Introduction to Time Series Analysis. Lecture 21.

1. Review: The periodogram and its asymptotics.

2. Nonparametric spectral estimation.




Review: Periodogram.

The periodogram is defined as

t=1

= Xc(v) + XZ(v).

cos(2mtv)xy,

sin(2mtv;)x,.

The same as computinff~) from the sample autocovariance (foe= 0).




Review: Asymptotic properties of the periodogram.

Under general conditions (e.g., norr{&{; }, or linear proces$.X:} with
rapidly decaying ACF), th&X .(v;), X;(v,) are all asymptotically
independent and/ (0, f(v;)/2).

Under the same conditiong(2(™) — f(v), wheres(™) is the closest
Fourier frequency to the frequeney

In that case, we have
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Asymptotic properties of the periodogram'

Bi() — 1Bz 4 23) = s00),

whereZ,, Z, are independenv (0, 1), so the periodogram is
asymptotically unbiased.

But Var(Z(»™)) — f(v)?Var(Z? + Z2)/4, whereZ,, Z, are
.i.d. N(0,1), that is, the variance approaches a constant, so the
periodogram is not a consistent estimatoy ¢f).




‘Asymptotic properties of the periodogram: Consistencz'

This means that the approximate confidence intervals weroata
typically wide.

The source of the difficulty is that, asincreases, we have additional data

(then values ofx;), but we use it to estimate additional independent
random variables, (the independent values of.(v;), Xs(v;)).

How can we reduce the variance? The typical approach is ragee
Independent observations. In this case, we can take angavefdnearby”
values of the periodogram, and hope that the spectral geatsite
frequency of interest and at those nearby frequencies witlbse.




‘ Nonparametric spectral estimation.

Define a band of frequencies

L +L
U — — U+ —
o R T o

of bandwidthZ /n. Suppose thaf () is approximately constant in this
frequency band.

Consider the followingmoothed spectral estimator. (assumel is odd)

) 1 (L—1)/2

fve) =7 > I(wk—1/n)

l=—(L—1)/2
(L—1)/2

> (X2 —1/n) + XZ(vk —1/n)).

I=—(L—1)/2




‘ Nonparametric spectral estimation'

For a suitable time series (e.g., Gaussian, or a linear psogéh
sufficiently rapidly decreasing autocovariance), we knloat, tfor largen,

all of the X (v — I/n) and X4 (v, — [/n) are approximately independent
and normal, with mean zero and varian@e, — [/n)/2. From the
assumption thaf (v) is approximately constant across all of these
frequencies, we have that, asymptotically,

N 2
fvg) ~ f(%)%-




‘ Nonparametric spectral estimation.

Bi(o™) (Z Z2> _

Varf (™) ~ fQ(V)Var (Z Zf) = fQ(V)Var(Z%),

4172 2L
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where theZ; are i.i.d.N (0, 1).




Nonparametric spectral estimation: confidence intervalj

From the asymptotic distribution, we can define approxincatdidence
Intervals as before:

Pr { 2L7 (") < f(v) < 2Lf () ) } ~1-—a.

X5 (/2) " Xop(1—a/2

For largeL, these will be considerably tighter than for the unsmoothed
periodogram. (But we need to be syreloes not vary much over the
bandwidthL /n.)




‘ Nonparametric spectral estimation.

Notice thebias-variance trade off:
For bandwidthB = L/n, we have Vaf (v;,) ~ ¢/(Bn) for some constant
So we want a bigger bandwidi to ensure low variancééndwidth

stability).

But the larger the bandwidth, the more questionable thengsison that
f(v) is approximately constant in the baphd— B/2, v + B/2|. For a
larger value ofB, our estimatef (1) will be a smoother function af. We
have thus introduced molxas (lower resolution).
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Nonparametric spectral estimation: confidence intervalj

Since the asymptotic mean and variance @f(")) are proportional tgf (v/)
and f*(v), it is natural to consider th@garithm of the estimator. Then we
can define approximate confidence intervals as before:

o { oL (™) < 1) < oL f((™) } N

X51(a/2) ~ x5 (1—a/2)

oo ) v )

<log(f(v)) <log (f(p(N))) + log (X%L(ff a/2)> } ~1—a.

The width of the confidence intervals f¢(») varies with frequency,

whereas the width of the confidence intervalsltgy( f(v)) is the same for
all frequencies.
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Other smoothed spectral estimatorj

Instead of computing an unweighted average of the peri@hogt all
nearby frequencies, it is common to consider other weigatedages,
typically with a smoother weighting function.

Consider the weighted average
fw)y= 3" Wa(HIE™ —j/n),
71<Ln

where the bandwidtlh,, is allowed to vary withn, andV,, is called the
spectral window function.
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