Recall: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

Define $\Phi_0 = R$, $\Phi_t = \Phi_{t-1} + \eta \ell_t$, so that $a_{t+1} = \arg \min_{a \in \mathcal{A}} \Phi_t(a)$.

If we replace ℓ_t by $\nabla \ell_t(a_t)$, this leads to an upper bound on regret. Thus, we can assume linear ℓ_t.
Recall: Bregman Divergence

Definition 1. For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)).$$

For linear ℓ_t, $D_{\Phi_t} = D_R$.
Recall: Properties of Regularization Methods

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision. Constrained minimization is equivalent to unconstrained, followed by Bregman projection:

Theorem:

\[
\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a) \\
= \arg\min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right). \\

a_{t+1} = \arg\min_{a \in \mathcal{A}} \Phi_t(a) \\
= \Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}).
\]
Recall: Linear Loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret. Thus, we can work with linear ℓ_t.

(And then $D_{\Phi_t} = D_{\mathcal{R}}$.)
Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem: The decisions

\[
\tilde{a}_{t+1} = \arg \min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^{t} g_s \cdot a + R(a) \right)
\]

can be written

\[
\tilde{a}_{t+1} = (\nabla R)^{-1} (\nabla R(\tilde{a}_t) - \eta g_t).
\]

This corresponds to first mapping from \(\tilde{a}_t \) through \(\nabla R \), then taking a step in the direction \(-g_t \), then mapping back through \((\nabla R)^{-1} = \nabla R^* \) to \(\tilde{a}_{t+1} \).
Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization and Bregman divergences
5. **Regret bounds**
 - Unconstrained minimization
 - Seeing the future
 - Strong convexity
 - Examples (gradient, exponentiated gradient)
 - Extensions
Regularization Methods: Regret

Theorem: For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret against any $a \in \mathcal{A}$ of

$$
\sum_{t=1}^{n} \ell_t(a_t) - \sum_{t=1}^{n} \ell_t(a) = \frac{D_R(a, a_1) - D_{\phi_n}(a, a_{n+1})}{\eta} + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}),
$$

and thus

$$
\hat{L}_n \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).
$$

So the sizes of the steps $D_{\Phi_t}(a_t, a_{t+1})$ determine the regret bound.
Regret: Proof

\[D_{\Phi_t}(a, a_{t+1}) = \Phi_t(a) - \left(\Phi_t(a_{t+1}) + \nabla \Phi_t(a_{t+1}) \cdot (a - a_{t+1}) \right) = 0 \]

\[= \Phi_t(a) - \Phi_t(a_{t+1}). \]

Also, \(\eta \ell_t(a) = \Phi_t(a) - \Phi_{t-1}(a). \)

\[\eta (\ell_t(a_t) - \ell_t(a)) \]
\[= \Phi_t(a_t) - \Phi_{t-1}(a_t) - (\Phi_t(a) - \Phi_{t-1}(a)) \]
\[= \Phi_t(a_t) - \Phi_t(a_{t+1}) + \Phi_t(a_{t+1}) - \Phi_t(a) + \Phi_{t-1}(a) - \Phi_{t-1}(a_t) \]
\[= D_{\Phi_t}(a_t, a_{t+1}) - D_{\Phi_t}(a, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t). \]
Regret: Proof

\[\eta \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \]

\[= \sum_{t=1}^{n} (D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_{t-1}}(a, a_t) - D_{\Phi_t}(a, a_{t+1})) \]

\[= \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}) + D_{\Phi_0}(a, a_1) - D_{\Phi_n}(a, a_{n+1}) \]

\[= \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}) + D_R(a, a_1) - D_{\Phi_n}(a, a_{n+1}) \]

\[\leq \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}) + D_R(a, a_1). \]
Regularization Methods: Regret

Theorem: For $\mathcal{A} = \mathbb{R}^d$, regularized minimization suffers regret

$$\hat{L}_n \leq \inf_{a \in \mathbb{R}^d} \left(\sum_{t=1}^{n} \ell_t(a) + \frac{D_R(a, a_1)}{\eta} \right) + \frac{1}{\eta} \sum_{t=1}^{n} D_{\Phi_t}(a_t, a_{t+1}).$$

Notice that we can write

$$D_{\Phi_t}(a_t, a_{t+1}) = D_{\Phi_t^*}(\nabla \Phi_t(a_{t+1}), \nabla \Phi_t(a_t))$$

$$= D_{\Phi_t^*}(0, \nabla \Phi_{t-1}(a_t) + \eta \nabla \ell_t(a_t))$$

$$= D_{\Phi_t^*}(0, \eta \nabla \ell_t(a_t)).$$

So it is the size of the gradient steps, $D_{\Phi_t^*}(0, \eta \nabla \ell_t(a_t))$, that determines the regret.
Regularization Methods: Regret Bounds

Example: Suppose $R = \frac{1}{2} \| \cdot \|^2$. Then we have

$$\hat{L}_n \leq L_n^* + \frac{\|a^* - a_1\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|g_t\|^2.$$

And if $\|g_t\| \leq G$ and $\|a^* - a_1\| \leq D$, choosing η appropriately gives $\hat{L}_n - L_n^* \leq DG\sqrt{n}$.
Regularization Methods: Regret Bounds

Seeing the future gives small regret:

