CS281B/Stat241B. Statistical Learning Theory. Lecture 20.

Peter Bartlett

Overview

- Kernel methods
- Kernels
- Reproducing kernel Hilbert spaces
- Mercer's theorem
- Constructing kernels

Recall: Inner Products

For the perceptron algorithm and its analysis, all we needed was an inner product on some vector space:

$$
\begin{aligned}
& \hat{y}=\operatorname{sign}\left(\sum_{j} \alpha_{j}\left\langle\Phi\left(x_{j}\right), \Phi(x)\right\rangle\right), \\
& \Phi: \mathcal{X} \mapsto \mathcal{V}
\end{aligned}
$$

We don't need to explicitly evaluate $\Phi(x)$, as long as we can evaluate the inner products (which might be much cheaper).

Kernels and inner product spaces

Definition: $k: \mathcal{X}^{2} \rightarrow \mathbb{R}$ is positive semidefinite if, for all n and all $x_{1}, \ldots, x_{n} \in \mathcal{X}$, the Gram matrix $K \in \mathbb{R}^{n \times n}$ defined by $K_{i j}=k\left(x_{i}, x_{j}\right)$-is positive semidefinite.

Definition: $k: \mathcal{X}^{2} \rightarrow \mathbb{R}$ is a kernel if it is

1. Symmetric: $k(u, v)=k(v, u)$, and
2. Positive semidefinite: every Gram matrix $K_{i j}=k\left(x_{i}, x_{j}\right)$ is positive semidefinite.

Kernels and inner product spaces

Theorem: If k is a kernel, then there is an inner product space \mathcal{F} and a feature map Φ such that $k(u, v)=\langle\Phi(u), \Phi(v)\rangle$.

Consider:

$$
\begin{aligned}
\Phi(x) & :=k(\cdot, x), \\
\mathcal{F} & :=\operatorname{span}\{\Phi(x): x \in \mathcal{X}\}, \\
\left\langle\sum_{i} \alpha_{i} \Phi\left(u_{i}\right), \sum_{j} \beta_{j} \Phi\left(v_{j}\right)\right\rangle & :=\sum_{i, j} \alpha_{i} \beta_{j} k\left(u_{i}, v_{j}\right) .
\end{aligned}
$$

Kernels and inner product spaces

We can augment this inner product space a little, by including all the limit points, i.e., making it complete (wrt the metric

$$
\|f-g\|=\sqrt{\langle f-g, f-g\rangle}):
$$

Definition: A metric space \mathcal{F} is complete if every Cauchy sequence (ie: elements approach each other) converges to an $f \in \mathcal{F}$.
A Hilbert space is an inner product space that is a complete metric space wrt the norm induced by the inner product.

Kernels and reproducing kernel Hilbert spaces

Definition: A reproducing kernel Hilbert space is a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$, with a reproducing kernel $k: \mathcal{X}^{2} \rightarrow \mathbb{R}$, that is, the span of $\{k(\cdot, x): x \in \mathcal{X}\}$ is dense in \mathcal{H}, and $k(x, \cdot) \in \mathcal{H}$ is the point evaluation function for \mathcal{H} : $f(x)=\langle k(x, \cdot), f\rangle$.

Kernels and reproducing kernel Hilbert spaces

- For our construction of a Hilbert space \mathcal{H} from a kernel k, it's easy to check that k is the reproducing kernel of the Hilbert space, and that \mathcal{H} is unique.
- There are alternative (equivalent) ways of define an RKHS.
- Not all Hilbert spaces have a reproducing kernel.

Mercer's Theorem

Fix a symmetric function $k: \mathcal{X}^{2} \rightarrow \mathbb{R}$ on a compact set $\mathcal{X} \subset \mathbb{R}^{d}$, and consider the integral operator $T_{k}: L_{2}(\mathcal{X}) \rightarrow L_{2}(\mathcal{X})$ defined as

$$
T_{k} f(\cdot)=\int_{\mathcal{X}} k(\cdot, x) f(x) d x
$$

We say T_{k} is positive semidefinite if, for all $f \in L_{2}(\mathcal{X})$, $\left\langle f, T_{k} f\right\rangle_{L_{2}(\mathcal{X})} \geq 0$, that is,

$$
\int_{\mathcal{X}^{2}} k(u, v) f(u) f(v) d u d v \geq 0
$$

Mercer's Theorem

Theorem: If k is continuous and T_{k} is positive semidefinite, then T_{k} has eigenfunctions $\psi_{i} \in L_{2}(\mathcal{X})$ (say $\left\|\psi_{i}\right\|_{L_{2}}=1$) with eigenvalues $\lambda_{i} \geq 0$, and for all $u, v \in \mathcal{X}$, we can write

$$
k(u, v)=\sum_{i=1}^{\infty} \lambda_{i} \psi_{i}(u) \psi_{i}(v)
$$

Furthermore, this series converges uniformly.

