Introduction to Time Series Analysis: Review

- 1. Time series modelling.
- 2. Time domain.
 - (a) Concepts of stationarity, ACF.
 - (b) Linear processes, causality, invertibility.
 - (c) ARMA models, forecasting, estimation.

Objectives of Time Series Analysis

1. Compact description of data. Example:

$$X_t = T_t + S_t + f(Y_t) + W_t.$$

2. Interpretation.

Example: Seasonal adjustment.

3. Forecasting.

Example: Predict unemployment.

4. Control. Example: Impact of monetary policy on unemployment.

5. Hypothesis testing.

Example: Global warming.

6. Simulation. Example: Estimate probability of catastrophic events.

Time Series Modelling

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

- 2. Transform data so that residuals are **stationary**.
 - (a) Estimate and subtract T_t, S_t .
 - (b) Differencing.
 - (c) Nonlinear transformations (log, $\sqrt{\cdot}$).
- 3. Fit model to residuals.

1. Time series modelling. 2. Time domain. (a) Concepts of stationarity, ACF. (b) Linear processes, causality, invertibility. (c) ARMA models, forecasting, estimation.

Stationarity

 $\{X_t\}$ is **strictly stationary** if, for all $k, t_1, \ldots, t_k, x_1, \ldots, x_k$, and h,

$$P(X_{t_1} \le x_1, \dots, X_{t_k} \le x_k) = P(x_{t_1+h} \le x_1, \dots, X_{t_k+h} \le x_k).$$

i.e., shifting the time axis does not affect the distribution.

We consider second-order properties only:

 $\{X_t\}$ is stationary if its mean function and autocovariance function satisfy

$$\mu_x(t) = E[X_t] = \mu,$$

$$\gamma_x(s,t) = Cov(X_s, X_t) = \gamma_x(s-t).$$

NB: Constant variance: $\gamma_x(t,t) = \text{Var}(X_t) = \gamma_x(0)$.

ACF and Sample ACF

The autocorrelation function (ACF) is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \operatorname{Corr}(X_{t+h}, X_t).$$

For observations x_1, \ldots, x_n of a time series,

the sample mean is
$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$
.

The sample autocovariance function is

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}), \quad \text{for } -n < h < n.$$

The sample autocorrelation function is $\hat{\rho}(h) = \hat{\gamma}(h)/\hat{\gamma}(0)$.

Properties of the autocovariance function

For the autocovariance function γ of a stationary time series $\{X_t\}$,

- 1. $\gamma(0) \ge 0$,
- $2. |\gamma(h)| \le \gamma(0),$
- 3. $\gamma(h) = \gamma(-h)$,
- 4. γ is positive semidefinite.

Linear Processes

An important class of stationary time series:

$$X_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j W_{t-j}$$

where $\{W_t\} \sim WN(0, \sigma_w^2)$

 μ, ψ_j are parameters satisfying and

$$\sum_{j=-\infty}^{\infty} |\psi_j| < \infty.$$

$$\mu_X = \mu, \gamma_X(h) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_j \psi_{h+j}.$$
e.g.: ARMA(p,q).

Causality

A linear process $\{X_t\}$ is **causal** (strictly, a **causal function** of $\{W_t\}$) if there is a

$$\psi(B) = \psi_0 + \psi_1 B + \psi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\psi_j| < \infty$$

and
$$X_t = \psi(B)W_t$$
.

Invertibility

A linear process $\{X_t\}$ is **invertible** (strictly, an **invertible** function of $\{W_t\}$) if there is a

$$\pi(B) = \pi_0 + \pi_1 B + \pi_2 B^2 + \cdots$$

with
$$\sum_{j=0}^{\infty} |\pi_j| < \infty$$

and
$$W_t = \pi(B)X_t$$
.

Polynomials of a complex variable

Every degree p polynomial a(z) can be factorized as

$$a(z) = a_0 + a_1 z + \dots + a_p z^p = a_p (z - z_1)(z - z_2) \dots (z - z_p),$$

where $z_1, \ldots, z_p \in \mathbb{C}$ are called the roots of a(z). If the coefficients a_0, a_1, \ldots, a_p are all real, then c is real, and the roots are all either real or come in complex conjugate pairs, $z_i = \bar{z}_j$.

Autoregressive moving average models

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_{t} - \phi_{1} X_{t-1} - \dots - \phi_{p} X_{t-p} = W_{t} + \theta_{1} W_{t-1} + \dots + \theta_{q} W_{t-q},$$

where $\{W_t\} \sim WN(0, \sigma^2)$.

Also, ϕ_p , $\theta_q \neq 0$ and $\phi(z)$, $\theta(z)$ have no common factors.

