
Introduction to Time Series Analysis. Lecture 15.

Last lecture: Maximum likelihood estimation

1. Diagnostics

2. Model selection

3. Integrated ARMA models
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Building ARMA models

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Nonlinearly transform data, if necessary

3. Identify preliminary values ofp, andq.

4. Estimate parameters.

5. Usediagnosticsto confirm residuals are white/iid/normal.

6. Model selection: Choosep andq.
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Diagnostics

How do we check that a model fits well?

The residuals (innovations,xt − xt−1
t ) should be white.

Consider thestandardized innovations,

et =
xt − x̂t−1

t
√

P̂ t−1
t

.

This should behave like a mean-zero, unit variance, iid sequence.

• Check a time plot
• Turning point test
• Difference sign test
• Rank test
• Q-Q plot, histogram, to assess normality
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Testing i.i.d.: Turning point test

{Xt} i.i.d. implies thatXt, Xt+1 andXt+2 are equally likely to occur in

any of six possible orders:
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(providedXt, Xt+1, Xt+2 are distinct).

Four of the six areturning points.
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Testing i.i.d.: Turning point test

DefineT = |{t : Xt, Xt+1, Xt+2 is a turning point}|.

ET = (n − 2)2/3.

Can showT ∼ AN(2n/3, 8n/45).

Reject (at 5% level) the hypothesis that the series is i.i.d.if
∣

∣

∣

∣

T −
2n

3

∣

∣

∣

∣

> 1.96

√

8n

45
.

Tests for positive/negative correlations at lag 1.
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Testing i.i.d.: Difference-sign test

S = |{i : Xi > Xi−1}| = |{i : (∇X)i > 0}|.

ES =
n − 1

2
.

Can showS ∼ AN(n/2, n/12).

Reject (at 5% level) the hypothesis that the series is i.i.d.if

∣

∣

∣
S −

n

2

∣

∣

∣
> 1.96

√

n

12
.

Tests for trend.

(But a periodic sequence can pass this test...)
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Testing i.i.d.: Rank test

N = |{(i, j) : Xi > Xj andi > j}|.

EN =
n(n − 1)

4
.

Can showN ∼ AN(n2/4, n3/36).

Reject (at 5% level) the hypothesis that the series is i.i.d.if

∣

∣

∣

∣

N −
n2

4

∣

∣

∣

∣

> 1.96

√

n3

36
.

Tests for linear trend.
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Testing if an i.i.d. sequence is Gaussian: qq plot

Plot the pairs(m1, X(1)), . . . , (mn, X(n)),

wheremj = EZ(j),

Z(1) < · · · < Z(n) are order statistics fromN(0, 1) sample of sizen, and

X(1) < · · · < X(n) are order statistics of the seriesX1, . . . , Xn.

Idea: If Xi ∼ N(µ, σ2), then

EX(j) = µ + σmj ,

so(mj , X(j)) should belinear.

There are tests based on how far correlation of(mj , X(j)) is from1.
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Model Selection

We have used the datax to estimate parameters of several models. They all

fit well (the innovations are white). We need to choose a single model to

retain for forecasting. How do we do it?

If we had access to independent datay from the same process, we could

compare the likelihood on the new data,Ly(φ̂, θ̂, σ̂2
w).

We could obtainy by leaving out some of the data from our model-building,

and reserving it for model selection. This is calledcross-validation. It

suffers from the drawback that we are not using all of the datafor parameter

estimation.
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Model Selection: AIC

We can approximate the likelihood defined using independentdata:

asymptotically

− lnLy(φ̂, θ̂, σ̂2
w) ≈ − lnLx(φ̂, θ̂, σ̂2

w) +
(p + q + 1)n

n − p − q − 2
.

AICc: corrected Akaike information criterion.

Notice that:

• More parameters incur a bigger penalty.

• Minimizing the criterion over all values ofp, q, φ̂, θ̂, σ̂2
w corresponds to

choosing the optimal̂φ, θ̂, σ̂2
w for eachp, q, and then comparing the

penalized likelihoods.

There are also other criteria: BIC.
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Integrated ARMA Models: ARIMA(p,d,q)

Forp, d, q ≥ 0, we say that a time series{Xt} is an

ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is

ARMA(p,q). We can write

φ(B)(1 − B)dXt = θ(B)Wt.

Recall the random walk:Xt = Xt−1 + Wt.

Xt is not stationary, butYt = (1 − B)Xt = Wt is a stationary process.

In this case, it is white, so{Xt} is an ARIMA(0,1,0).

Also, if Xt contains a trend component plus a stationary process, its first

difference is stationary.
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ARIMA models example

Suppose{Xt} is an ARIMA(0,1,1):Xt = Xt−1 + Wt − θ1Wt−1.

If |θ1| < 1, we can show

Xt =
∞
∑

j=1

(1 − θ1)θ
j−1
1 Xt−j + Wt,

and so X̃n+1 =
∞
∑

j=1

(1 − θ1)θ
j−1
1 Xn+1−j

= (1 − θ1)Xn +

∞
∑

j=2

(1 − θ1)θ
j−1
1 Xn+1−j

= (1 − θ1)Xn + θ1X̃n.

Exponentially weighted moving average.
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