
Peter Bartlett
Overview

- Kernel regression.
 - Kernel ridge regression.
- Convex losses for classification.
 - Classification calibration.
 - Excess risk versus excess ϕ-risk.
Consider a regression problem:

- Probability distribution P on $\mathcal{X} \times \mathbb{R}$,
- Observe $(X_1, Y_1), \ldots, (X_n, Y_n) \sim P$,
- Choose $f_n : \mathcal{X} \to \mathbb{R}$ to minimize $\mathbb{E} \ell(Y, f(X))$ for $(X, Y) \sim P$.

Examples:

1. $\ell(y, \hat{y}) = (y - \hat{y})^2$.
2. $\ell(y, \hat{y}) = |y - \hat{y}|$.
3. $\ell(y, \hat{y}) = (|y - \hat{y}| - \epsilon)_+$.
 (ϵ-insensitive loss: gives a similar QP to the SVM)
Kernel ridge regression

For quadratic loss, $\ell(y, \hat{y}) = (y - \hat{y})^2$, we have

$$\min_{f \in \mathcal{H}} \lambda \|f\|^2_H + \sum_{i=1}^n (y_i - f(x_i))^2.$$

Choosing the slack variable ξ_i and introducing an equality constraint, we have

$$\min_{\theta, \xi} \lambda \|\theta\|^2 + \sum_{i=1}^n \xi_i^2$$

s.t. $\xi_i = y_i - \theta^T x_i$.
Kernel ridge regression

Forming the Lagrangian (for an equality, we do not need a sign constraint on the dual variable) and eliminating the primal variables, we obtain:

$$\theta = \frac{1}{2\lambda} \sum \alpha_i x_i,$$

$$\xi_i = \frac{\alpha_i}{2},$$

$$g(\alpha) = y^T \alpha - \frac{1}{4\lambda} \alpha' K \alpha - \frac{1}{4} \alpha^T \alpha.$$

The solution to the dual problem is

$$\alpha = 2\lambda(K + \lambda I)^{-1} y.$$
This has a natural interpretation as a Bayesian method. The prediction rule \(f_n(x) \) is the mean of the posterior distribution of \(f(x) \) when \(f : \mathcal{X} \to \mathbb{R} \) has a Gaussian process prior with \(\mathbb{E} f(x_i) = 0 \), \(\text{Var}(f(x_1), f(x_2)) = k(x_1, x_2) \), and \(y = f(x) + \mathcal{N}(0, \lambda) \).
Convex loss for classification

We have seen various examples of convex loss functions used for classification. While we might aim to choose a decision rule \(f : \mathcal{X} \rightarrow \mathbb{R} \) to minimize

\[
R(f) = \Pr(Y \neq \text{sign}(f(X))) = \mathbb{E}1[Yf(X) \leq 0],
\]

we often work with \(f \) chosen to minimize a (regularized version of a) sample average of a convex loss function like:

\[
\phi_{\text{svm}}(yf(x)) = (1 - yf(x))_+, \\
\phi_{\text{AdaBoost}}(yf(x)) = \exp(-yf(x)), \\
\phi_{\text{logistic}}(yf(x)) = \log(1 + \exp(-yf(x))).
\]

This allows the use of efficient convex optimization algorithms. What is the cost of this computational convenience?
We will ignore the issue of \(E_\phi(Yf(X)) \) versus \(\hat{E}_\phi(Yf(X)) \): suppose that we choose \(f : \mathcal{X} \to \mathbb{R} \) to minimize \(E_\phi(Yf(X)) \). When does this lead to a good classifier (that is, with small risk)?

Define

\[
\ell(y, f(x)) = 1[yf(x) \leq 0],
\]

\[
R(f) = E\ell(Y, f(X)),
\]

\[
R_\phi(f) = E\phi(Yf(X)).
\]

e.g., \(\phi(yf(x)) = (1 - yf(x))_+ \).

First, we can observe that \(\phi(yf(x)) \geq \ell(y, f(x)) \) implies that \(R(f) \leq R_\phi(f) \). So a small \(R_\phi(f) \) gives small \(R(f) \). But this is a rather weak assurance if, for example, \(\inf_f R_\phi(f) > 0 \). When does minimizing \(R_\phi \) lead to minimal \(R \)?
Consider a fixed \(x \in X \).

Define \(\eta(x) = \Pr(Y = 1|X = x) \).

Then \(R_\phi(f) = \mathbb{E}\phi(Yf(X)) \)

\[
= \mathbb{E}\mathbb{E}[\phi(Yf(X))|X],
\]

\[
\mathbb{E}[\phi(Yf(X))|X = x] = \Pr(Y = 1|X = x)\phi(f(x))
+ \Pr(Y = -1|X = x)\phi(-f(x))
= \eta(x)\phi(f(x)) + (1 - \eta(x))\phi(-f(x)).
\]

Define the optimizer of this conditional expectation:

\[
H(\eta) := \inf_{\alpha \in \mathbb{R}} (\eta\phi(\alpha) + (1 - \eta)\phi(-\alpha))
\]
Examples

For $\phi(\alpha) = (1 - \alpha)_+$,

\[H(\eta) = 2 \min(\eta, 1 - \eta), \]
\[H^-(\eta) = \phi(0) = 1, \]
\[\psi(\theta) = 1 - 2 \min \left(\frac{1 + \theta}{2}, \frac{1 - \theta}{2} \right) = \theta. \]
Examples

For \(\phi(\alpha) = \exp(-\alpha) \),

\[
H(\eta) = 2\sqrt{\eta(1 - \eta)},
\]

\[
H^-(\eta) = \phi(0) = 1,
\]

\[
\psi(\theta) = 1 - \sqrt{1 - \theta^2}.
\]
The prediction \hat{y} with minimal conditional risk is $\text{sign}(2\eta(x) - 1)$. If the optimal conditional expectation $\mathbb{E}[\phi(Y \mid f(X)) \mid X = x]$ can be achieved with a value of α with the wrong sign, then minimizing R_{ϕ} is not useful for classification. So define

$$H^-(\eta) := \inf \{ \eta \phi(\alpha) + (1 - \eta) \phi(-\alpha) : \alpha(2\eta - 1) \leq 0 \}.$$

Definition: We say that ϕ is **classification-calibrated** if, for all $\eta \neq 1/2$, $H^-(\eta) > H(\eta)$.

