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\ Overview I

AdaBoost
Weak learning implies strong learning.
Weak learning is equivalent to large margin combination.
AdaBoost minimizes exponential surrogate loss.

Coordinate descent with other losses.




\ AdaBoost'

e Pattern classification method: makes a decision based on the
predictions of a committee of classifiers.

e One motivation: often easy to come up with simple rules tihat g
some edge over random guessing. Hope that a combinatiorciof su
classifiers will produce an accurate decision rule.

e A way to improve the performance of a base learning algoritym
combining predictions of decision rules.




‘AdaBoost: Examples of base classifie:f

Decision treesfr : RY — {41}, defined by a binary tre€ with
nodes labeled with decision stumps:

( s(x)  1f no descendants,

fr(z) =1 fo(z) if s(z)=—1,
\fR(I‘) If S( ) = 1,

whereL, R are the left and right subtrees and the decision stump
at the root:

Sapi(x) = sign(b(z; —a) > 0).




‘AdaBoost: Examples of base classifie:f

o Linear threshold functiongy (z) = sign(6? x).

Then a weighted combination of these functions is

f(z) = sign (Z o sign(@faz)) :

which is a two-layer neural network.

o Fixed dictionary: family of simple rules.

For example, in parsing, we might use simple rules thatrdjsish
between simple families of subtrees. In detecting objecisages,
we might use simple image features, such as differences of
rectangular sums, or similarity to image patches.




\ AdaBoost'

AdaBoost (and other ensemble methods, sudbagging), work with a
function class

F = {stign (Z%ft(@) o €R, fy € (j},

whereG C {£1}' is the class of base classifiers.

AdaBoost:

e Maintains weighting (probability distribution); over training data
{1,...,n}.

o Choosesf; sequentially, to minimize weighted empirical risk.

e Adjusts weighting to emphasize mistakes.




\ AdaBoostI

Choosef; € G to (approximately) minimize

Et—ZDt L fe(zs) # vil.

Fy = Fi_1 + ay fy.
Dy (%) " e if fi(x;) # yi,

Diq(i) =
Zt e~ otherwise.

end for

Here,a; = % log 1;—1? and the normalization constant is

Zy = 32 Di(i) exp (—yi fe(wi) o) = 24/ €er(1 — €t).




‘AdaBoost: Weak learning implies strong Iearning'

Theorem: Define

b _ Zt ot fr
Zle Ot Zt Qg

F =

€ co(G).




‘AdaBoost: Weak learning implies strong Iearning'

Furthermore, it, < 1/2 — ~ for all ¢, we have

2T/2 2\1'/2
) =a-e™”




‘Weak learning implies strong learning: Proof'

Use the Chernoff idea:

yF(z) <0<y apfi(z) <0

& exp <—yzatft(l‘)> > 1.

t

Let Z; denote the normalization constant at rour{de’ll calculate its
value later):

Dy (i) = 2ol exp (Cuifuli)ar)

Dt+1.(z')




‘Weak learning implies strong learning: Proof'

P, (YF(z) <0) <E,exp (-YF(X))

— [E,, exp (—Y Z oy fi (X))

= — ZHeXp —yi fi(wi)on)

z—lt 1

NI

1=1 t=1
n

1 Driq(2
=2 D;I—(Z.())];[Zt:];[Zt-

1=1




‘Weak learning implies strong learning: Proof'

Hence, it makes sense to choesdo minimize the normalization factor:

Zy= Y Dii)e ™+ > Dy(i)e™

iy =fr(xz;) iy £ [t (x4)

= (1 — €)™ ™ + €™,

Differentiating wrta; and solving gives

11 1_€t
oy = — 10
t 9 g € )

Zy = 2v/(1 — €€y




Weak learning implies large margins.

Can extend to show large margins on training data:

Theorem:

P, (Y lT_[ \/ (1 — &),

and ife; < 1/2—2~ for all ¢, this decreases to zero exponentially quickly




Weak learning implies large margins'

The earlier theorem implies that if, for any distributibh on{1, ..., n},
there is anf; € G with weighted empirical risk no more than2 — ~,
then there is &' € co G with zero empirical risk.

This theorem implies that if, for any distributian; on {1, ..., n}, there
Is an f; € G with weighted empirical risk no more thdn2 — -, then
there is aF' € co G with large marginsP,, (Y F(X) < v/2) = 0.

The following converse result shows that the assumptioh@gkistence
of a ‘weak learner’ (that produces gpwith risk no more thai /2 — ~)
IS equivalent to the existence of a large margin convex coatlan.




Weak learning Is equivalent to large marginﬂ

Theorem: If, for (z1,v1),...,(zn,yn), thereis al' € coG with

yi F(x;) >~ fori=1,...,n,

then for all probability distribution® on{1,...,n}, thereisanf € G
with




Weak learning Iis equivalent to large margins: Proofl

The proof uses the probabilistic method. Suppbse ) |, o f; with
> ay =1, ap > 0. Choosef randomly, withPr(f = f;) = a;. Then for
anyD,

ogEZD(m[ ;) £ yi] = ZatZD 1[fi(z:) # yil

SIPIGES

Thus, there exists afiwith this property.




AdaBoost minimizes exponential surrogate IOEI

In the proof of weak=- strong, we used this observation:

Ds—H(i)
D, (i)

Since the product telescopes, this implies that

Ls = eXp(_yifs <5Ez')058)'

Dy(3) [ Z = D1(3) [ exp(—piful@as) = - exp(~yiFios (z:).

s=1

That is, the weightind); (¢) is proportional texp(—y; Fr_1(x;)).




AdaBoost minimizes exponential surrogate IOEI

Theorem: If G = —G (thatis,g € G = —g € §), then choosing
f: € G to minimize

Z Di(4)1]y; # fi(w:)]

and choosing

1 (1—675)
Oy — —In
2 €t

IS equivalent to choosing;, o; to minimize

E, exp (—Y Fy(X)) = E, exp (=Y (s fi(X) + F_1(X))).




AdaBoost minimizes exponential surrogate loss: Proj

t—1
1
Because- exp(—y; Fi_1(x;)) = Dy(i) | | Zs, we have
n
s=1

e ) exp (—yiFy—1(x;))

—e HZ ZDt [yi # f(2i)]




AdaBoost minimizes exponential surrogate loss: Proj

Clearly, for anya; > 0, the f; that minimizesE,, exp(—Y F3(X))
minimizes(x). And givenf;, we have

%En exp (—Y (Ft—l(X) + atft(X)))

— % Zexp (—yiFt_1($i)) (—yzft(%,)) exXp (_yiatft(%'))

1=1

1 1
oy o1(x) ) joe = —yiFi_1(xi) — o
Ty Ffr(x5) — 1y =ft(Ti) — ~
=D (i) [1.2] Zs =D, (i) [T.Z] Zs
t—1

(eteo‘t — (1 - et)e_o‘t) H Zs.

s=1




AdaBoost minimizes exponential surrogate loss: Proj

Setting the derivative to zero and solving gives

1 (1—675)
Oét:—ln .
2 €¢

So we can think of AdaBoost as choosifige span(G) to minimize

E,exp (=Y F(X)),

but it does this in a stepwise way: witi_; = Zz;ll o, fs fixed, choose

a; € Randf; € G to minimize

E,, exp (=Y (Fi—1(X) + afe(X))) .




