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Recall: Online Prediction

• Repeated game:

Decision method playsat ∈ A

World revealsℓt ∈ L

• Minimax regret is the value of the game:

min
a1∈A

max
ℓ1∈L

· · · min
an∈A

max
ℓn∈L

(

L̂n − L∗
n

)

.

2



Online Convex Optimization

1. Problem formulation

2. Empirical minimization fails.

3. Gradient algorithm.

4. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss and
divergence from previous decision

• Constrained minimization equivalent to unconstrained plus
Bregman projection

• Linearization

• Mirror descent

5. Regret bounds
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Recall: A Regularization Viewpoint

• Supposeℓt is linear:ℓt(a) = gt · a, andA = R
d.

• Then we can view the gradient step

at+1 = at − η∇ℓt(at)

as minimizing the regularized criterion

at+1 = argmin
a∈A

(

η

t
∑

s=1

ℓs(a) +
1

2
‖a‖2

)

.
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Recall: Regularization

Regularized minimization

Consider the family of strategies of the form:

at+1 = argmin
a∈A

(

η

t
∑

s=1

ℓs(a) +R(a)

)

.

The regularizerR : Rd → R is strictly convex and differentiable.

• R keeps the sequence ofats stable: it diminishesℓt’s influence.

• We can view the choice ofat+1 as trading off two competing forces:

makingℓt(at+1) small, and keepingat+1 close toat.
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Recall: Regularization

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance tothe previous
decision. The appropriate notion of distance is theBregman divergence
DΦt−1

:

Define

Φ0 = R,

Φt = Φt−1 + ηℓt,

so that

at+1 = argmin
a∈A

(

η

t
∑

s=1

ℓs(a) + R(a)

)

= argmin
a∈A

Φt(a).
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Recall: Bregman Divergence

Definition 1. For a strictly convex, differentiableΦ : Rd → R, the

Bregman divergence wrtΦ is defined, fora, b ∈ R
d, as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference betweenΦ(a) and the value ata of the linear

approximation ofΦ aboutb. (PICTURE)

Example:

• Φ(a) = 1

2
‖a‖2: DΦ(a, b) =

1

2
‖a− b‖2.
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Bregman Divergence

Example: Fora ∈ [0,∞)d, the unnormalized negative entropy,Φ(a) =
∑d

i=1
ai (ln ai − 1), has

DΦ(a, b) =
∑

i

(ai(ln ai − 1)− bi(ln bi − 1)− ln bi(ai − bi))

=
∑

i

(

ai ln
ai

bi
+ bi − ai

)

,

the unnormalized KL divergence.

Thus, fora ∈ ∆d, Φ(a) =
∑

i
ai ln ai has

DΦ(a, b) =
∑

i

ai ln
ai

bi
.
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Bregman Divergence

When the domain ofΦ is A ⊂ R
d, in addition to differentiability and

strict convexity, we make two more assumptions:

• The interior ofA is convex,

• For a sequence approaching the boundary ofA, ‖∇Φ(an)‖ → ∞.

We say that such aΦ is aLegendre function.
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Bregman Divergence Properties

1. DΦ ≥ 0, DΦ(a, a) = 0.

2. DA+B = DA +DB.

3. Forℓ linear,DΦ+ℓ = DΦ.

4. Bregman projection, ΠΦ
A(b) = argmina∈ADΦ(a, b) is uniquely

defined for closed, convexA.

5. Generalized Pythagorus: for closed, convexA, a∗ = ΠΦ
A(b), a ∈ A,

DΦ(a, b) ≥ DΦ(a, a
∗) +DΦ(a

∗, b).

6. ∇aDΦ(a, b) = ∇Φ(a)−∇Φ(b).

7. ForΦ∗ the Legendre dual ofΦ,

∇Φ∗ = (∇Φ)
−1

,

DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).
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Legendre Dual

Here, for a Legendre functionΦ : A → R, we define the Legendre dual as

Φ∗(u) = sup
v∈A

(u · v − Φ(v)) .

(http://maze5.net/)
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Legendre Dual

Properties:

• Φ∗ is Legendre.

• dom(Φ∗) = ∇Φ(int domΦ).