Classification-calibration is clearly necessary for minimization of R_{ϕ} to lead to minimization of R. We shall see that it is also sufficient.
Classification calibration for convex ϕ

Theorem: For ϕ convex, ϕ is classification-calibrated iff

1. ϕ is differentiable at 0,
2. $\phi'(0) < 0$.

Proof: *If* is straightforward to check.

Only if: suppose that ϕ is not differentiable at 0. Then convexity implies that it lies above several tangent lines. But then for values of η near $1/2$,

$$\eta \phi(\alpha) + (1 - \eta) \phi(-\alpha)$$

is minimized by $\alpha = 0$, so ϕ is not classification-calibrated.

Also, $\phi'(0) \geq 0$ leads to $\text{sign}(\alpha^*(\eta)) \neq \text{sign}(\eta - 1/2)$.
Excess risk versus excess ϕ-risk

Theorem: For any nonnegative ϕ, measurable $f : X \to \mathbb{R}$ and probability distribution P on $X \times \{\pm 1\}$,

$$
\psi(R(f) - R^*) \leq R_\phi(f) - R^*_\phi,
$$

where $R^*_\phi := \inf_f R_\phi(f)$, $R^* := \inf_f R(f)$, and, if ϕ is convex,

$$
\psi(\theta) := H^- \left(\frac{1 + \theta}{2} \right) - H \left(\frac{1 + \theta}{2} \right)
$$

Furthermore, ϕ is classification calibrated iff

$$
\psi(\theta_i) \to 0 \text{ iff } \theta_i \to 0.
$$

And if ϕ is classification calibrated and convex, $\psi(\theta) = \phi(0) - H \left(\frac{1 + \theta}{2} \right)$.
Excess risk versus excess ϕ-risk

If ϕ is not convex, the theorem holds with $\psi = \tilde{\psi}^{**}$, the Legendre biconjugate of

$$
\tilde{\psi}(\theta) := H^{-} \left(\frac{1 + \theta}{2} \right) - H \left(\frac{1 + \theta}{2} \right).
$$

(The biconjugate g^{**} of g is the largest convex lower bound on $\tilde{\psi}$, defined by $\text{epi } g^{**} = \text{co epi } g$. So the definitions are equivalent if ϕ is convex.)
Excess risk versus excess ϕ-risk: Proof

First, some observations about H and ψ:

1. $H(\eta) = H(1 - \eta); \quad H^{-}(\eta) = H^{-}(1 - \eta)$.
2. H is concave, ψ is convex.
3. $\psi(0) = 0$.
4. $\mathbb{E} H(\eta(X)) = R^*_\phi$.

Excess risk versus excess ϕ-risk: Proof

In Lecture 2, we saw that

$$R(f) - R^* = \mathbb{E} \left(1 \left[\text{sign}(f(X)) \neq \text{sign} \left(\eta(X) - \frac{1}{2} \right) \right] |2\eta(X) - 1| \right).$$

Since ψ is convex, Jensen’s inequality implies

$$\psi (R(f) - R^*) \leq \mathbb{E} \psi \left(1 \left[\cdots \right] |2\eta(X) - 1| \right)$$

$$= \mathbb{E}1 \left[\cdots \right] \psi \left(|2\eta(X) - 1| \right) \quad \text{(since $\psi(0) = 0$)}$$

$$= \mathbb{E}1 \left[\cdots \right] \left(H^-(\eta(X)) - H(\eta(X)) \right) \quad \text{(def of ψ)}$$
Excess risk versus excess \(\phi \)-risk: Proof

Now, \(H^{-}(\eta(X)) \) is the minimizer of \(\mathbb{E}[\phi(Y\alpha)|X] \) when
\[
\text{sign}(\alpha) \neq \text{sign}(\eta(X) - 1/2),
\]
so in particular, when
\[
\text{sign}(f(X)) \neq \text{sign}(\eta(X) - 1/2),
\]
we have
\[
H^{-}(\eta(X)) \leq \mathbb{E}[\phi(Yf(X))|X].
\]

Also whether the sign condition is satisfied or not,
\[
\mathbb{E}[\phi(Yf(X))|X] \geq H(\eta(X)).
\]

Thus, considering either value of the indicator shows that
\[
\psi(R(f) - R^*) \leq \mathbb{E}[\phi(Yf(X)) - H(\eta(X))]
\]
\[
= R_\phi(f) - R^*_\phi.
\]
Classification calibration for convex ϕ

Extensions:

- Every classification-calibrated ϕ is an upper bound on loss: there is a c such that $c\phi(\alpha) \geq 1[\alpha \leq 0]$.
- Flatter ϕ (smaller Bregman divergence at 0) gives a tighter bound on $R(f) - R^*$ in terms of $R_\phi(f) - R^*_\phi$.
- Under a low noise condition (that is, $\eta(X)$ is unlikely to be near 1/2), the bound on excess risk in terms of excess ϕ-risk is improved.