Introduction to Time Series Analysis. Lecture 16.

- 1. Review: ARIMA
- 2. Seasonal ARMA
- 3. Seasonal ARIMA models
- 4. Spectral Analysis

Review: Integrated ARMA Models: ARIMA(p,d,q)

For $p, d, q \ge 0$, we say that a time series $\{X_t\}$ is an **ARIMA (p,d,q) process** if $Y_t = \nabla^d X_t = (1 - B)^d X_t$ is ARMA(p,q). We can write

 $\phi(B)(1-B)^d X_t = \theta(B)W_t.$

Building ARIMA models

- Plot the time series.
 Look for trends, seasonal components, step changes, outliers.
- 2. Nonlinearly transform data, if necessary
- 3. Identify preliminary values of d, p, and q.
- 4. Estimate parameters.
- 5. Use diagnostics to confirm residuals are white/iid/normal.
- 6. Model selection.

Identifying preliminary values of d**,** p**, and** q

For identifying preliminary values of d, a time plot can also help.

Too little differencing: not stationary.

Too much differencing: extra dependence introduced.

For identifying p, q, look at sample ACF, PACF of $(1 - B)^d X_t$:

PACF:	ACF:	Model:
zero for $h > p$	decays	AR(p)
decays	zero for $h > q$	MA(q)
decays	decays	ARMA(p,q)

Pure seasonal ARMA Models

For $P, Q \ge 0$ and s > 0, we say that a time series $\{X_t\}$ is an **ARMA**(**P**,**Q**)_s **process** if $\Phi(B^s)X_t = \Theta(B^s)W_t$, where

$$\Phi(B^s) = 1 - \sum_{j=1}^{P} \Phi_j B^{js},$$
$$\Theta(B^s) = 1 + \sum_{j=1}^{Q} \Theta_j B^{js}.$$

It is **causal** iff the roots of $\Phi(z^s)$ are outside the unit circle. It is **invertible** iff the roots of $\Theta(z^s)$ are outside the unit circle.

Pure seasonal ARMA Models

Example: P = 0, Q = 1, s = 12. $X_t = W_t + \Theta_1 W_{t-12}$.

$$\gamma(0) = (1 + \Theta_1^2)\sigma_w^2,$$

 $\gamma(12) = \Theta_1 \sigma_w^2,$
 $\gamma(h) = 0$ for $h = 1, 2, ..., 11, 13, 14, ...$

Example: P = 1, Q = 0, s = 12. $X_t = \Phi_1 X_{t-12} + W_t$.

$$\begin{split} \gamma(0) &= \frac{\sigma_w^2}{1 - \Phi_1^2}, \\ \gamma(12i) &= \frac{\sigma_w^2 \Phi_1^i}{1 - \Phi_1^2}, \\ \gamma(h) &= 0 \quad \text{for other } h. \end{split}$$

Pure seasonal ARMA Models

The ACF and PACF for a seasonal ARMA(P,Q)_s are zero for $h \neq si$. For h = si, they are analogous to the patterns for ARMA(p,q):

PACF:	ACF:	Model:
zero for $i > P$	decays	$AR(P)_s$
decays	zero for $i > Q$	$MA(Q)_s$
decays	decays	$ARMA(P,Q)_s$

Multiplicative seasonal ARMA Models

For $p, q, P, Q \ge 0$ and s > 0, we say that a time series $\{X_t\}$ is a **multiplicative seasonal ARMA model** (ARMA(p,q)×(P,Q)_s) if $\Phi(B^s)\phi(B)X_t = \Theta(B^s)\theta(B)W_t$.

If, in addition, d, D > 0, we define the **multiplicative seasonal ARIMA model** (ARIMA(p,d,q)×(P,D,Q)_s)

$$\Phi(B^s)\phi(B)\nabla^D_s\nabla^d X_t = \Theta(B^s)\theta(B)W_t,$$

where the *seasonal difference operator of order* D is defined by

$$\nabla_s^D X_t = (1 - B^s)^D X_t.$$

Multiplicative seasonal ARMA Models

Notice that these can all be represented by polynomials

$$\Phi(B^s)\phi(B)\nabla^D_s\nabla^d = \Xi(B), \qquad \Theta(B^s)\theta(B) = \Lambda(B).$$

But the difference operators imply that $\Xi(B)X_t = \Lambda(B)W_t$ does not define a stationary ARMA process (the AR polynomial has roots on the unit circle). And representing $\Phi(B^s)\phi(B)$ and $\Theta(B^s)\theta(B)$ as arbitrary polynomials is not as compact.

