
Introduction to Time Series Analysis. Lecture 21.

1. Review: The periodogram and its asymptotics.

2. Nonparametric spectral estimation.
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Review: Periodogram

The periodogram is defined as
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Xc(ν) =
1√
n

n
∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n
∑

t=1

sin(2πtνj)xt.

The same as computingf(ν) from the sample autocovariance (forx̄ = 0).
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Review: Asymptotic properties of the periodogram

Under general conditions (e.g., normal{Xt}, or linear process{Xt} with

rapidly decaying ACF), theXc(νj), Xs(νj) are all asymptotically

independent andN(0, f(νj)/2).

Under the same conditions,f(ν̂(n)) → f(ν), whereν̂(n) is the closest

Fourier frequency to the frequencyν.

In that case, we have

2

f(ν)
I(ν̂(n)) =

2

f(ν)

(

X2
c (ν̂(n)) + X2

s (ν̂(n))
)

d→ χ2
2.
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Asymptotic properties of the periodogram

Thus,

EI(ν̂(n)) → f(ν)

2
E(Z2

1 + Z2
2 ) = f(ν),

whereZ1, Z2 are independentN(0, 1), so the periodogram is

asymptotically unbiased.

But Var(I(ν̂(n))) → f(ν)2Var(Z2
1 + Z2

2 )/4, whereZ1, Z2 are

i.i.d. N(0, 1), that is, the variance approaches a constant, so the

periodogram is not a consistent estimator off(ν).
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Asymptotic properties of the periodogram: Consistency

This means that the approximate confidence intervals we obtain are

typically wide.

The source of the difficulty is that, asn increases, we have additional data

(then values ofxt), but we use it to estimate additional independent

random variables, (then independent values ofXc(νj), Xs(νj)).

How can we reduce the variance? The typical approach is to average

independent observations. In this case, we can take an average of “nearby”

values of the periodogram, and hope that the spectral density at the

frequency of interest and at those nearby frequencies will be close.
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Nonparametric spectral estimation

Define a band of frequencies
[

νk − L

2n
, νk +

L

2n

]

of bandwidthL/n. Suppose thatf(ν) is approximately constant in this
frequency band.

Consider the followingsmoothed spectral estimator. (assumeL is odd)

f̂(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

I(νk − l/n)

=
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X2
c (νk − l/n) + X2
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)

.
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Nonparametric spectral estimation

For a suitable time series (e.g., Gaussian, or a linear process with

sufficiently rapidly decreasing autocovariance), we know that, for largen,

all of theXc(νk − l/n) andXs(νk − l/n) are approximately independent

and normal, with mean zero and variancef(νk − l/n)/2. From the

assumption thatf(ν) is approximately constant across all of these

frequencies, we have that, asymptotically,

f̂(νk) ∼ f(νk)
χ2

2L

2L
.
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Nonparametric spectral estimation

Thus,

Ef̂(ν̂(n)) ≈ f(ν)

2L
E

(

2L
∑

i=1

Z2
i

)

= f(ν),

Varf̂(ν̂(n)) ≈ f2(ν)

4L2
Var

(

2L
∑

i=1

Z2
i

)

=
f2(ν)

2L
Var(Z2

1 ),

where theZi are i.i.d.N(0, 1).
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Nonparametric spectral estimation: confidence intervals

From the asymptotic distribution, we can define approximateconfidence

intervals as before:

Pr

{

2Lf̂(ν̂(n))

χ2
2L(α/2)

≤ f(ν) ≤ 2Lf̂(ν̂(n))

χ2
2L(1 − α/2)

}

≈ 1 − α.

For largeL, these will be considerably tighter than for the unsmoothed

periodogram. (But we need to be suref does not vary much over the

bandwidthL/n.)
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Nonparametric spectral estimation

Notice thebias-variance trade off:

For bandwidthB = L/n, we have Var̂f(νk) ≈ c/(Bn) for some constantc.

So we want a bigger bandwidthB to ensure low variance (bandwidth

stability).

But the larger the bandwidth, the more questionable the assumption that

f(ν) is approximately constant in the band[ν − B/2, ν + B/2]. For a

larger value ofB, our estimatêf(ν) will be a smoother function ofν. We

have thus introduced morebias (lower resolution).
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Nonparametric spectral estimation: confidence intervals

Since the asymptotic mean and variance off̂(ν̂(n)) are proportional tof(ν)

andf2(ν), it is natural to consider thelogarithm of the estimator. Then we
can define approximate confidence intervals as before:

Pr

{

2Lf̂(ν̂(n))

χ2
2L(α/2)

≤ f(ν) ≤ 2Lf̂(ν̂(n))

χ2
2L(1 − α/2)

}

≈ 1 − α,

Pr

{

log
(

f̂(ν̂(n))
)

+ log

(

2L

χ2
2L(α/2)

)

≤ log(f(ν)) ≤ log
(

f̂(ν̂(n))
)

+ log

(

2L

χ2
2L(1 − α/2)

)}

≈ 1 − α.

The width of the confidence intervals forf(ν) varies with frequency,
whereas the width of the confidence intervals forlog(f(ν)) is the same for
all frequencies.
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Other smoothed spectral estimators

Instead of computing an unweighted average of the periodogram at all

nearby frequencies, it is common to consider other weightedaverages,

typically with a smoother weighting function.

Consider the weighted average

f̂(ν) =
∑

|j|≤Ln

Wn(j)I(ν̂(n) − j/n),

where the bandwidthLn is allowed to vary withn, andWn is called the

spectral window function.
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