear processYt = ψ(B)Wt, fy(ν) =
∣

∣ψ
(

e2πiν
)
∣

∣

2
σ2

w.

For an AR model,ψ(B) = 1/φ(B), so{Yt} has the rational spectrum

fy(ν) =
σ2

w

|φ (e−2πiν)|2

=
σ2

w

φ2
p

∏p

j=1 |e−2πiν − pj |2
,

wherepj are the poles, or roots of the polynomialφ.
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Parametric spectral estimation

The typical approach to parametric spectral estimation is to use the

maximum likelihood parameter estimates (φ̂1, . . . , φ̂p, σ̂
2
w) for the

parameters of an AR(p) model for the process, and then compute the

spectral density for this estimated AR model:

f̂y(ν) =
σ̂2

w
∣

∣

∣
φ̂ (e−2πiν)

∣

∣

∣

2 .
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Parametric spectral estimation

For largen,

Var(f̂(ν)) ≈ 2p

n
f2(ν).

(There are results for the asymptotic distribution, but they are rather weak.)

Notice the bias-variance trade-off in the parametric case:as we increase the

number of parameters,p:

• The bias decreases; we can model more complex spectra. For example,

with an AR(p), we cannot have more than⌊p/2⌋ spectral peaks in the

interval(0, 1). (This is because each pair of complex conjugate poles

contributes one factor and hence peak to the product.)

• The variance increases linearly withp.
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ARMA spectral estimation

Sometimes ARMA models are used instead: estimate the parameters of an

ARMA(p,q) model and compute its spectral density (recall that

ψ(B) = θ(B)/φ(B)):

f̂(ν) = σ̂2
w

∣

∣

∣

∣

∣

θ̂(e−2πiν)

φ̂ (e−2πiν)

∣

∣

∣

∣

∣

2

.

However, it is more common to use large AR models, rather thanARMA

models.
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Parametric versus nonparametric spectral estimation

The main advantage of parametric spectral estimation over nonparametric is

that it often gives betterfrequency resolution of a small number of peaks:

To keep the variance down with a parametric estimate, we needto make

sure that we do not try to estimate too many parameters. Whilethis may

affect the bias, evenp = 2 allows a sharp peak at one frequency. In contrast,

to keep the variance down with a nonparametric estimate, we need to make

sure that the bandwidth is not too small. This corresponds tohaving a

smooth spectral density estimate, so the frequency resolution is limited.

This is especially important if there is more than one peak atnearby

frequencies.

The disadvantage is the inflexibility (bias) due to the use ofthe restricted

class of ARMA models.
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Parametric spectral estimation: Summary

Given datax1, x2, . . . , xn,

1. Estimate the AR parametersφ1, . . . , φp, σ
2
w (for example, using

Yule-Walker/least squares or maximum likelihood),

and choose a suitable model orderp (for example, using

AICc = (n+ p)/(n− p− 2) or BIC = p logn/n).

2. Use the estimateŝφ1, . . . , φ̂p, σ̂
2
w to compute the estimated spectral

density:

f̂y(ν) =
σ̂2

w
∣

∣

∣
φ̂ (e−2πiν)

∣

∣

∣

2 .
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