CS281B/Stat241B. Statistical Learning Theory. Lecture 21.
 Peter Bartlett

Overview

- Support vector machines
- Hard margin
- Detour into optimization (Lagrangian, duality, saddle point, KKT conditions)
- Dual form of SVM: support vectors
- Kernels
- SVM and the convex hull of the data.

Recall: Perceptron convergence theorem

Given linearly separable data, that is, $y_{i} \theta^{T} x_{i}>0$, the perceptron algorithm has risk (also, regret per round) no more than

$$
\frac{R^{2}}{n \gamma^{2}}
$$

where $\gamma=\min _{i} \theta^{T} x_{i} y_{i} /\|\theta\|$.

Support Vector Machine

The support vector machine optimizes this bound, by maximizing the margin:

$$
\begin{aligned}
\max _{\gamma, \theta} & \gamma \\
\text { s.t. } & \frac{y_{i} \theta^{T} x_{i}}{\|\theta\|} \geq \gamma \quad i=1,2, \ldots, n .
\end{aligned}
$$

Since we only care about the sign for classification, we can, for instance, fix $\|\theta\|=1 / \gamma$ to simplify the problem slightly:

$$
\begin{array}{cl}
\min _{\theta} & \|\theta\| \\
\text { s.t. } & y_{i} \theta^{T} x_{i} \geq 1 \quad i=1,2, \ldots, n
\end{array}
$$

A brief detour into optimization

For the primal convex optimization problem

$$
\begin{aligned}
p^{*}= & \min _{x \in \mathbb{R}^{n}} f_{0}(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Introduce Lagrange multipliers (dual variables) $\lambda_{1}, \ldots, \lambda_{m} \geq 0$, and define the Lagrangian $L: \mathbb{R}^{n+m} \rightarrow \mathbb{R}$ as

$$
L(x, \lambda)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Dual problem

- The primal problem is the value of the min-max game:

$$
p^{*}=\inf _{x} \sup _{\lambda \geq 0} L(x, \lambda)
$$

(Because for an infeasible $x, L(x, \lambda)$ can be made infinite, and for a feasible x, the $\lambda_{i} f_{i}(x)$ terms will become zero.)

- Define the dual problem as

$$
d^{*}=\sup _{\lambda \geq 0} g(\lambda):=\sup _{\lambda \geq 0} \inf _{x} L(x, \lambda)
$$

- In a zero sum game, it's always better to choose second:

$$
p^{*}=\inf _{x} \sup _{\lambda \geq 0} L(x, \lambda) \geq \sup _{\lambda \geq 0} \inf _{x} L(x, \lambda)=d^{*}
$$

This is called weak duality.

Strong duality

- If there is a saddle point $\left(x^{*}, \lambda^{*}\right)$, so that for all x and $\lambda \geq 0$,

$$
L\left(x^{*}, \lambda\right) \leq L\left(x^{*}, \lambda^{*}\right) \leq L\left(x, \lambda^{*}\right)
$$

then we have strong duality:

$$
p^{*}=\inf _{x} \sup _{\lambda \geq 0} L(x, \lambda)=\sup _{\lambda \geq 0} \inf _{x} L(x, \lambda)=d^{*}
$$

This is because:

$$
\begin{aligned}
\inf _{x} \sup _{\lambda \geq 0} L(x, \lambda) & \leq \sup _{\lambda \geq 0} L\left(x^{*}, \lambda\right) \\
& =L\left(x^{*}, \lambda^{*}\right) \\
& =\inf _{x} L\left(x, \lambda^{*}\right) \\
& \leq \sup _{\lambda \geq 0} \inf _{x} L(x, \lambda) .
\end{aligned}
$$

Strong duality

There are other sufficient conditions for strong duality (e.g., f_{0}, f_{i} convex, and Slater's condition: some x is strictly feasible, that is, satisfies the constraints with strict inequalities).

Complementary slackness

Suppose $p^{*}=d^{*}$. Then for primal solution x^{*}, dual solution λ^{*}, we have

$$
\begin{aligned}
f_{0}\left(x^{*}\right) & =g\left(\lambda^{*}\right)=\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x)\right) \\
& \leq\left(f_{0}\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right)\right)
\end{aligned}
$$

That is,

$$
\sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(x^{*}\right) \geq 0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so every term in the sum must be zero:

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 .
$$

Complementary slackness

This is known as complementary slackness:
if $f_{i}\left(x^{*}\right)<0$ then $\lambda_{i}=0$.
if $\lambda_{i}>0$ then $f_{i}\left(x^{*}\right)=0$.