Mercer's Theorem: finite-dimensional analog

Consider the finite-dimensional analog: Write $K_{i, j}=k\left(x_{i}, x_{j}\right)$; identify $f \in \mathbb{R}^{\mathcal{X}}$ with a vector $f=\left(f_{1}, \ldots, f_{n}\right) \in \mathbb{R}^{n}$. Then

$$
\left(T_{k} f\right)(\cdot)=\sum_{i=1}^{n} k\left(\cdot, x_{i}\right) f_{i},
$$

so for all $f \in \mathbb{R}^{n}$,

$$
f^{T} K f \geq 0 .
$$

Mercer's Theorem: finite-dimensional analog

That is, K is positive semidefinite, so we can write it as

$$
K=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}
$$

with $\lambda_{i} \geq 0$. Then we have

$$
\begin{aligned}
k\left(x_{i}, x_{j}\right) & =K_{i j} \\
& =\left(V \Lambda V^{T}\right)_{i j} \\
& =\sum_{t=1}^{n} \lambda_{t} v_{t i} v_{t j} \\
& =\sum_{t=1}^{n} \lambda_{t} \psi_{t}\left(x_{i}\right) \psi_{t}\left(x_{j}\right)
\end{aligned}
$$

where $\psi_{t}: \mathcal{X} \rightarrow \mathbb{R}$ is given by $\psi_{t}\left(x_{i}\right)=v_{t, i}$.

Mercer's Theorem

Mercer's theorem gives another representation of k as an inner product, this time with feature map

$$
\Psi(x)=\left(\begin{array}{c}
\psi_{1}(x) \\
\vdots \\
\psi_{n}(x)
\end{array}\right)
$$

Notice that T_{k} is positive semidefinite iff for all $x_{1}, \ldots, x_{n} \in \mathcal{X}$ the Gram matrix K is positive semidefinite. So we have another characterization.

Kernels

Theorem: For $\mathcal{X} \subset \mathbb{R}^{d}$ compact and $k: \mathcal{X}^{2} \rightarrow \mathbb{R}$ continuous and symmetric, the following are equivalent:

1. Every Gram matrix is positive semidefinite.
2. The integral operator T_{k} is positive semidefinite.
3. We can express k as

$$
k(u, v)=\sum_{i} \lambda_{i} \psi_{i}(u) \psi_{i}(v)
$$

for fixed $\lambda_{i} \geq 0$ and $\psi_{i}: \mathcal{X} \rightarrow \mathbb{R}$.
4. k is the reproducing kernel of an RKHS on \mathcal{X}.

Mercer's Theorem

Notes:

- We have seen two representations of $k(u, v)$ as an inner product $k(u, v)=\langle\Phi(u), \Phi(v)\rangle:$

$$
\begin{aligned}
& \Phi_{1}(u)=k(\cdot, u) \\
& \Phi_{2}(u)=\left(\begin{array}{c}
\sqrt{\lambda_{1}} \psi_{1}(u) \\
\sqrt{\lambda_{2}} \psi_{2}(u) \\
\vdots
\end{array}\right) \quad\left\langle\Phi_{2}(u), \Phi_{2}(v)\right\rangle=\sum_{i} \lambda_{i} \psi_{i}(u) \psi_{i}(v) .
\end{aligned}
$$

So they are not unique.

- Computing a kernel k is equivalent to computing inner products, in what might be an infinite-dimensional space.

Mercer's Theorem

- An infinite-dimensional RKHS is approximated by a finite-dimensional subspace, since we have uniform absolute convergence:

$$
\lim _{n \rightarrow \infty} \sup _{u, v \in \mathcal{X}}\left|k(u, v)-\sum_{i=1}^{n} \lambda_{i} \psi_{i}(u) \psi_{i}(v)\right|=0
$$

Constructing Kernels

If k_{1} and k_{2} are kernels on \mathcal{X}, then the following are also kernels:

1. $k(u, v)=a_{1} k_{1}(u, v)+a_{2} k_{2}(u, v)\left(\right.$ for $\left.a_{1}, a_{2} \geq 0\right)$.
2. $k(u, v)=k_{1}(u, v) k_{2}(u, v)$
3. $k(u, v)=k_{1}(f(u), f(v))$, where $f: \mathcal{V} \rightarrow \mathcal{X}$.

Constructing Kernels

4. $k(u, v)=g(u) g(v)$, where $g: \mathcal{X} \rightarrow \mathbb{R}$.
5. $k(u, v)=p\left(k_{1}(u, v)\right)$, where p is a polynomial with positive coefficients.
6. $k(u, v)=\exp \left(k_{1}(u, v)\right)$.
7. $k(u, v)=\exp \left(-\|u-v\|^{2} / 2\right)$.

Translation-invariant kernels

The gaussian kernel is an example of a translation-invariant kernel: $k(u, v)=f(u-v)$, where $f:[-\pi, \pi] \rightarrow \mathbb{R}$ is a continuous, even function. Then we can write

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} \cos (n x) \quad\left(a_{n} \geq 0\right) \\
k(u, v) & =\sum_{n=0}^{\infty} a_{n}(\sin (n u) \sin (n v)+\cos (n u) \cos (n v)) \\
& =\sum_{n=0}^{\infty} \lambda_{n} \psi_{n}(u) \psi_{n}(v)
\end{aligned}
$$

where

$$
\left\{\psi_{i}(u)\right\}=\{1, \sin (u), \cos (u), \sin (2 u), \cos (2 u), \ldots\}
$$

Marginalized kernels

Given a probability distribution P on $\mathcal{X} \times \mathcal{H}$, and a kernel k defined on (x, h) pairs, we can define

$$
k_{M}\left(x, x^{\prime}\right)=\sum_{h, h^{\prime}} k\left((x, h),\left(x^{\prime}, h^{\prime}\right)\right) P(h \mid x) P\left(h^{\prime} \mid x^{\prime}\right)
$$

For example, if x is a graph, and h is a random walk on the graph, and k reflects the similarity of the nodes on the two random walks, this gives a useful (and efficiently computable) approach to computing an inner product between two graphs.

