
Introduction to Time Series Analysis. Lecture 22.

1. Review: The periodogram, the smoothed periodogram.

2. Other smoothed spectral estimators.

3. Consistency.

4. Asymptotic distribution.
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Review: Periodogram

The periodogram is defined as

I(ν) = X2
c (ν) + X2

s (ν).

Xc(ν) =
1√
n

n
∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n
∑

t=1

sin(2πtνj)xt.

Under general conditions,Xc(νj), Xs(νj) are asymptotically independent

andN(0, f(νj)/2). Thus,EI(ν̂(n)) → f(ν), but Var(I(ν̂(n))) → f(ν)2.
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Review: smoothed periodogram

If f(ν) is approximately constant in a band of frequencies

[νk − L/(2n), νk + L/(2n)], we can average the periodogram over this

band:

f̂(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

I(νk − l/n)

=
1

L

(L−1)/2
∑

l=−(L−1)/2

(

X2
c (νk − l/n) + X2

s (νk − l/n)
)

.
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Review: smoothed periodogram

Under general conditions, theXc(νk − l/n) andXs(νk − l/n) are

asymptotically independent andN(0, f(νk − l/n)/2). Thus,

Ef̂(ν(n)) → f(ν) and Var̂f(ν(n)) → f2(ν)/L.

Notice thebias-variance trade off:

1. Our assumption thatf is approximately constant on

[ν − L/(2n), ν + L/(2n)] becomes worse asL increases, so the difference

betweenf̂(ν̂(n)) andf(ν) (the bias) will increase withL.

2. The variance of our estimate, Varf̂(ν̂(n)) decreases withL.
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Other smoothed spectral estimators

Instead of computing an unweighted average of the periodogram at all

nearby frequencies, it is common to consider other weightedaverages,

typically with a smoother weighting function.

Consider the weighted average

f̂(ν) =
∑

|j|≤Ln

Wn(j)I(ν̂(n) − j/n),

where the bandwidthLn is allowed to vary withn, andWn is called the

spectral window function.
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Other smoothed spectral estimators

For example, if

Wn(j) =







1
L if |j| < L/2,

0 otherwise,

then we have the smoothed spectral estimator we consider earlier,

f̂(ν) =
∑

j

Wn(j)I(ν̂(n) − j/n)

=
1

L

∑

|j|<L/2

I(ν̂(n) − j/n).

This isDaniell’s estimator (P. J. Daniell, University of Sheffield, 1946).
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Consistency of nonparametric spectral estimation

SupposeLn andWn satisfy

Ln → ∞,
Ln

n
→ 0,

Wn(j) ≥ 0, Wn(j) = Wn(−j),
∑

|j|≤Ln

Wn(j) = 1,

∑

|j|≤Ln

W 2
n(j) → 0

asn → ∞, then. . .
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Consistency of nonparametric spectral estimation

. . . for a large class of stationary processes,f̂(ν) → f(ν) in the mean

square sense. In particular,Ef̂(ν) → f(ν) and





∑

|j|≤Ln

W 2
n(j)





−1

Cov(f̂(ν1), f̂(ν2)) →







f2(ν1) if ν1 = ν2 ∈ (0, 1/2)

0 if ν1 6= ν2.

The conditions on the bandwidth parameterLn ensure that, as the sample

size grows, the window width goes to zero, but includes an infinite number

of terms. The conditions on the spectral window functionWn ensure that

the expectation of̂f(ν) converges tof(ν) and its variance converges to

zero.
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Consistency of nonparametric spectral estimation

E

(

f̂(ν)
)

=
∑

|j|≤Ln

Wn(j)E
(

I(ν̂(n) − j/n)
)

≈
∑

|j|≤Ln

Wn(j)f(ν) = f(ν).

Var
(

f̂(ν)
)

=
∑

j,k

Wn(j)Wn(k)Cov
(

I(ν̂(n) − j/n), I(ν̂(n) − k/n)
)

≈
∑

j

W 2
n(j)Var

(

I(ν̂(n) − j/n)
)

≈ f2(ν)
∑

j

W 2
n(j) → 0.
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Nonparametric spectral estimation: asymptotics

Recall that for Daniell’s estimator we have

f̂(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

(

X2
c (νk − l/n) + X2

s (νk − l/n)
)

,

which is (asymptotically) a sum of2L independentχ2
1 random variables, so

f̂(νk) ∼ f(νk)
χ2

2L

2L
.

But for a non-uniform weighting, we form a weighted sum of theseχ2
1

random variables, so we cannot count up the degrees of freedom in the same

way. But we can still approximate a general smoothed spectrum by

f̂(νk) ∼ ckχ2
d for someck andd.
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Nonparametric spectral estimation: asymptotics

Suppose that̂f(νk) ∼ ckχ2
d. What values shouldck andd take? We have,

for a suitable spectral windowWn,

f(νk) ≈ Ef̂(νk) = ckd,

f2(νk)
∑

|j|≤Ln

W 2
n(j) ≈ Varf̂(νk) = 2c2

kd.

Thus, we get

ck =
f(νk)

d
,

2ck = f(νk)
∑

|j|≤Ln

W 2
n(j),

d =
2

∑

|j|≤Ln

W 2
n(j)

.
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Nonparametric spectral estimation: asymptotics

ck =
f(νk)

d
,

d =
2

∑

|j|≤Ln

W 2
n(j)

.

Thisd is often referred to as theequivalent degrees of freedom for a

smoothed spectrum. Under suitable conditions (and for a slightly different

definition ofd), it can be shown that, asymptotically,

f̂(ν(n)) ∼ f(ν)
χ2

d

d
.
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Nonparametric spectral estimation: the lag window

We can also view smoothing the spectrum in the frequency domain as

smoothing in the time domain, via

f̂(ν) =
∑

|j|≤Ln

wn(j)γ̂(j)e−2πiνj,

wherewn is the inverse Fourier transform of the spectral window. This is

known as thelag window.

Tapering techniques are also popular: Defineyt = htxt for some weighting

functionht. Then the tapered estimator is the smoothed spectral estimator

for the tapered seriesyt. For a weighting functionht that smoothly

diminishes values near the ends of the time series, we see less leakage.
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