
Introduction to Time Series Analysis. Lecture 14.

Last lecture: Yule-Walker estimation

1. Maximum likelihood estimation

2. Large-sample distribution of MLE
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Parameter estimation: Maximum likelihood estimator

One approach:

Assume that{Xt} is Gaussian, that is,φ(B)Xt = θ(B)Wt, whereWt is

i.i.d. Gaussian.

Chooseφi, θj to maximize thelikelihood:

L(φ, θ, σ2) = f(X1, . . . , Xn),

wheref is the joint (Gaussian) density for the given ARMA model.

(c.f. choosing the parameters that maximize the probability of the data.)
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Maximum likelihood estimation

Suppose thatX1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parametersφ ∈ R
p, θ ∈ R

q,

σ2
w ∈ R+ is defined as the density ofX = (X1, X2, . . . , Xn)′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where|A| denotes the determinant of a matrixA, andΓn is the

variance/covariance matrix ofX with the given parameter values.

The maximum likelihood estimator (MLE) ofφ, θ, σ2
w maximizes this

quantity.

3



Parameter estimation: Maximum likelihood estimator

Advantages of MLE:

Efficient (low variance estimates).

Often the Gaussian assumption is reasonable.

Even if{Xt} is not Gaussian, the asymptotic distribution of the estimates

(φ̂, θ̂, σ̂2) is the same as the Gaussian case.

Disadvantages of MLE:

Difficult optimization problem.

Need to choose a good starting point (often use other estimators for this).
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Preliminary parameter estimates

Yule-Walker for AR(p) : RegressXt ontoXt−1, . . . , Xt−p.

Durbin-Levinson algorithm withγ replaced bŷγ.

Yule-Walker for ARMA(p,q): Method of moments. Not efficient.

Innovations algorithm for MA(q): with γ replaced bŷγ.

Hannan-Rissanen algorithm for ARMA(p,q):
1. Estimate high-order AR.

2. Use to estimate (unobserved) noiseWt.

3. RegressXt ontoXt−1, . . . , Xt−p, Ŵt−1, . . . , Ŵt−q.

4. Regress again with improved estimates ofWt.
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Recall: Maximum likelihood estimation

Suppose thatX1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parametersφ ∈ R
p, θ ∈ R

q,

σ2
w ∈ R+ is defined as the density ofX = (X1, X2, . . . , Xn)′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|
1/2

exp

(

−
1

2
X ′Γ−1

n X

)

,

where|A| denotes the determinant of a matrixA, andΓn is the

variance/covariance matrix ofX with the given parameter values.

The maximum likelihood estimator (MLE) ofφ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation

We can simplify the likelihood by expressing it in terms of the innovations.

Since the innovations are linear in previous and current values, we can write







X1

...

Xn








︸ ︷︷ ︸

X

= C








X1 − X0
1

...

Xn − Xn−1
n








︸ ︷︷ ︸

U

whereC is a lower triangular matrix with ones on the diagonal.

Take the variance/covariance of both sides to see that

Γn = CDC′ whereD = diag(P 0
1 , . . . , Pn−1

n ).
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Maximum likelihood estimation

Thus,|Γn| = |C|2P 0
1 · · ·P n−1

n = P 0
1 · · ·P n−1

n and

X ′Γ−1
n X = U ′C′Γ−1

n CU = U ′C′C−T D−1C−1CU = U ′D−1U.

So we can rewrite the likelihood as

L(φ, θ, σ2
w) =

1
(
(2π)nP 0

1 · · ·P n−1
n

)1/2
exp

(

−
1

2

n∑

i=1

(Xi − Xi−1

i )2/P i−1

i

)

=
1

(
(2πσ2

w)nr0
1 · · · r

n−1
n

)1/2
exp

(

−
S(φ, θ)

2σ2
w

)

,

whereri−1

i = P i−1

i /σ2
w and

S(φ, θ) =
n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

The log likelihood ofφ, θ, σ2
w is

l(φ, θ, σ2
w) = log(L(φ, θ, σ2

w))

= −
n

2
log(2πσ2

w) −
1

2

n∑

i=1

log ri−1

i −
S(φ, θ)

2σ2
w

.

Differentiating with respect toσ2
w shows that the MLE(φ̂, θ̂, σ̂2

w) satisfies

n

2σ̂2
w

=
S(φ̂, θ̂)

2σ̂4
w

⇔ σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i .
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Summary: Maximum likelihood estimation

The MLE (φ̂, θ̂, σ̂2
w) satisfies

σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i ,

whereri−1

i = P i−1

i /σ2
w and

S(φ, θ) =

n∑

i=1

(
Xi − Xi−1

i

)2

ri−1

i

.
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Maximum likelihood estimation

Minimization is done numerically (e.g., Newton-Raphson).

Computational simplifications:

• Unconditional least squares. Drop thelog ri−1

i terms.

• Conditional least squares. Also approximate the computation ofxi−1

i by

dropping initial terms inS. e.g., for AR(2), all but the first two terms inS

depend linearly onφ1, φ2, so we have a least squares problem.

The differences diminish as sample size increases. For example,

P t−1
t → σ2

w sort−1
t → 1, and thusn−1

∑

i log ri−1

i → 0.
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Maximum likelihood estimation: Confidence intervals

For an ARMA(p,q) process, the MLE and un/conditional least

squares estimators satisfy




φ̂

θ̂



−




φ

θ



 ∼ AN




0,

σ2
w

n




Γφφ Γφθ

Γθφ Γθθ,





−1



 ,

where




Γφφ Γφθ

Γθφ Γθθ,



 = Cov((X, Y ), (X, Y )),

X = (X1, . . . , Xp)
′ φ(B)Xt = Wt,

Y = (Y1, . . . , Yp)
′ θ(B)Yt = Wt.
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Introduction to Time Series Analysis. Lecture 14.

1. Maximum likelihood estimation: Gaussian model.

σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1

i .

2. Large-sample distribution of MLE




φ̂

θ̂



−




φ

θ



 ∼ AN




0,

σ2
w

n




Γφφ Γφθ

Γθφ Γθθ,





−1



 ,
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