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Overview

• Kernel methods

− Kernels

− Reproducing kernel Hilbert spaces

− Mercer’s theorem

− Constructing kernels
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Recall: Inner Products

For the perceptron algorithm and its analysis, all we neededwas an inner

product onsome vector space:

ŷ = sign





∑

j

αj〈Φ(xj),Φ(x)〉



 ,

Φ : X 7→ V .

We don’t need to explicitly evaluateΦ(x), as long as we can evaluate the

inner products (which might be much cheaper).
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Kernels and inner product spaces

Definition: k : X 2 → R is positive semidefiniteif, for all

n and allx1, . . . , xn ∈ X , the Gram matrix K ∈ R
n×n—

defined byKij = k(xi, xj)—is positive semidefinite.

Definition: k : X 2 → R is akernel if it is

1. Symmetric:k(u, v) = k(v, u), and

2. Positive semidefinite: every Gram matrixKij = k(xi, xj)

is positive semidefinite.
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Kernels and inner product spaces

Theorem: If k is a kernel, then there is an inner product spaceF and a

feature mapΦ such thatk(u, v) = 〈Φ(u),Φ(v)〉.

Consider: Φ(x) := k(·, x),
F := span {Φ(x) : x ∈ X} ,

〈

∑

i

αiΦ(ui),
∑

j

βjΦ(vj)

〉

:=
∑

i,j

αiβjk(ui, vj).
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Kernels and inner product spaces

We can augment this inner product space a little, by including all the

limit points, i.e., making itcomplete (wrt the metric

‖f − g‖ =
√

〈f − g, f − g〉):

Definition: A metric spaceF is complete if every Cauchy

sequence (ie: elements approach each other) converges to an

f ∈ F .

A Hilbert space is an inner product space that is a complete

metric space wrt the norm induced by the inner product.
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Kernels and reproducing kernel Hilbert spaces

Definition: A reproducing kernel Hilbert space is a Hilbert

spaceH of functionsf : X → R, with a reproducing kernel

k : X 2 → R, that is, the span of{k(·, x) : x ∈ X} is dense

in H, andk(x, ·) ∈ H is the point evaluation function forH:

f(x) = 〈k(x, ·), f〉.
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Kernels and reproducing kernel Hilbert spaces

• For our construction of a Hilbert spaceH from a kernelk, it’s easy to

check thatk is the reproducing kernel of the Hilbert space, and that

H is unique.

• There are alternative (equivalent) ways of define an RKHS.

• Not all Hilbert spaces have a reproducing kernel.
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Mercer’s Theorem

Fix a symmetric functionk : X 2 → R on a compact setX ⊂ R
d, and

consider the integral operatorTk : L2(X ) → L2(X ) defined as

Tkf(·) =
∫

X

k(·, x)f(x) dx.

We sayTk is positive semidefinite if, for allf ∈ L2(X ),

〈f, Tkf〉L2(X ) ≥ 0, that is,
∫

X 2

k(u, v)f(u)f(v) du dv ≥ 0.
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Mercer’s Theorem

Theorem: If k is continuous andTk is positive semidefinite, thenTk has

eigenfunctionsψi ∈ L2(X ) (say‖ψi‖L2
= 1) with eigenvaluesλi ≥ 0,

and for allu, v ∈ X , we can write

k(u, v) =
∞
∑

i=1

λiψi(u)ψi(v).

Furthermore, this series converges uniformly.
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Mercer’s Theorem: finite-dimensional analog

Consider the finite-dimensional analog: WriteKi,j = k(xi, xj); identify

f ∈ R
X with a vectorf = (f1, . . . , fn) ∈ R

n. Then

(Tkf)(·) =
n
∑

i=1

k(·, xi)fi,

so for allf ∈ R
n,

fTKf ≥ 0.
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Mercer’s Theorem: finite-dimensional analog

That is,K is positive semidefinite, so we can write it as

K =
n
∑

i=1

λiviv
T
i ,

with λi ≥ 0. Then we have

k(xi, xj) = Kij

=
(

V ΛV T
)

ij

=
n
∑

t=1

λtvtivtj

=
n
∑

t=1

λtψt(xi)ψt(xj),

whereψt : X → R is given byψt(xi) = vt,i.
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Mercer’s Theorem

Mercer’s theorem gives another representation ofk as an inner product,

this time with feature map

Ψ(x) =











ψ1(x)
...

ψn(x)











.

Notice thatTk is positive semidefinite iff for allx1, . . . , xn ∈ X the Gram

matrixK is positive semidefinite. So we have another characterization.
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Kernels

Theorem: For X ⊂ R
d compact andk : X 2 → R continuous and

symmetric, the following are equivalent:

1. Every Gram matrix is positive semidefinite.

2. The integral operatorTk is positive semidefinite.

3. We can expressk as

k(u, v) =
∑

i

λiψi(u)ψi(v)

for fixedλi ≥ 0 andψi : X → R.

4. k is the reproducing kernel of an RKHS onX .
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Mercer’s Theorem

Notes:

• We have seen two representations ofk(u, v) as an inner product

k(u, v) = 〈Φ(u),Φ(v)〉:

Φ1(u) = k(·, u) 〈k(·, u), k(·, v)〉 = k(u, v)

Φ2(u) =











√
λ1ψ1(u)

√
λ2ψ2(u)

...











〈Φ2(u),Φ2(v)〉 =
∑

i

λiψi(u)ψi(v).

So they are not unique.

• Computing a kernelk is equivalent to computing inner products, in

what might be an infinite-dimensional space.
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Mercer’s Theorem

• An infinite-dimensional RKHS is approximated by a

finite-dimensional subspace, since we have uniform absolute

convergence:

lim
n→∞

sup
u,v∈X

∣

∣

∣

∣

∣

k(u, v)−
n
∑

i=1

λiψi(u)ψi(v)

∣

∣

∣

∣

∣

= 0.
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Constructing Kernels

If k1 andk2 are kernels onX , then the following are also kernels:

1. k(u, v) = a1k1(u, v) + a2k2(u, v) (for a1, a2 ≥ 0).

2. k(u, v) = k1(u, v)k2(u, v)

3. k(u, v) = k1(f(u), f(v)), wheref : V → X .
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Constructing Kernels

4. k(u, v) = g(u)g(v), whereg : X → R.

5. k(u, v) = p(k1(u, v)), wherep is a polynomial with positive

coefficients.

6. k(u, v) = exp(k1(u, v)).

7. k(u, v) = exp
(

−‖u− v‖2/2
)

.
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Translation-invariant kernels

The gaussian kernel is an example of a translation-invariant kernel:

k(u, v) = f(u− v), wheref : [−π, π] → R is a continuous, even

function. Then we can write

f(x) =
∞
∑

n=0

an cos(nx) (an ≥ 0)

k(u, v) =
∞
∑

n=0

an (sin(nu) sin(nv) + cos(nu) cos(nv))

=
∞
∑

n=0

λnψn(u)ψn(v),

where {ψi(u)} = {1, sin(u), cos(u), sin(2u), cos(2u), . . .}.
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Marginalized kernels

Given a probability distributionP onX ×H, and a kernelk defined on

(x, h) pairs, we can define

kM (x, x′) =
∑

h,h′

k((x, h), (x′, h′))P (h|x)P (h′|x′).

For example, ifx is a graph, andh is a random walk on the graph, andk

reflects the similarity of the nodes on the two random walks, this gives a

useful (and efficiently computable) approach to computing an inner

product between two graphs.

20


