Introduction to Time Series Analysis. Review

1. Time series modelling.

2. Time domain.
(a) Concepts of stationarity, ACF.
(b) Linear processes, causality, invertibility.

(c) ARMA models, forecasting, estimation.




ODbjectivesof Time SeriesAnaIysisI

. Compact description of data. Example:

Xe =Ty + S+ f(Yy) + Wh.

. Interpretation. Example: Seasonal adjustment.
. Forecasting. Example: Predict unemploymeift.
. Control. Example: Impact of monetary policy on unempleytn

. Hypothesis testing. Example: Global warming.

. Simulation. Example: Estimate probability of cataskiggevents.



TimeSeriesModeIIingI

1. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

2. Transform data so that residuals ai@&ionary.
(a) Estimate and subtra€¢i, .S;.
(b) Differencing.

(c) Nonlinear transformations (log/-).

3. Fit model to residuals.
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‘ Stationarity'

{X,}isdrictly stationary if, for all k,%4, ..., tx, x1,...,xx, andh,

P(Xy, <z1,..., X, <) = Py, 40 <21, .0, Xopgpn < xp).

l.e., shifting the time axis does not affect the distribatio

We considesecond-order propertiesonly:
{ X} is stationary if its mean function and autocovariance fmcsatisfy

pa () = E[Xy] = p,
Yz (8, 1) = Cov( Xg, X;) = Yo (s — t).

NB: Constant variancey, (t,t) = Var(X;) = ~v.(0).




‘ACF and Sample ACF I

Theautocorrelation function (ACF) is

px(h) = x (1) = Cor( Xyun, Xt).

vx (0)

For observations., ..., z,, of atime series,

. 1 «
the sample mean is ==
n t=1

Thesample autocovariance function is

n—|h|

Z <5Ct—|—|h| —Z)(zy — T),

1
n
t=1

for—n < h <n.

A

Thesample autocorrelation function is p(h) = 4(h)/4(0).




Properties of the autocovariance function I

For the autocovariance functionof a stationary time seriesX; },

1. v(0) > 0,

2. |y(h)| <~(0),
3. v(h) = v(—h),

4. ~ is positive semidefinite.




Linear Processes'

An important class of stationary time series:

where  {W;} ~ WN(0,02)

and  p,; are parameters satisfying

px = p, yx (h) = o, Z;?i—oo Vih+j-
e.g.. ARMA(p,q).




Causality I

A linear procesg X; } is causal (strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -




‘Invertibility'

A linear procesq X;} is invertible (strictly, aninvertible
function of {W,}) if there is a

7T<B):7TO+7TlB+7TQB2+"'
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‘ Polynomials of a complex variable'

Every degre@ polynomiala(z) can be factorized as

a(z) =ap+a1z+ -+ a2 =a,(z—21)(2 —22) - (2 — 2p),

wherezy, ..., z, € C are called the roots af(z). If the coefficients
ap, a1, ..., a, are all real, them is real, and the roots are all either real or
come in complex conjugate pairg, = z;.
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Autoregressive moving average models'

An ARMA(p,q) process { X, } is a stationary process that
satisfies

Xi—1 Xy 41— —0p Xy = Wi+ W1+ - - +0, Wi,

where{W;} ~ WN(0, o?).

Also, ¢,,,0, # 0 and¢(z), 8(z) have no common factors.
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Properties of ARMA(p,q) models'

Theorem: If ¢ andf have no common factors, a (unigLstg-
tionary solution top(B) X, = 6(B)W, exists iff

B(z) =1 —drz— - — P =0 = [2| £ 1.

This ARMA(p,q) process isausal iff

d(z)=1—prz—--—pp2P =0 = |z| > 1.

It is invertible iff

0(2) =14+61z4+ - 4+6,27=0. = |z| > 1.
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Properties of ARMA(p,q) models'

o(B) Xy =0(B)Wy, & Xy =9(B)W;
so  0(B) =v(B)¢(B)
& 14+6:B+ - +0,B1= o+ 1B+ )1—¢1B—- —¢,B")
& 1 = 1o,
01 = 1 — P10,
O = o — G191 — -+ — P21)o,

This is equivalent td; = ¢(B)y;, with6y =1,60; =0forj < 0,5 > g.
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‘Linear prediction'

Given X, Xo, ..., X, the best linear predictor

n—l—m _&0—'_2&@

of X,,.,, satisfies thg@rediction equations

E(Xpym — X"

n—i—m) — O
E|(Xntm — Xpto) Xi| =0 fori=1,...,

That is, theprediction errors (X, ,,, —
prediction variables (1, X1, ..., X,).

X, 1m) areuncorrelated with the
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Projection Theorem'

If H is a Hilbert space,
M is a closed linear subspace’f
andy € H,

then there is a poinPy € M

(the projection of y on M)

satisfying

L [Py — y|| < [lw—yl forw e M,

2. [Py —y| < |lw—y| forw e M,w #y
3.{(y — Py,w) =0 forw e M.

16



‘ One-step-ahead linear prediction I

Xg—l—l — ¢n1Xn + ¢n2Xn—1 + - T ¢nnX1
anbn = Tn,

(n—1) A(n—2)
an — <¢n17 ¢n27 I} qbnn)/:
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Theinnovations representation I

Write the best linear predictor as

Xpior = 01 (Xon = X070) 4002 (X1 — X 20) 4+ 400 (X1 — X7)

innovation

The innovations are uncorrelated:
Cov(X; — X', X; — X[ 7") =0fori # j.
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Yule-Walker estimation'

M ethod of moments. We choose parameters for which the moments are
equal to the empirical moments.

In this case, we chooseso thaty = 4.

Yule-Walker equations fog:

These are the forecasting equations.
Recursive computation: Durbin-Levinson algorithm.
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Maximum likelihood estimation '

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,)’ under the
Gaussian model with those parameters:

1 1
L(¢7 670-%0) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.
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