Karush-Kuhn-Tucker optimality conditions

If f_{0}, f_{i} are convex and differentiable, then x, λ are optimal and the duality gap is zero iff

1. Primal feasibility: $f_{i}(x) \leq 0$.
2. Dual feasibility: $\lambda_{i} \geq 0$.
3. Complementary slackness: $\lambda_{i} f_{i}(x)=0$.
4. Stationarity: $\nabla f_{0}(x)+\sum_{i} \lambda_{i} \nabla f_{i}(x)=0$.

Support vector machines

$$
\begin{aligned}
\min _{\theta} & \frac{1}{2}\|\theta\|^{2} \\
\text { s.t. } & y_{i} \theta^{T} x_{i} \geq 1, \quad i=1,2, \ldots, n . \\
L(\theta, \alpha)= & \frac{1}{2}\|\theta\|^{2}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i} \theta^{\prime} x_{i}\right) \\
g(\alpha)= & \inf _{\theta} L(\theta, \alpha)
\end{aligned}
$$

$$
\text { setting } \quad \theta^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i},
$$

$$
g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\prime} x_{j} .
$$

Support vector machines

If there is a primal feasible point, we can find a strictly feasible point, so we have strong duality.

Notice that we can express the optimal θ^{*} in terms of the dual solution, α^{*}, to

$$
\begin{aligned}
\max _{\alpha} & \sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\prime} x_{j} \\
\text { s.t. } & \alpha_{i} \geq 0, \quad i=1,2, \ldots, n .
\end{aligned}
$$

Support vector machines

Complementary slackness tells us about the role of the α_{i} :

$$
\begin{aligned}
\alpha_{i} & >0 \text { implies } y_{i} \theta^{* \prime} x_{i}=1, \\
y_{i} \theta^{\prime} x_{i} & >1 \text { implies } \alpha_{i}=0
\end{aligned}
$$

That is, only the points for which the constraints are tight ("support vectors") appear in the sum defining θ^{*}.

Support vector machines

As with the perceptron algorithm, we can express the solution in terms of an arbitrary kernel k :

$$
\begin{aligned}
f_{n}(x) & =\operatorname{sign}(\langle\theta, \Phi(x)\rangle) \\
& =\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\left\langle\Phi\left(x_{i}\right), \Phi(x)\right\rangle\right) \\
& =\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(x_{i}, x\right)\right)
\end{aligned}
$$

where α solves the dual problem

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \alpha^{T} \operatorname{diag}(y) K \operatorname{diag}(y) \alpha-\alpha^{T} 1 \\
\text { s.t. } & \alpha \geq 0
\end{aligned}
$$

Another interpretation

We can write the SVM as an equivalent optimization problem, and the dual leads to an alternative interpretation:

$$
\begin{aligned}
\max _{\theta, \gamma} & \gamma \\
\text { s.t. } \quad & y_{i} \theta^{T} x_{i} \geq \gamma, \quad i=1,2, \ldots, n \\
& \|\theta\|^{2} \leq 1 \\
L(\theta, \gamma, \lambda, \beta)=- & \gamma+\sum_{i=1}^{n} \lambda_{i}\left(\gamma-y_{i} \theta^{\prime} x_{i}\right)+\beta\left(\|\theta\|^{2}-1\right)
\end{aligned}
$$

Another interpretation

$$
g(\lambda, \beta)=\inf _{\theta, \gamma} L(\theta, \gamma, \lambda, \beta)
$$

setting $\quad \theta^{*}=\frac{1}{2 \beta} \sum_{i=1}^{n} \lambda_{i} y_{i} x_{i} \quad$ and $\quad \sum_{i=1}^{n} \lambda_{i}=1$
gives $\quad g(\lambda, \beta)=-\frac{1}{4 \beta} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{T} x_{j}-\beta$.

$$
\begin{aligned}
\text { i.e., } & \min _{\lambda, \beta} \\
& \frac{1}{4 \beta}\left\|\sum_{i} \lambda_{i} y_{i} x_{i}\right\|^{2}+\beta \\
\text { s.t. } & \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0, \beta \geq 0 .
\end{aligned}
$$

Another interpretation

We can find the optimal β and simplify this to

$$
\begin{array}{cl}
\min _{\lambda} & \left\|\sum_{i} \lambda_{i} y_{i} x_{i}\right\| \\
\text { s.t. } & \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0 .
\end{array}
$$

And we have that the solution is

$$
\theta^{*}=\frac{\sum_{i} \lambda_{i} y_{i} x_{i}}{\left\|\sum_{i} \lambda_{i} y_{i} x_{i}\right\|}
$$

which is the vector in the direction of the smallest element of

$$
\operatorname{co}\left\{y_{i} x_{i}: i=1, \ldots, n\right\} .
$$

