
CS281B/Stat241B. Statistical Learning Theory. Lecture
25.

Peter Bartlett

1



Overview

• AdaBoost

− Weak learning implies strong learning.

− Weak learning is equivalent to large margin combination.

− AdaBoost minimizes exponential surrogate loss.

− Coordinate descent with other losses.
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AdaBoost

• Pattern classification method: makes a decision based on the

predictions of a committee of classifiers.

• One motivation: often easy to come up with simple rules that give

some edge over random guessing. Hope that a combination of such

classifiers will produce an accurate decision rule.

• A way to improve the performance of a base learning algorithmby

combining predictions of decision rules.
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AdaBoost: Examples of base classifiers

• Decision trees,fT : Rd → {±1}, defined by a binary treeT with

nodes labeled with decision stumps:

fT (x) =







s(x) if no descendants,

fL(x) if s(x) = −1,

fR(x) if s(x) = 1,

whereL, R are the left and right subtrees ands is the decision stump

at the root:

sa,b,i(x) = sign(b(xi − a) > 0).
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AdaBoost: Examples of base classifiers

• Linear threshold functions,fθ(x) = sign(θTx).

Then a weighted combination of these functions is

f(x) = sign

(
∑

i

αi sign(θ
T
i x)

)

,

which is a two-layer neural network.

• Fixed dictionary: family of simple rules.

For example, in parsing, we might use simple rules that distinguish

between simple families of subtrees. In detecting objects in images,

we might use simple image features, such as differences of

rectangular sums, or similarity to image patches.
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AdaBoost

AdaBoost (and other ensemble methods, such asbagging), work with a

function class

F =
{

x 7→ sign
(∑

αtft(x)
)

: αt ∈ R, ft ∈ G
}

,

whereG ⊆ {±1}X is the class of base classifiers.

AdaBoost:

• Maintains weighting (probability distribution)Dt over training data

{1, . . . , n}.

• Choosesft sequentially, to minimize weighted empirical risk.

• Adjusts weighting to emphasize mistakes.
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AdaBoost

D1(i) =
1
n , i = 1, . . . , n.

F0(x) = 0.
for t = 1, . . . , T do

Chooseft ∈ G to (approximately) minimize

ǫt =

n∑

i=1

Dt(i)1[ft(xi) 6= yi].

Ft = Ft−1 + αtft.

Dt+1(i) =
Dt(i)

Zt
×







eαt if ft(xi) 6= yi,

e−αt otherwise.

end for

Here,αt =
1
2 log

1−ǫt
ǫt

, and the normalization constant is

Zt =
∑

i Dt(i) exp (−yift(xi)αt) = 2
√

ǫt(1− ǫt).
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AdaBoost: Weak learning implies strong learning

Theorem: Define

F =
FT

∑T
t=1 αt

=

∑

t αtft
∑

t αt
∈ co(G).

Then

Pn

(
Y F (X) ≤ 0

)
=

1

n

∣
∣
{
i : yiF (xi) ≤ 0

}∣
∣ ≤

T∏

t=1

2
√

ǫt(1− ǫt).
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AdaBoost: Weak learning implies strong learning

Furthermore, ifǫt ≤ 1/2− γ for all t, we have

T∏

t=1

2
√

ǫt(1− ǫt) = 2T
(
1

4
− γ2

)T/2

=
(
1− 4γ2

)T/2
,

which is no more thanǫ for

T ≥
ln 1/ǫ

2γ2
.
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Weak learning implies strong learning: Proof

Use the Chernoff idea:

yF (x) ≤ 0 ⇔ y
∑

t

αtft(x) ≤ 0

⇔ exp

(

−y
∑

t

αtft(x)

)

≥ 1.

Let Zt denote the normalization constant at roundt (we’ll calculate its

value later):

Dt+1(i) =
Dt(i) exp (−yift(xi)αt)

Zt
.

So
Dt+1(i)

Dt(i)
Zt = exp (−yift(xi)αt) .
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Weak learning implies strong learning: Proof

Pn

(
Y F (x) ≤ 0

)
≤ En exp

(
−Y F (X)

)

= En exp

(

−Y
T∑

t=1

αtft(X)

)

=
1

n

n∑

i=1

T∏

t=1

exp (−yift(xi)αt)

=
1

n

n∑

i=1

T∏

t=1

Dt+1(i)

Dt(i)
Zt

=
1

n

n∑

i=1

DT+1(i)

D1(i)

∏

t

Zt =
∏

t

Zt.
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Weak learning implies strong learning: Proof

Hence, it makes sense to chooseαt to minimize the normalization factor:

Zt =
∑

i:yi=ft(xi)

Dt(i)e
−αt +

∑

i:yi 6=ft(xi)

Dt(i)e
αt

= (1− ǫt)e
−αt + ǫte

αt .

