Introduction to Time Series Analysis. Lecture 15.

Last lecture: Maximum likelihood estimation

- 1. Diagnostics
- 2. Model selection
- 3. Integrated ARMA models

Building ARMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

- 2. Nonlinearly transform data, if necessary
- 3. Identify preliminary values of p, and q.
- 4. Estimate parameters.
- 5. Use diagnostics to confirm residuals are white/iid/normal.
- 6. Model selection: Choose p and q.

Diagnostics

How do we check that a model fits well?

The residuals (innovations, $x_t - x_t^{t-1}$) should be white. Consider the *standardized innovations*,

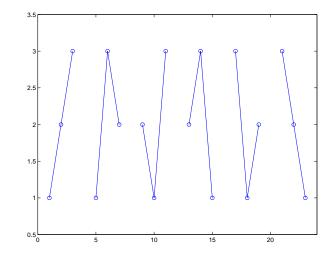
$$e_t = \frac{x_t - \hat{x}_t^{t-1}}{\sqrt{\hat{P}_t^{t-1}}}.$$

This should behave like a mean-zero, unit variance, iid sequence.

- Check a time plot
- Turning point test
- Difference sign test
- Rank test
- Q-Q plot, histogram, to assess normality

Testing i.i.d.: Turning point test

 $\{X_t\}$ i.i.d. implies that X_t , X_{t+1} and X_{t+2} are equally likely to occur in any of six possible orders:



(provided X_t, X_{t+1}, X_{t+2} are distinct).

Four of the six are **turning points**.

Testing i.i.d.: Turning point test

Define $T = |\{t : X_t, X_{t+1}, X_{t+2} \text{ is a turning point}\}|.$

 $\mathbf{E}T = (n-2)2/3.$

Can show $T \sim AN(2n/3, 8n/45)$.

Reject (at 5% level) the hypothesis that the series is i.i.d. if

$$\left|T - \frac{2n}{3}\right| > 1.96\sqrt{\frac{8n}{45}}$$

Tests for positive/negative correlations at lag 1.

Testing i.i.d.: Difference-sign test

$$S = |\{i : X_i > X_{i-1}\}| = |\{i : (\nabla X)_i > 0\}|.$$
$$ES = \frac{n-1}{2}.$$

Can show $S \sim AN(n/2, n/12)$.

Reject (at 5% level) the hypothesis that the series is i.i.d. if

$$\left|S - \frac{n}{2}\right| > 1.96\sqrt{\frac{n}{12}}$$

Tests for trend.

(But a periodic sequence can pass this test...)

Testing i.i.d.: Rank test

$$N = |\{(i, j) : X_i > X_j \text{ and } i > j\}|.$$

 $EN = \frac{n(n-1)}{4}.$

Can show $N \sim AN(n^2/4, n^3/36)$.

Reject (at 5% level) the hypothesis that the series is i.i.d. if

$$\left| N - \frac{n^2}{4} \right| > 1.96\sqrt{\frac{n^3}{36}}.$$

Tests for linear trend.

Testing if an i.i.d. sequence is Gaussian: qq plot

Plot the pairs $(m_1, X_{(1)}), \ldots, (m_n, X_{(n)})$, where $m_j = \mathbb{E}Z_{(j)}$, $Z_{(1)} < \cdots < Z_{(n)}$ are order statistics from N(0, 1) sample of size n, and $X_{(1)} < \cdots < X_{(n)}$ are order statistics of the series X_1, \ldots, X_n . *Idea:* If $X_i \sim N(\mu, \sigma^2)$, then

$$\mathbf{E}X_{(j)} = \mu + \sigma m_j,$$

so $(m_j, X_{(j)})$ should be *linear*.

There are tests based on how far correlation of $(m_j, X_{(j)})$ is from 1.

Introduction to Time Series Analysis. Lecture 15.

- 1. Diagnostics
- 2. Model selection
- 3. Integrated ARMA models

Model Selection

We have used the data x to estimate parameters of several models. They all fit well (the innovations are white). We need to choose a single model to retain for forecasting. How do we do it?

If we had access to independent data y from the same process, we could compare the likelihood on the new data, $L_y(\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2)$.

We could obtain *y* by leaving out some of the data from our model-building, and reserving it for model selection. This is called *cross-validation*. It suffers from the drawback that we are not using all of the data for parameter estimation.

Model Selection: AIC

We can approximate the likelihood defined using independent data: asymptotically

$$-\ln L_y(\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2) \approx -\ln L_x(\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2) + \frac{(p+q+1)n}{n-p-q-2}$$

AIC_c: corrected Akaike information criterion.

Notice that:

• More parameters incur a bigger penalty.

• Minimizing the criterion over all values of $p, q, \hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2$ corresponds to choosing the optimal $\hat{\phi}, \hat{\theta}, \hat{\sigma}_w^2$ for each p, q, and then comparing the penalized likelihoods.

There are also other criteria: BIC.

Introduction to Time Series Analysis. Lecture 15.

- 1. Diagnostics
- 2. Model selection
- 3. Integrated ARMA models

Integrated ARMA Models: ARIMA(p,d,q)

For $p, d, q \ge 0$, we say that a time series $\{X_t\}$ is an **ARIMA (p,d,q) process** if $Y_t = \nabla^d X_t = (1 - B)^d X_t$ is ARMA(p,q). We can write

$$\phi(B)(1-B)^d X_t = \theta(B) W_t.$$

Recall the random walk: $X_t = X_{t-1} + W_t$.

 X_t is not stationary, but $Y_t = (1 - B)X_t = W_t$ is a stationary process. In this case, it is white, so $\{X_t\}$ is an ARIMA(0,1,0).

Also, if X_t contains a trend component plus a stationary process, its first difference is stationary.

ARIMA models example

Suppose $\{X_t\}$ is an ARIMA(0,1,1): $X_t = X_{t-1} + W_t - \theta_1 W_{t-1}$. If $|\theta_1| < 1$, we can show

$$X_{t} = \sum_{j=1}^{\infty} (1 - \theta_{1}) \theta_{1}^{j-1} X_{t-j} + W_{t},$$

and so $\tilde{X}_{n+1} = \sum_{j=1}^{\infty} (1 - \theta_{1}) \theta_{1}^{j-1} X_{n+1-j}$
$$= (1 - \theta_{1}) X_{n} + \sum_{j=2}^{\infty} (1 - \theta_{1}) \theta_{1}^{j-1} X_{n+1-j}$$
$$= (1 - \theta_{1}) X_{n} + \theta_{1} \tilde{X}_{n}.$$

Exponentially weighted moving average.