Theorem: For regularized minimization, that is,

\[
a_{t+1} = \arg\min_{a \in A} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right),
\]

for all \(a \in \mathcal{A} \),

\[
\sum_{t=1}^{n} \ell_t(a_{t+1}) - \sum_{t=1}^{n} \ell_t(a) \leq \frac{1}{\eta} (R(a) - R(a_1)).
\]
Proof. Since a_{t+1} minimizes Φ_t,

$$
\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \geq \eta \sum_{s=1}^{t} \ell_s(a_{t+1}) + R(a_{t+1})
$$

$$
= \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_{t+1}) + R(a_{t+1})
$$

$$
\geq \eta \ell_t(a_{t+1}) + \eta \sum_{s=1}^{t-1} \ell_s(a_t) + R(a_t)
$$

$$
\vdots
$$

$$
\geq \eta \sum_{s=1}^{t} \ell_s(a_{s+1}) + R(a_1).
$$
Regularization Methods: Regret Bounds

Thus, if a_t and a_{t+1} are close, then regret is small:

Corollary: For all $a \in A$,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a_{t+1})) + \frac{1}{\eta} (R(a) - R(a_1)).$$

So how can we control the increments $\ell_t(a_t) - \ell_t(a_{t+1})$?
Regularization Methods: Regret Bounds

Definition: We say R is strongly convex wrt a norm $\| \cdot \|$ if, for all a, b,

$$R(a) \geq R(b) + \nabla R(b) \cdot (a - b) + \frac{1}{2}\|a - b\|^2.$$

For linear losses and strongly convex regularizers, the dual norm of the gradient is small:

Theorem: If R is strongly convex wrt a norm $\| \cdot \|$, and $\ell_t(a) = g_t \cdot a$, then

$$\|a_t - a_{t+1}\| \leq \eta \|g_t\|_*,$$

where $\| \cdot \|_*$ is the dual norm to $\| \cdot \|$:

$$\|v\|_* = \sup\{|v \cdot a| : a \in A, \|a\| \leq 1\}.$$
Regularization Methods: Regret Bounds

Proof.

\[R(a_t) \geq R(a_{t+1}) + \nabla R(a_{t+1}) \cdot (a_t - a_{t+1}) + \frac{1}{2} \|a_t - a_{t+1}\|^2, \]

\[R(a_{t+1}) \geq R(a_t) + \nabla R(a_t) \cdot (a_{t+1} - a_t) + \frac{1}{2} \|a_t - a_{t+1}\|^2. \]

Combining,

\[\|a_t - a_{t+1}\|^2 \leq (\nabla R(a_t) - \nabla R(a_{t+1})) \cdot (a_t - a_{t+1}) \]

Hence,

\[\|a_t - a_{t+1}\| \leq \|\nabla R(a_t) - \nabla R(a_{t+1})\|_* = \|\eta g_t\|_* \]

\[\square \]
This leads to the regret bound:

Corollary: For linear losses, if R is strongly convex wrt $\| \cdot \|$, then for all $a \in A$,

$$
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \eta \sum_{t=1}^{n} \| g_t \|_*^2 + \frac{1}{\eta} (R(a) - R(a_1)).
$$

Thus, for $\| g_t \|_* \leq G$ and $R(a) - R(a_1) \leq D^2$, choosing η appropriately gives regret no more than $2GD\sqrt{n}$.
Regularization Methods: Regret Bounds

Example: Consider $R(a) = \frac{1}{2} \|a\|^2$, $a_1 = 0$, and \mathcal{A} contained in a Euclidean ball of diameter D.

Then R is strongly convex wrt $\| \cdot \|$ and $\| \cdot \|^* = \| \cdot \|$. And the mapping between primal and dual spaces is the identity.

So if $\sup_{a \in \mathcal{A}} \| \nabla \ell_t(a) \| \leq G$, then regret is no more than $2GD\sqrt{n}$.
Regularization Methods: Regret Bounds

Example: Consider \(\mathcal{A} = \Delta^m \), \(R(a) = \sum_i a_i \ln a_i \). Then the mapping between primal and dual spaces is \(\nabla R(a) = \ln(a) + 1 \) (component-wise). And the divergence is the KL divergence,

\[
D_R(a, b) = \sum_i a_i \ln(a_i/b_i).
\]

And \(R \) is strongly convex wrt \(\| \cdot \|_1 \).

Suppose that \(\|g_t\|_{\infty} \leq 1 \). Also, \(R(a) - R(a_1) \leq \ln m \), so the regret is no more than \(2\sqrt{n \ln m} \).
Example: \(\mathcal{A} = \Delta^m, R(a) = \sum_i a_i \ln a_i. \)

What are the updates?

\[
a_{t+1} = \Pi^R_{\mathcal{A}}(\tilde{a}_{t+1}) \\
= \Pi^R_{\mathcal{A}}(\nabla R^*(\nabla R(\tilde{a}_t) - \eta g_t)) \\
= \Pi^R_{\mathcal{A}}(\nabla R^*(\ln(\tilde{a}_t \exp(-\eta g_t)) + 1) \\
= \Pi^R_{\mathcal{A}}(\tilde{a}_t \exp(-\eta g_t)),
\]

where the \(\ln \) and \(\exp \) functions are applied component-wise. This is exponentiated gradient: mirror descent with \(\nabla R = 1 + \ln. \)

It is easy to check that the projection corresponds to normalization, \(\Pi^R_{\mathcal{A}}(\tilde{a}) = \tilde{a}/\|a\|_1. \)
Notice that when the losses are linear, exponentiated gradient is exactly the exponential weights strategy we discussed for a finite comparison class ("experts").

Compare $R(a) = \sum_i a_i \ln a_i$ with $R(a) = \frac{1}{2} \|a\|^2$, for $\|g_t\|_\infty \leq 1$, $\mathcal{A} = \Delta^m$:

$O(\sqrt{n \ln m})$ versus $O(\sqrt{mn})$.