Differentiating wrtαt and solving gives

αt =
1

2
log

(
1− ǫt
ǫt

)

,

Zt = 2
√

(1− ǫt)ǫt.
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Weak learning implies large margins

Can extend to show large margins on training data:

Theorem:

Pn

(
Y F (X) ≤ γ

)
≤

T∏

t=1

2

√

ǫ1−γ
t (1− ǫt)1+γ ,

and ifǫt ≤ 1/2−2γ for all t, this decreases to zero exponentially quickly.
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Weak learning implies large margins

The earlier theorem implies that if, for any distributionDt on{1, . . . , n},

there is anft ∈ G with weighted empirical risk no more than1/2− γ,

then there is aF ∈ coG with zero empirical risk.

This theorem implies that if, for any distributionDt on{1, . . . , n}, there

is anft ∈ G with weighted empirical risk no more than1/2− γ, then

there is aF ∈ coG with large margins:Pn(Y F (X) ≤ γ/2) = 0.

The following converse result shows that the assumption of the existence

of a ‘weak learner’ (that produces anft with risk no more than1/2− γ)

is equivalent to the existence of a large margin convex combination.
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Weak learning is equivalent to large margins

Theorem: If, for (x1, y1), . . . , (xn, yn), there is aF ∈ coG with

yiF (xi) ≥ γ for i = 1, . . . , n,

then for all probability distributionsD on {1, . . . , n}, there is anf ∈ G

with
n∑

i=1

D(i)1[yi 6= f(xi)] ≤
1− γ

2
.
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Weak learning is equivalent to large margins: Proof

The proof uses the probabilistic method. SupposeF =
∑

t αtft with
∑

αt = 1, αt ≥ 0. Choosef randomly, withPr(f = ft) = αt. Then for

anyD,

0 ≤ E

n∑

i=1

D(i)1[f(xi) 6= yi] =
∑

t

αt

∑

i

D(i)1[ft(xi) 6= yi]

=
∑

i

D(i)
∑

t

αt
1− yift(xi)

2

≤
∑

i

D(i)
1− γ

2

=
1− γ

2
.

Thus, there exists anf with this property.
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AdaBoost minimizes exponential surrogate loss

In the proof of weak⇒ strong, we used this observation:

Ds+1(i)

Ds(i)
Zs = exp(−yifs(xi)αs).

Since the product telescopes, this implies that

Dt(i)
t−1∏

s=1

Zs = D1(i)
t−1∏

s=1

exp(−yifs(xi)αs) =
1

n
exp(−yiFt−1(xi)).

That is, the weightingDt(i) is proportional toexp(−yiFt−1(xi)).
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AdaBoost minimizes exponential surrogate loss

Theorem: If G = −G (that is,g ∈ G ⇒ −g ∈ G), then choosing

ft ∈ G to minimize

n∑

i=1

Dt(i)1[yi 6= ft(xi)]

and choosing

αt =
1

2
ln

(
1− ǫt
ǫt

)

is equivalent to choosingft, αt to minimize

En exp (−Y Ft(X)) = En exp (−Y (αtft(X) + Ft−1(X))) .
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AdaBoost minimizes exponential surrogate loss: Proof

Because
1

n
exp(−yiFt−1(xi)) = Dt(i)

t−1∏

s=1

Zs, we have

En exp (−Y Ft(X))

=
1

n

n∑

i=1

((
eαt − e−αt

)
1[yi 6= ft(xi)] + e−αt

)
exp (−yiFt−1(xi))

=
(
eαt − e−αt

)
t−1∏

s=1

Zs

n∑

i=1

Dt(i)1[yi 6= ft(xi)]

︸ ︷︷ ︸

(∗)

+
e−αt

n

n∑

i=1

exp (−yiFt−1(xi)) .
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AdaBoost minimizes exponential surrogate loss: Proof

Clearly, for anyαt > 0, theft that minimizesEn exp(−Y Ft(X))

minimizes(∗). And givenft, we have

∂

∂αt
En exp (−Y (Ft−1(X) + αtft(X)))

=
1

n

n∑

i=1

exp (−yiFt−1(xi)) (−yift(xi)) exp (−yiαtft(xi))

=
∑

i:yi 6=ft(xi)

(
1

n
e−yiFt−1(xi)

)

︸ ︷︷ ︸

=Dt(i)
∏

t−1

s=1
Zs

eαt −
∑

i:yi=ft(xi)

(
1

n
e−yiFt−1(xi)

)

︸ ︷︷ ︸

=Dt(i)
∏

t−1

s=1
Zs

e−αt

=
(
ǫte

αt − (1− ǫt)e
−αt

)
t−1∏

s=1

Zs.
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AdaBoost minimizes exponential surrogate loss: Proof

Setting the derivative to zero and solving gives

αt =
1

2
ln

(
1− ǫt
ǫt

)

.

So we can think of AdaBoost as choosingF ∈ span(G) to minimize

En exp (−Y F (X)) ,

but it does this in a stepwise way: withFt−1 =
∑t−1

s=1 αsfs fixed, choose

αt ∈ R andft ∈ G to minimize

En exp (−Y (Ft−1(X) + αtft(X))) .
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