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Overview

• Support vector machines

− Hard margin

− Detour into optimization

(Lagrangian, duality, saddle point, KKT conditions)

− Dual form of SVM: support vectors

− Kernels

− SVM and the convex hull of the data.
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Recall: Perceptron convergence theorem

Given linearly separable data, that is,yiθTxi > 0, the perceptron

algorithm has risk (also, regret per round) no more than

R2

nγ2
,

whereγ = mini θ
Txiyi/‖θ‖. (PICTURE)
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Support Vector Machine

Thesupport vector machine optimizes this bound, by maximizing the

margin:

max
γ,θ

γ

s.t.
yiθ

Txi

‖θ‖
≥ γ i = 1, 2, . . . , n.

Since we only care about the sign for classification, we can, for instance,

fix ‖θ‖ = 1/γ to simplify the problem slightly:

min
θ

‖θ‖

s.t. yiθ
Txi ≥ 1 i = 1, 2, . . . , n.
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A brief detour into optimization

For theprimal convex optimization problem

p∗ = min
x∈Rn

f0(x)

s.t.fi(x) ≤ 0, i = 1, 2, . . . ,m.

Introduce Lagrange multipliers (dual variables)λ1, . . . , λm ≥ 0, and

define the LagrangianL : Rn+m → R as

L(x, λ) = f0(x) +
m
∑

i=1

λifi(x).
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Dual problem

• The primal problem is the value of the min-max game:

p∗ = inf
x

sup
λ≥0

L(x, λ).

(Because for an infeasiblex, L(x, λ) can be made infinite, and for a
feasiblex, theλifi(x) terms will become zero.)

• Define thedual problem as

d∗ = sup
λ≥0

g(λ) := sup
λ≥0

inf
x
L(x, λ).

• In a zero sum game, it’s always better to choose second:

p∗ = inf
x
sup
λ≥0

L(x, λ) ≥ sup
λ≥0

inf
x
L(x, λ) = d∗.

This is calledweak duality.
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Strong duality

• If there is asaddle point (x∗, λ∗), so that for allx andλ ≥ 0,

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗),

then we havestrong duality:

p∗ = inf
x
sup
λ≥0

L(x, λ) = sup
λ≥0

inf
x
L(x, λ) = d∗.

This is because:

inf
x

sup
λ≥0

L(x, λ) ≤ sup
λ≥0

L(x∗, λ)

= L(x∗, λ∗)

= inf
x

L(x, λ∗)

≤ sup
λ≥0

inf
x

L(x, λ).
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Strong duality

There are other sufficient conditions for strong duality (e.g.,f0, fi
convex, and Slater’s condition: somex is strictly feasible, that is, satisfies

the constraints with strict inequalities).

8



Complementary slackness

Supposep∗ = d∗. Then for primal solutionx∗, dual solutionλ∗, we have

f0(x
∗) = g(λ∗) = inf

x

(

f0(x) +
m
∑

i=1

λ∗
i fi(x)

)

≤

(

f0(x
∗) +

m
∑

i=1

λ∗
i fi(x

∗)

)

.

That is,
m
∑

i=1

λ∗
i fi(x

∗) ≥ 0.

But λ∗
i ≥ 0 andfi(x∗) ≤ 0, so every term in the sum must be zero:

λ∗
i fi(x

∗) = 0.
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Complementary slackness

This is known ascomplementary slackness:

if fi(x∗) < 0 thenλi = 0.

if λi > 0 thenfi(x∗) = 0.
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Karush-Kuhn-Tucker optimality conditions

If f0, fi are convex and differentiable, thenx, λ are optimal and the

duality gap is zero iff

1. Primal feasibility:fi(x) ≤ 0.

2. Dual feasibility:λi ≥ 0.

3. Complementary slackness:λifi(x) = 0.

4. Stationarity:∇f0(x) +
∑

i λi∇fi(x) = 0.
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Support vector machines

min
θ

1

2
‖θ‖2

s.t. yiθ
Txi ≥ 1, i = 1, 2, . . . , n.

L(θ, α) =
1

2
‖θ‖2 +

n
∑

i=1

αi(1− yiθ
′xi)

g(α) = inf
θ
L(θ, α)

setting θ∗ =
n
∑

i=1

αiyixi,

g(α) =

n
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjx
′
ixj .
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Support vector machines

If there is a primal feasible point, we can find a strictly feasible point, so

we have strong duality.

Notice that we can express the optimalθ∗ in terms of the dual solution,

α∗, to

max
α

n
∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjx
′
ixj

s.t. αi ≥ 0, i = 1, 2, . . . , n.
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Support vector machines

Complementary slackness tells us about the role of theαi:

αi > 0 impliesyiθ
∗′xi = 1,

yiθ
′xi > 1 impliesαi = 0.

That is, only the points for which the constraints are tight (“support

vectors”) appear in the sum definingθ∗. (PICTURE)
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Support vector machines

As with the perceptron algorithm, we can express the solution in terms of
an arbitrary kernelk:

fn(x) = sign (〈θ,Φ(x)〉)

= sign

(

n
∑

i=1

αiyi 〈Φ(xi),Φ(x)〉

)

= sign

(

n
∑

i=1

αiyik(xi, x)

)

,

whereα solves the dual problem

min
α

1

2
αT diag(y)K diag(y)α− αT 1

s.t. α ≥ 0.
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Another interpretation

We can write the SVM as an equivalent optimization problem, and the

dual leads to an alternative interpretation:

max
θ,γ

γ

s.t. yiθ
Txi ≥ γ, i = 1, 2, . . . , n.

‖θ‖2 ≤ 1.

L(θ, γ, λ, β) = −γ +
n
∑

i=1

λi(γ − yiθ
′xi) + β(‖θ‖2 − 1)
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Another interpretation

g(λ, β) = inf
θ,γ

L(θ, γ, λ, β)

setting θ∗ =
1

2β

n
∑

i=1

λiyixi and
n
∑

i=1

λi = 1

gives g(λ, β) = −
1

4β

∑

i,j

λiλjyiyjx
T
i xj − β.

i.e., min
λ,β

1

4β

∥

∥

∥

∥

∥

∑

i

λiyixi

∥

∥

∥

∥

∥

2

+ β

s.t.
∑

i

λi = 1, λi ≥ 0, β ≥ 0.
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Another interpretation

We can find the optimalβ and simplify this to

min
λ

∥

∥

∥

∥

∥

∑

i

λiyixi

∥

∥

∥

∥

∥

s.t.
∑

i

λi = 1, λi ≥ 0.

And we have that the solution is

θ∗ =

∑

i λiyixi

‖
∑

i λiyixi‖
,

which is the vector in the direction of the smallest element of

co {yixi : i = 1, . . . , n} .

(PICTURE)
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