• ∇Φ∗ = (∇Φ)−1.

• DΦ(a, b) = DΦ∗(∇Φ(b),∇Φ(a)).

• Φ∗∗ = Φ.
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance (Bregman

divergence) to the previous decision.

Theorem: Defineã1 via ∇R(ã1) = 0, and set

ãt+1 = arg min
a∈Rd

(

ηℓt(a) +DΦt−1
(a, ãt)

)

.

Then

ãt+1 = arg min
a∈Rd

(

η

t
∑

s=1

ℓs(a) +R(a)

)

.
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Properties of Regularization Methods

Proof. By the definition ofΦt,

ηℓt(a) +DΦt−1
(a, ãt) = Φt(a)− Φt−1(a) +DΦt−1

(a, ãt).

The derivative wrta is

∇Φt(a)−∇Φt−1(a) +∇aDΦt−1
(a, ãt)

= ∇Φt(a)−∇Φt−1(a) +∇Φt−1(a)−∇Φt−1(ãt)

Setting to zero shows that

∇Φt(ãt+1) = ∇Φt−1(ãt) = · · · = ∇Φ0(ã1) = ∇R(ã1) = 0,

So ãt+1 minimizesΦt.
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Properties of Regularization Methods

Constrained minimization is equivalent to unconstrained minimization,

followed by Bregman projection:

Theorem: For

at+1 = argmin
a∈A

Φt(a),

ãt+1 = arg min
a∈Rd

Φt(a),

we have

at+1 = ΠΦt

A
(ãt+1).
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Properties of Regularization Methods

Proof. Let a′t+1 denoteΠΦt

A
(ãt+1). First, by definition ofat+1,

Φt(at+1) ≤ Φt(a
′
t+1).

Conversely,

DΦt
(a′t+1, ãt+1) ≤ DΦt

(at+1, ãt+1).

But ∇Φt(ãt+1) = 0, so

DΦt
(a, ãt+1) = Φt(a)− Φt(ãt+1).

Thus,Φt(a
′
t+1) ≤ Φt(at+1).
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Properties of Regularization Methods

Example: For linearℓt, regularized minimization is equivalent to min-

imizing the last loss plus the Bregman divergencewrt R to the previous

decision:

argmin
a∈A

(

η

t
∑

s=1

ℓs(a) +R(a)

)

= ΠR

A

(

arg min
a∈Rd

(ηℓt(a) +DR(a, ãt))

)

,

because adding a linear function toΦ does not changeDΦ.
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Properties of Regularization Methods: Linear Loss

We can replaceℓt by∇ℓt(at), and this leads to an upper bound on regret.

Theorem: Any strategy for online linear optimization, with regret sat-

isfying
n
∑

t=1

gt · at −min
a∈A

n
∑

t=1

gt · a ≤ Cn(g1, . . . , gn)

can be used to construct a strategy for online convex optimization, with

regret

n
∑

t=1

ℓt(at)−min
a∈A

n
∑

t=1

ℓt(a) ≤ Cn(∇ℓ1(a1), . . . ,∇ℓn(an)).

Proof. Convexity impliesℓt(at)− ℓt(a) ≤ ∇ℓt(at) · (at − a).
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Properties of Regularization Methods: Linear Loss

Key Point:

We can replaceℓt by∇ℓt(at), and this leads to an upper bound on regret.

Thus, we can work withlinearℓt.
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Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed asmirror

descent—taking a gradient step in a dual space:

Theorem: The decisions

ãt+1 = arg min
a∈Rd

(

η

t
∑

s=1

gs · a+R(a)

)

can be written

ãt+1 = (∇R)−1 (∇R(ãt)− ηgt) .

This corresponds to first mapping from̃at through∇R, then taking a step

in the direction−gt, then mapping back through(∇R)−1 = ∇R∗ to

ãt+1.
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Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

∇R(ãt+1) = −η

t
∑

s=1

gs,

∇R(ãt) = −η

t−1
∑

s=1

gs,

so∇R(ãt+1) = ∇R(ãt)− ηgt, which can be written

ãt+1 = ∇R−1 (∇R(ãt)− ηgt) .
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