CS281B/Stat241B. Statistical Learning Theory. Lecture 24.

Peter Bartlett

Overview

- Kernel regression.
 - Kernel ridge regression.
- Convex losses for classification.
 - Classification calibration.
 - Excess risk versus excess ϕ -risk.

Kernel methods for regression

Consider a regression problem:

- Probability distribution P on $\mathcal{X} \times \mathbb{R}$,
- Observe $(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$,
- Choose $f_n : \mathcal{X} \to \mathbb{R}$ to minimize $\mathbb{E}\ell(Y, f(X))$ for $(X, Y) \sim P$.

Examples:

- 1. $\ell(y, \hat{y}) = (y \hat{y})^2$.
- 2. $\ell(y, \hat{y}) = |y \hat{y}|.$
- 3. $\ell(y, \hat{y}) = (|y \hat{y}| \epsilon)_+.$

(ϵ -insensitive loss: gives a similar QP to the SVM)

Kernel ridge regression

For quadratic loss, $\ell(y, \hat{y}) = (y - \hat{y})^2$, we have

$$\min_{f \in \mathcal{H}} \quad \lambda \|f\|_{H}^{2} + \sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}.$$

Choosing the slack variable ξ_i and introducing an equality constraint, we have

$$\min_{\substack{\theta,\xi}} \quad \lambda \|\theta\|^2 + \sum_{i=1}^n \xi_i^2$$

s.t.
$$\xi_i = y_i - \theta^T x_i.$$

Kernel ridge regression

Forming the Lagrangian (for an equality, we do not need a sign constraint on the dual variable) and eliminating the primal variables, we obtain:

$$\theta = \frac{1}{2\lambda} \sum \alpha_i x_i,$$

$$\xi_i = \frac{\alpha_i}{2},$$

$$g(\alpha) = y^T \alpha - \frac{1}{4\lambda} \alpha' K \alpha - \frac{1}{4} \alpha^T \alpha$$

The solution to the dual problem is

$$\alpha = 2\lambda (K + \lambda I)^{-1} y.$$

Kernel ridge regression

This has a natural interpretation as a Bayesian method. The prediction rule $f_n(x)$ is the mean of the posterior distribution of f(x) when $f: \mathcal{X} \to \mathbb{R}$ has a Gaussian process prior with $\mathbb{E}f(x_i) = 0$, $\operatorname{Var}(f(x_1), f(x_2)) = k(x_1, x_2)$, and $y = f(x) + \mathcal{N}(0, \lambda)$.

Convex loss for classification

We have seen various examples of convex loss functions used for classification. While we might aim to choose a decision rule $f : \mathcal{X} \to \mathbb{R}$ to minimize

$$R(f) = \Pr(Y \neq \operatorname{sign}(f(X))) = \mathbb{E}1[Yf(X) \le 0],$$

we often work with f chosen to minimize a (regularized version of a) sample average of a convex loss function like:

$$\phi_{svm}(yf(x)) = (1 - yf(x))_{+},$$

$$\phi_{AdaBoost}(yf(x)) = \exp(-yf(x)),$$

$$\phi_{logistic}(yf(x)) = \log(1 + \exp(-yf(x)))$$

This allows the use of efficient convex optimization algorithms. What is the cost of this computational convenience?

Convex loss for classification

We will ignore the issue of $\mathbb{E}\phi(Yf(X))$ versus $\hat{\mathbb{E}}\phi(Yf(X))$: suppose that we choose $f : \mathcal{X} \to \mathbb{R}$ to minimize $\mathbb{E}\phi(Yf(X))$. When does this lead to a good classifier (that is, with small risk)?

Define

$$\ell(y, f(x)) = 1[yf(x) \le 0],$$
$$R(f) = \mathbb{E}\ell(Y, f(X)),$$
$$R_{\phi}(f) = \mathbb{E}\phi(Yf(X)).$$
e.g., $\phi(yf(x)) = (1 - yf(x))_{+}.$

First, we can observe that $\phi(yf(x)) \ge \ell(y, f(x))$ implies that $R(f) \le R_{\phi}(f)$. So a small $R_{\phi}(f)$ gives small R(f). But this is a rather weak assurance if, for example, $\inf_{f} R_{\phi}(f) > 0$. When does minimizing R_{ϕ} lead to minimal R?

Convex loss for classification

Consider a fixed $x \in \mathcal{X}$.

Define
$$\eta(x) = \Pr(Y = 1 | X = x)$$
.
Then $R_{\phi}(f) = \mathbb{E}\phi(Yf(X))$
 $= \mathbb{E}\mathbb{E}\left[\phi(Yf(X))|X\right],$
 $\mathbb{E}\left[\phi(Yf(X))|X = x\right] = \Pr(Y = 1 | X = x)\phi(f(x))$
 $+ \Pr(Y = -1 | X = x)\phi(-f(x))$
 $= \eta(x)\phi(f(x)) + (1 - \eta(x))\phi(-f(x)).$

Define the optimizer of this conditional expectation:

$$H(\eta) := \inf_{\alpha \in \mathbb{R}} \left(\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) \right)$$

Examples

For $\phi(\alpha) = (1 - \alpha)_+$, $H(\eta) = 2\min(\eta, 1 - \eta),$ $H^-(\eta) = \phi(0) = 1,$ $\psi(\theta) = 1 - 2\min\left(\frac{1+\theta}{2}, \frac{1-\theta}{2}\right) = \theta.$

Examples

For $\phi(\alpha) = \exp(-\alpha)$,

$$H(\eta) = 2\sqrt{\eta(1-\eta)},$$
$$H^{-}(\eta) = \phi(0) = 1,$$
$$\psi(\theta) = 1 - \sqrt{1-\theta^{2}}.$$

Classification calibration

The prediction \hat{y} with minimal conditional risk is $\operatorname{sign}(2\eta(x) - 1)$. If the optimal conditional expectation $\mathbb{E}[\phi(Yf(X))|X = x]$ can be achieved with a value of α with the wrong sign, then minimizing R_{ϕ} is not useful for classification. So define

$$H^{-}(\eta) := \inf \left\{ \eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) : \alpha(2\eta - 1) \le 0 \right\}.$$

Definition: We say that ϕ is **classification-calibrated** if, for all $\eta \neq 1/2$, $H^{-}(\eta) > H(\eta)$.

