Introduction to Time Series Analysis. Lecture 15.

Last lecture: Maximum likelihood estimation
1. Diagnostics
2. Model selection

3. Integrated ARMA models




‘Building ARMA models'

. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

. Nonlinearly transform data, if necessary
. ldentify preliminary values g, andg.

. Estimate parameters.

. Usediagnosticgo confirm residuals are white/iid/normal.

. Model selectionChoosep andg.




Diagnostics'

How do we check that a model fits well?

The residuals (innovations, — z!~') should be white.
Consider thestandardized innovations,
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This should behave like a mean-zero, unit variance, iid secge.
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e Check a time plot

e Turning point test

e Difference sign test

e Rank test

e Q-Q plot, histogram, to assess normality




Testing i.1.d.: Turning point test I

{X;}i.i.d. implies thatX;, X;., and X, are equally likely to occur in
any of six possible orders:

(provided X;, X1, X¢1o are distinct).

Four of the six are@urning points.




Testing i.1.d.: Turning point test I

DefineT = |{t : X;, X¢11, Xty IS @ turning point|.

ET = (n—2)2/3.
Can showl' ~ AN (2n/3,8n/45).
Reject (at 5% level) the hypothesis that the series is ifi.d.
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Tests for positive/negative correlations at lag 1.




Testing 1.1.d.: Difference-sign test I

n—1
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Can showS ~ AN (n/2,n/12).

Reject (at 5% level) the hypothesis that the series is ifi.d.
n n
— = 1. —.
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(But a periodic sequence can pass this test...)

Tests for trend.




‘Testing 1.I.d.: Rank test'

N = |{(i,j) : X; > X, andi > j}|.

n(n—l).
4

EN =

Can showN ~ AN (n?/4,n/36).

Reject (at 5% level) the hypothesis that the series is ifi.d.

n? ns
N — — 1.964/ —.
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Tests for linear trend.




Testing if an 1.1.d. sequenceis Gaussian: qq pIotI

Plot the paiI’le, X(l)), Cee (mn, X(n)),

wherem; = EZ;,

Zy < --- < Zy) are order statistics fronv (0, 1) sample of size:, and
Xy < -+ < Xy, are order statistics of the serids, ..., X,,.

ldea: If X; ~ N(u,o0?), then
EX(y =n+omy,
so(mj, X(;)) should bdinear.

There are tests based on how far correlatio(of, X ;) is from 1.
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M odel Selection I

We have used the daiato estimate parameters of several models. They
fit well (the innovations are white). We need to choose a singbdel to
retain for forecasting. How do we do it?

If we had access to independent dafaom the same process, we could
compare the likelihood on the new dafa,(¢, 8, 52).

We could obtainy by leaving out some of the data from our model-building
and reserving it for model selection. This is caltedss-validation. It

suffers from the drawback that we are not using all of the tatparameter
estimation.
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M odel Selection: AIC'

We can approximate the likelihood defined using independatat
asymptotically

A A A A 1
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AIC.: corrected Akaike information criterion.

Notice that:
e More parameters incur a bigger penalty.
e Minimizing the criterion over all values aof, ¢, ¢, 0, 52, corresponds to

choosing the optimap, 6, 62 for eachp, ¢, and then comparing the
penalized likelinoods.

There are also other criteria: BIC.
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‘ Integrated ARMA Models: ARI MA(p,d,q)I

Forp,d,q > 0, we say that a time serigsX, } is an
ARIMA (p,d,q) processif V; = V4X, = (1 — B)4X, is
ARMA(p,q). We can write

6(B)(1 - B)'X, = 0(B)W,.

Recall the random walkX; = X,;_{ + W,.
X Is not stationary, buy; = (1 — B)X; = W, is a stationary process.
In this case, it is white, s¢.X;} is an ARIMA(O,1,0).

Also, if X; contains a trend component plus a stationary process,gts fir
difference is stationary.
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‘ARIMA modelsexample'

Supposdg X, } isan ARIMA(0,1,1): X; = X; 1 + W, — 0, W,_4.
If |#1| < 1, we can show

Xe= (1=00)0 Xoj + Wi,
j=1
andso X,41=» (1—01)07 ' Xp41-;

j=1

::u.-egx%-FEZ(y—ege?ﬂx;+Lﬁ
j=2

=(1-6))X, + 6, X,.

Exponentially weighted moving average.
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