Introduction to Time Series Analysis. Lecture 11.
Peter Bartlett

Last lecture: Forecasting.

1. The innovations representation.

2. Recursive method: Innovations algorithm.
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‘ Review: One-step-ahead linear predictio:'

Xg—l—l — ¢n1Xn + ¢n2Xn—1 + - T ¢nnX1
anbn = Tn,

(n—1) A(n—2)
an — <¢n17 ¢n27 I} qbnn)/:




‘ Review: The innovations representatio:'

Write the best linear predictor as

ni1 = On1 (Xn — Xﬁ‘l) +0,2 (Xn—l = Xg:f)Jr' O (X1 — Xf) .

\ - 7
"

innovation

The innovations are uncorrelated:
Cov(X; — X1, X; — X[ 7") =0fori # j.

We’'ll see that this is useful for estimation.
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Example: Innovations algorithm for forecasting an I\/IA(1)I

Suppose that we have an MA(1) procéss } satisfying
Xy =W+ 0 Wiy,

Given X, X, ..., X,,, we wish to compute the best linear forecast of
X 11, Using the innovations representation,

XP=0, XM= Oni(Xpp1—i— X001
1=1




Recall the innovations aIgorithmI

n_Z § ‘97,7, —7 nn ] j_|_1

P’r?—l—lzfy Zennz 1+1-

The algorithm compute®y = (0), 61 1 (in terms ofy(1));
P3, 055 (interms ofy(2)), 62 1; P3, 05 3 (in terms of(3)), etc.




Example: Innovations algorithm for forecasting an MA(l)I

For an MA(1),7(0) = (1 + 0%), ~(1)

Thus:6, 1 = ~v(1)/P;

020 =0,021 =~(1)/Py;

033 =032 =0;031 =~(1)/P§, etc.

Becausey(n — ) # 0only fori =n — 1, only6,, ; # 0.




Example: Innovations algorithm for forecasting an MA(l)I

Thus, for the MA(1) proces§X, } satisfying
Xy =Wy +0.Wi_q,

the innovations representation of the best linear forasast

XP=0, X', =0u(X,—X").

More generally, for an MA(q) process, we hayg = 0 for : > gq.




Example: Innovations algorithm for forecasting an I\/IA(1)I

For the MA(1) proces$.X;},
X?=0, X! =0, (X,—X").

This is consistent with the observation that

X1 =Zns1+ Y OniZni1i,

1=1

where the uncorrelated, are defined by; = X; — Xf‘l for
t=1,....,n+ 1.

Indeed, as: increasespP,’ ; — Var(W;) (recall the recursion foF;', ),
andf,,; = y(1)/P* ! — 6.

10



‘ Recall: Forecasting an AR(p)I

For the AR(p) proces§X, } satisfying

b
X = Z OiXe—i + W,
i—1

p
XP=0, XIy=) ¢:iXpi1i
1=1

forn > p. Then

p
Xn+1 = Z GiXnt+1—i + Znt1,
i=1

whereZ, 1 = Xp 1 — X7

The Durbin-Levinson algorithm is convenient for AR(p) pesses.
The innovations algorithm is convenient for MA(Q) processe

11
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An aside: Forecasting an ARI\/IA(p,q)I

There is a related representation for an ARMA(p,q) prodegsed on the
Innovations algorithm. Suppose thaX; } is an ARMA(p,q) process:

p q
X = Z Qi Xi—j + Wi+ ZHth—j-
=1 =1

Consider the transformed process (C. F. Ansley, Biometrika 66: 59-65, 1979)

Xi/o ft=1,...,p,
7, — t/ p

»(B)Xi/o ift>p.

If p > 0, this is not stationary. However, there is a more generaioarof
the innovations algorithm, which is applicable to nonsiadiry processes.

13



An aside: Forecasting an ARMA(p,q)I

Let0,, ; be the coefficients obtained from the application of the viations
algorithm to this process;. This gives the representation

S5 Ong (Xnay = Xiid ) n<p.

Xr =
n+1 .
2?:1 ¢jX’rL—|—l—j + Z?:l en] (Xn_|_1_j — Xn—l-{—j) n Z D

For a causal, invertiblé X, }:
E(Xn — Xg_l — Wn)Q — 0, an — (9j, andP{ff“ — o2,

Notice that this illustrates one way to simulate an ARMAjmopcess
exactly.