How do we choose p, q, P, Q, d, D?

First difference sufficiently to get to stationarity. Then find suitable orders for ARMA or seasonal ARMA models for the differenced time series. The ACF and PACF is again a useful tool here.

Introduction to Time Series Analysis. Lecture 16.

- 1. Review: ARIMA
- 2. Seasonal ARMA
- 3. Seasonal ARIMA models
- 4. Spectral Analysis

Spectral Analysis

Idea: decompose a stationary time series $\{X_t\}$ into a combination of sinusoids, with random (and uncorrelated) coefficients.

Just as in Fourier analysis, where we decompose (deterministic) functions into combinations of sinusoids.

This is referred to as 'spectral analysis' or analysis in the 'frequency domain,' in contrast to the time domain approach we have considered so far.

The frequency domain approach considers regression on sinusoids; the time domain approach considers regression on past values of the time series.

Consider $X_t = A \sin(2\pi\nu t) + B \cos(2\pi\nu t)$, where A, B are uncorrelated, mean zero, variance $\sigma^2 = 1$.

Writing $C^2 = A^2 + B^2$ and $\tan \phi = B/A$, we can think of this as

$$X_t = C \cos \phi \sin(2\pi\nu t) + C \sin \phi \cos(2\pi\nu t)$$
$$= C \sin(2\pi\nu t + \phi).$$

That is, $A^2 + B^2$ determines the amplitude, and B/A determines the phase of X_t .

For $X_t = A \sin(2\pi\nu t) + B \cos(2\pi\nu t)$, we have $\mu_t = \mathbb{E}[X_t] = 0$ $\gamma(t, t+h) = \operatorname{Cov}(X_t, X_{t+h})$ $= \sin(2\pi\nu t) \sin(2\pi\nu (t+h)) + \cos(2\pi\nu t) \cos(2\pi\nu (t+h))$ $= \cos(2\pi\nu t - 2\pi\nu (t+h))$ $= \cos(2\pi\nu h).$

So $\{X_t\}$ is a stationary time series. (But notice that it does not satisfy $\sum_h |\gamma(h)| < \infty$.)

An aside: Some trigonometric identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta},$$
$$\sin^2 \theta + \cos^2 \theta = 1,$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b,$$
$$\cos(a+b) = \cos a \cos b - \sin a \sin b.$$

The random sinusoid $X_t = A \sin(2\pi\nu t) + B \cos(2\pi\nu t)$, with uncorrelated A, B, has sinusoidal autocovariance, $\gamma(h) = \cos(2\pi\nu h)$.

The autocovariance of the sum of two uncorrelated time series is the sum of their autocovariances. Thus, the autocovariance of a sum of random sinusoids is a sum of sinusoids with the corresponding frequencies:

$$X_t = \sum_{j=1}^k \left(A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t) \right),$$

$$u(h) = \sum_{j=1}^k \sigma_j^2 \cos(2\pi\nu_j h),$$

where A_j, B_j are all uncorrelated, mean zero, and $Var(A_j) = Var(B_j) = \sigma_j^2$.

$$X_t = \sum_{j=1}^k \left(A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t) \right), \quad \gamma(h) = \sum_{j=1}^k \sigma_j^2 \cos(2\pi\nu_j h).$$

Thus, we can represent $\gamma(h)$ using a Fourier series. The coefficients are the variances of the sinusoidal components.

The *spectral density* is the continuous analog: the Fourier transform of γ .

(The analogous *spectral representation* of a stationary process X_t involves a *stochastic integral*—a sum of discrete components at a finite number of frequencies is a special case. We won't consider this representation in this course.)

Spectral density

If a time series $\{X_t\}$ has autocovariance γ satisfying

 $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty,$

then we define its **spectral density** as

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{-2\pi i\nu h}$$

for $-\infty < \nu < \infty$.