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Review: Integrated ARMA Models: ARIMA(p,d,q)

Forp, d, q ≥ 0, we say that a time series{Xt} is an

ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is

ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.
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Building ARIMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Nonlinearly transform data, if necessary

3. Identify preliminary values ofd, p, andq.

4. Estimate parameters.

5. Use diagnostics to confirm residuals are white/iid/normal.

6. Model selection.
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Identifying preliminary values of d: Sample ACF

Trends lead to slowly decaying sample ACF:
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Identifying preliminary values of d, p, and q

For identifying preliminary values ofd, a time plot can also help.

Too little differencing: not stationary.

Too much differencing: extra dependence introduced.

For identifyingp, q, look at sample ACF, PACF of(1 − B)dXt:

Model: ACF: PACF:

AR(p) decays zero forh > p

MA(q) zero forh > q decays

ARMA(p,q) decays decays
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Pure seasonal ARMA Models

For P, Q ≥ 0 ands > 0, we say that a time series{Xt} is an

ARMA(P,Q)s process if Φ(Bs)Xt = Θ(Bs)Wt, where

Φ(Bs) = 1 −

P∑

j=1

ΦjB
js,

Θ(Bs) = 1 +

Q∑

j=1

ΘjB
js.

It is causal iff the roots ofΦ(zs) are outside the unit circle.

It is invertible iff the roots ofΘ(zs) are outside the unit circle.
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Pure seasonal ARMA Models

Example:P = 0, Q = 1, s = 12. Xt = Wt + Θ1Wt−12.

γ(0) = (1 + Θ2
1)σ

2
w,

γ(12) = Θ1σ
2
w,

γ(h) = 0 for h = 1, 2, . . . , 11, 13, 14, . . ..

Example:P = 1, Q = 0, s = 12. Xt = Φ1Xt−12 + Wt.

γ(0) =
σ2

w

1 − Φ2
1

,

γ(12i) =
σ2

wΦi
1

1 − Φ2
1

,

γ(h) = 0 for otherh.
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Pure seasonal ARMA Models

The ACF and PACF for a seasonal ARMA(P,Q)s are zero forh 6= si. For

h = si, they are analogous to the patterns for ARMA(p,q):

Model: ACF: PACF:

AR(P)s decays zero fori > P

MA(Q)s zero fori > Q decays

ARMA(P,Q)s decays decays
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Multiplicative seasonal ARMA Models

Forp, q, P, Q ≥ 0 ands > 0, we say that a time series{Xt} is a

multiplicative seasonal ARMA model (ARMA(p,q)×(P,Q)s)

if Φ(Bs)φ(B)Xt = Θ(Bs)θ(B)Wt.

If, in addition,d, D > 0, we define themultiplicative seasonal
ARIMA model (ARIMA(p,d,q)×(P,D,Q)s)

Φ(Bs)φ(B)∇D
s ∇dXt = Θ(Bs)θ(B)Wt,

where theseasonal difference operator of order D is defined by

∇D
s Xt = (1 − Bs)DXt.
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Multiplicative seasonal ARMA Models

Notice that these can all be represented by polynomials

Φ(Bs)φ(B)∇D
s ∇d = Ξ(B), Θ(Bs)θ(B) = Λ(B).

But the difference operators imply thatΞ(B)Xt = Λ(B)Wt does not define

a stationary ARMA process (the AR polynomial has roots on theunit

circle). And representingΦ(Bs)φ(B) andΘ(Bs)θ(B) as arbitrary

polynomials is not as compact.

How do we choosep, q, P, Q, d, D?

First difference sufficiently to get to stationarity. Then find suitable orders

for ARMA or seasonal ARMA models for the differenced time series. The

ACF and PACF is again a useful tool here.
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Spectral Analysis

Idea: decompose a stationary time series{Xt} into a combination of

sinusoids, with random (and uncorrelated) coefficients.

Just as in Fourier analysis, where we decompose (deterministic) functions

into combinations of sinusoids.

This is referred to as ‘spectral analysis’ or analysis in the‘frequency

domain,’ in contrast to the time domain approach we have considered so far.

The frequency domain approach considers regression on sinusoids; the time

domain approach considers regression on past values of the time series.
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A periodic time series

ConsiderXt = A sin(2πνt) + B cos(2πνt), whereA, B are uncorrelated,

mean zero, varianceσ2 = 1.

Writing C2 = A2 + B2 andtanφ = B/A, we can think of this as

Xt = C cosφ sin(2πνt) + C sinφ cos(2πνt)

= C sin(2πνt + φ).

That is,A2 + B2 determines the amplitude, andB/A determines the phase

of Xt.
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A periodic time series

ForXt = A sin(2πνt) + B cos(2πνt), we have

µt = E[Xt] = 0

γ(t, t + h) = Cov(Xt, Xt+h)

= sin(2πνt) sin(2πν(t + h)) + cos(2πνt) cos(2πν(t + h))

= cos(2πνt − 2πν(t + h))

= cos(2πνh).

So{Xt} is a stationary time series. (But notice that it does not satisfy∑
h |γ(h)| < ∞.)
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An aside: Some trigonometric identities

tan θ =
sin θ

cos θ
,

sin2 θ + cos2 θ = 1,

sin(a + b) = sin a cos b + cos a sin b,

cos(a + b) = cos a cos b − sin a sin b.
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A periodic time series

The random sinusoidXt = A sin(2πνt) + B cos(2πνt), with uncorrelated
A, B, has sinusoidal autocovariance,γ(h) = cos(2πνh).

The autocovariance of the sum of two uncorrelated time series is the sum of
their autocovariances. Thus, the autocovariance of a sum ofrandom
sinusoids is a sum of sinusoids with the corresponding frequencies:

Xt =
k∑

j=1

(Aj sin(2πνjt) + Bj cos(2πνjt)) ,

γ(h) =
k∑

j=1

σ2
j cos(2πνjh),

whereAj , Bj are all uncorrelated, mean zero, and
Var(Aj) = Var(Bj) = σ2

j .

16



A periodic time series

Xt =

k∑

j=1

(Aj sin(2πνjt) + Bj cos(2πνjt)) , γ(h) =

k∑

j=1

σ2
j cos(2πνjh).

Thus, we can representγ(h) using a Fourier series. The coefficients are the

variances of the sinusoidal components.

Thespectral density is the continuous analog: the Fourier transform ofγ.

(The analogousspectral representation of a stationary processXt involves

a stochastic integral—a sum of discrete components at a finite number of

frequencies is a special case. We won’t consider this representation in this

course.)
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Spectral density

If a time series{Xt} has autocovarianceγ satisfying

∞∑

h=−∞

|γ(h)| < ∞,

then we define itsspectral density as

f(ν) =
∞∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν < ∞.
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