Classification-calibration is clearly necessary for minimization of R_{ϕ} to lead to minimization of R. We shall see that it is also sufficient.

Classification calibration for convex ϕ

Theorem: For ϕ convex, ϕ is classification-calibrated iff

1. ϕ is differentiable at 0,

2. $\phi'(0) < 0$.

Proof: If is straightforward to check.

Only if: suppose that ϕ is not differentiable at 0. Then convexity implies that it lies above several tangent lines. But then for values of η near 1/2, $\eta\phi(\alpha) + (1-\eta)\phi(-\alpha)$ is minimized by $\alpha = 0$, so ϕ is not classification-calibrated.

Also, $\phi'(0) \ge 0$ leads to $\operatorname{sign}(\alpha^*(\eta)) \ne \operatorname{sign}(\eta - 1/2)$.

Excess risk versus excess ϕ **-risk**

Theorem: For any nonnegative ϕ , measurable $f : \mathcal{X} \to \mathbb{R}$ and probability distribution P on $\mathcal{X} \times \{\pm 1\}$,

$$\psi(R(f) - R^*) \le R_{\phi}(f) - R_{\phi}^*,$$

where $R_{\phi}^* := \inf_f R_{\phi}(f), R^* := \inf_f R(f)$, and, if ϕ is convex,

$$\psi(\theta) := H^{-}\left(\frac{1+\theta}{2}\right) - H\left(\frac{1+\theta}{2}\right)$$

Furthermore, ϕ is classification calibrated iff

$$\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.$$

And if ϕ is classification calibrated and convex, $\psi(\theta) = \phi(0) - H\left(\frac{1+\theta}{2}\right)$.

Excess risk versus excess ϕ -risk

If ϕ is not convex, the theorem holds with $\psi=\tilde{\psi}^{**},$ the Legendre biconjugate of

$$\tilde{\psi}(\theta) := H^{-}\left(\frac{1+\theta}{2}\right) - H\left(\frac{1+\theta}{2}\right).$$

(The biconjugate g^{**} of g is the largest convex lower bound on $\tilde{\psi}$, defined by $\operatorname{epi} g^{**} = \overline{\operatorname{co}} \operatorname{epi} g$. So the definitions are equivalent if ϕ is convex.) **Excess risk versus excess** ϕ **-risk: Proof**

First, some observations about H and ψ :

- 1. $H(\eta) = H(1 \eta); H^{-}(\eta) = H^{-}(1 \eta).$
- 2. *H* is concave, ψ is convex.

3.
$$\psi(0) = 0$$
.

4. $\mathbb{E}H(\eta(X)) = R_{\phi}^*$.

Excess risk versus excess ϕ **-risk: Proof**

In Lecture 2, we saw that

$$R(f) - R^* = \mathbb{E}\left(1\left[\operatorname{sign}(f(X)) \neq \operatorname{sign}\left(\eta(X) - \frac{1}{2}\right)\right] |2\eta(X) - 1|\right)$$

Since ψ is convex, Jensen's inequality implies

$$\begin{split} \psi \left(R(f) - R^* \right) &\leq \mathbb{E}\psi \left(1 \left[\cdots \right] |2\eta(X) - 1| \right) \\ &= \mathbb{E}1 \left[\cdots \right] \psi \left(|2\eta(X) - 1| \right) \quad \text{(since } \psi(0) = 0) \\ &= \mathbb{E}1 \left[\cdots \right] \left(H^-(\eta(X)) - H(\eta(X)) \right) \quad \text{(def of } \psi) \end{split}$$

Excess risk versus excess \phi-risk: Proof

Now, $H^{-}(\eta(X))$ is the minimizer of $\mathbb{E}[\phi(Y\alpha)|X]$ when $\operatorname{sign}(\alpha) \neq \operatorname{sign}(\eta(X) - 1/2)$, so in particular, when $\operatorname{sign}(f(X)) \neq \operatorname{sign}(\eta(X) - 1/2)$, we have $H^{-}(\eta(X)) \leq \mathbb{E}[\phi(Yf(X))|X]$.

Also whether the sign condition is satisfied or not,

 $\mathbb{E}\left[\phi(Yf(X))|X\right] \ge H(\eta(X)).$

Thus, considering either value of the indicator shows that

$$\psi \left(R(f) - R^* \right) \le \mathbb{E} \left[\phi(Yf(X)) - H(\eta(X)) \right]$$
$$= R_{\phi}(f) - R_{\phi}^*.$$

Classification calibration for convex ϕ

Extensions:

- Every classification-calibrated ϕ is an upper bound on loss: there is a *c* such that $c\phi(\alpha) \ge 1[\alpha \le 0]$.
- Flatter φ (smaller Bregman divergence at 0) gives a tighter bound on R(f) - R* in terms of R_φ(f) - R^{*}_φ.
- Under a low noise condition (that is, η(X) is unlikely to be near 1/2), the bound on excess risk in terms of excess φ-risk is improved.