Properties of ARMA(p,q) models

Theorem: If ϕ and θ have no common factors, a (unique) stationary solution to $\phi(B)X_t = \theta(B)W_t$ exists iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| \neq 1.$$

This ARMA(p,q) process is causal iff

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p = 0 \implies |z| > 1.$$

It is *invertible* iff

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q = 0. \implies |z| > 1.$$

Properties of ARMA(p,q) models

$$\phi(B)X_t = \theta(B)W_t, \quad \Leftrightarrow \quad X_t = \psi(B)W_t$$
so
$$\theta(B) = \psi(B)\phi(B)$$

$$\Leftrightarrow \quad 1 + \theta_1 B + \dots + \theta_q B^q = (\psi_0 + \psi_1 B + \dots)(1 - \phi_1 B - \dots - \phi_p B^p)$$

$$\Leftrightarrow \quad 1 = \psi_0,$$

$$\theta_1 = \psi_1 - \phi_1 \psi_0,$$

$$\theta_2 = \psi_2 - \phi_1 \psi_1 - \dots - \phi_2 \psi_0,$$

$$\vdots$$

This is equivalent to $\theta_j = \phi(B)\psi_j$, with $\theta_0 = 1$, $\theta_j = 0$ for j < 0, j > q.

Linear prediction

Given X_1, X_2, \dots, X_n , the best linear predictor

$$X_{n+m}^n = \alpha_0 + \sum_{i=1}^n \alpha_i X_i$$

of X_{n+m} satisfies the **prediction equations**

$$E\left(X_{n+m} - X_{n+m}^n\right) = 0$$

$$E\left[\left(X_{n+m} - X_{n+m}^n\right) X_i\right] = 0 \quad \text{for } i = 1, \dots, n.$$

That is, the prediction errors $(X_{n+m}^n - X_{n+m})$ are uncorrelated with the prediction variables $(1, X_1, \dots, X_n)$.

Projection Theorem

If \mathcal{H} is a Hilbert space,

 \mathcal{M} is a closed linear subspace of \mathcal{H} ,

and $y \in \mathcal{H}$,

then there is a point $Py \in \mathcal{M}$

(the **projection of** y **on** \mathcal{M})

satisfying

1.
$$||Py - y|| \le ||w - y||$$
 for $w \in \mathcal{M}$,

2.
$$||Py - y|| < ||w - y||$$
 for $w \in \mathcal{M}, w \neq y$

3.
$$\langle y - Py, w \rangle = 0$$
 for $w \in \mathcal{M}$.

One-step-ahead linear prediction

$$X_{n+1}^{n} = \phi_{n1}X_{n} + \phi_{n2}X_{n-1} + \dots + \phi_{nn}X_{1}$$

$$\Gamma_{n}\phi_{n} = \gamma_{n},$$

$$P_{n+1}^{n} = E\left(X_{n+1} - X_{n+1}^{n}\right)^{2} = \gamma(0) - \gamma'_{n}\Gamma_{n}^{-1}\gamma_{n},$$

$$\Gamma_{n} = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(n-1) \\ \gamma(1) & \gamma(0) & \gamma(n-2) \\ \vdots & \ddots & \vdots \\ \gamma(n-1) & \gamma(n-2) & \cdots & \gamma(0) \end{bmatrix},$$

$$\phi_{n} = (\phi_{n1}, \phi_{n2}, \dots, \phi_{nn})', \quad \gamma_{n} = (\gamma(1), \gamma(2), \dots, \gamma(n))'.$$

The innovations representation

Write the best linear predictor as

$$X_{n+1}^{n} = \theta_{n1} \underbrace{\left(X_{n} - X_{n}^{n-1}\right)}_{\text{innovation}} + \theta_{n2} \left(X_{n-1} - X_{n-1}^{n-2}\right) + \dots + \theta_{nn} \left(X_{1} - X_{1}^{0}\right).$$

The innovations are uncorrelated:

$$Cov(X_j - X_j^{j-1}, X_i - X_i^{i-1}) = 0 \text{ for } i \neq j.$$

Yule-Walker estimation

Method of moments: We choose parameters for which the moments are equal to the empirical moments.

In this case, we choose ϕ so that $\gamma = \hat{\gamma}$.

Yule-Walker equations for
$$\hat{\phi}$$
:
$$\begin{cases} \hat{\Gamma}_p \hat{\phi} = \hat{\gamma}_p, \\ \hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}' \hat{\gamma}_p. \end{cases}$$

These are the forecasting equations.

Recursive computation: Durbin-Levinson algorithm.

Maximum likelihood estimation

Suppose that X_1, X_2, \ldots, X_n is drawn from a zero mean Gaussian ARMA(p,q) process. The likelihood of parameters $\phi \in \mathbb{R}^p$, $\theta \in \mathbb{R}^q$, $\sigma_w^2 \in \mathbb{R}_+$ is defined as the density of $X = (X_1, X_2, \ldots, X_n)'$ under the Gaussian model with those parameters:

$$L(\phi, \theta, \sigma_w^2) = \frac{1}{(2\pi)^{n/2} |\Gamma_n|^{1/2}} \exp\left(-\frac{1}{2}X'\Gamma_n^{-1}X\right),$$

where |A| denotes the determinant of a matrix A, and Γ_n is the variance/covariance matrix of X with the given parameter values.

The maximum likelihood estimator (MLE) of ϕ , θ , σ_w^2 maximizes this quantity.

Introduction to Time Series Analysis: Review

- 1. Time series modelling.
- 2. Time domain.
 - (a) Concepts of stationarity, ACF.
 - (b) Linear processes, causality, invertibility.
 - (c) ARMA models, forecasting, estimation.