14
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‘ Linear prediction based on the infinite past'

So far, we have considered linear predictors based oinserved values of
the time series:

X’n

n—+m

— P(Xn—l—m|XnaXn—17 SR 7X1)-

What if we have access 8l previous valuesX,,, X,,_1, X,,_2,...?

Write

~

Xn—l—m — P(Xn—km‘Xna Xn—la ax )

©.@)
= E ;i Xpy1—i
i—1

16



‘ Linear prediction based on the infinite past'

Xn—l—m — P<Xn—|—m|Xn7 Xn—1,-. ) — Z&an—l—l—i-
=1

The orthogonality property of the optimal linear prediatoplies

~

E [(Xn+m _ Xn+m)Xn+1_i} —0, i=1,2,...

Thus, if{ X;} is a zero-mean stationary time series, we have

Y ayi— ) =y(m—1+1), i
j=1

17



‘ Linear prediction based on the infinite past'

If {X,}is a causal, invertibldjnear process, we can write

Xn—l—m — Z ijn—l—m—j + Wn—l—ma Wn—i—m — Zﬂ-an—i—m—j + Xn—l—m-
j=1 j=1

In this case,

~

Xn+m — P(Xn—i—m‘Xna X1y

18



‘ Linear prediction based on the infinite past'

That iS, Xn_|_1 = — Zﬂ-an—l—l—ja
j=1

o0
Xpyo = —mMXpq1 — E T Xn42—j,
j=2
o0
Xpga = —m1Xpqo2 — MaXpq1 — E T Xn4+3—j-
Jj=3

The invertible (AR6o)) representation gives the forecaéts i

19



‘ Linear prediction based on the infinite past'

To compute the mean squared error, we notice that

oo

~

Xn—l—m — P(Xn—i—m|Xn7 Xn—1,-- ) — P

20



‘ Linear prediction based on the infinite past'

That is, the mean squared error of the forecast based onfithiarmistory
IS given by the initial terms of the causal (M#&{)) representation:

m—1

~ 2
E (Xn+m - Xn+m) =02 3" y2

j:

In particular, form = 1, the mean squared errords,.

21



The truncated forecast.

For largen, truncating the infinite-past forecasts gives a good
approximation:

oo
E :7TJ n+m—j — E :Waner—j
Jj=m

n+m-—1

n—l—m_ E :T‘-J n+m—j5 E : ﬂ-an‘f‘m—j'
j=m

The approximation is exact for AR(p) when> p, sincer; = 0 for j > p.
In general, it is a good approximation if the converge quickly td).
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‘ Example: Forecasting an ARMA(p,q) model'

Consider an ARMA(p,q) model:

p q
X — Z OiXi—; = Wi + Z O Wi_i.
i=1 i=1

Suppose we hav&, X, ..., X,, and we wish to forecast,, . ,,,.

We could use the best linear prediction; .

For an AR(p) model (that ig; = 0), we can write down the coefficiends,.
Otherwise, we must solve a linear system of size

If n is large, the truncated foreca§f$}+m give a good approximation. To
compute them, we could compute and truncate.

There is also a recursive method, which takes ttnén + m)(p + q))...

23



‘ Recursive truncated forecasts for an ARMA(p,q) mode'

0 fort <0,
X, forl<t<n.

~

Wr=0 fort<0. XI'=

Wrh=X!—o1 Xy — - — X",

— W = =0 W, fort=1,...,n

~

W, =0 fort > n.
X? — leX?—l +"'+¢pr—p+elwtn—1 +"'+9th?1q
fort=n+1,...,n4+m.
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‘ Example: Forecasting an AR(2) mode'

Consider the following AR(2) model.

1
Xt + EXt_Q — Wt.

The zeros of the characteristic polynomial+ 1.21 are at+1.1:. We can
solve the linear difference equations = 1, ¢(B)y; = 0 to compute the

MA(o0) representation:

1
Yy = 51.1_'5 cos(mt/2).

Thus, them-step-ahead estimates have mean squared error

~

E<Xn—|—m — Xn+m)2 —

25



‘ Example: Forecasting an AR(2) mode'

AR(2): X, +0.8264 X _, =W,

T T T
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Example: Forecasting an AR(2) mode

AR(2): X, +0.8264 X _, =W,

T T T

T T

T

- X

—©— one-step prediction
95% prediction interval
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