CS281B/Stat241B. Statistical Learning Theory. Lecture 16.

Peter Bartlett

Recall: Online Prediction

• Repeated game:

Decision method plays $a_t \in \mathcal{A}$

World reveals $\ell_t \in \mathcal{L}$

• Minimax regret is the value of the game:

$$\min_{a_1 \in \mathcal{A}} \max_{\ell_1 \in \mathcal{L}} \cdots \min_{a_n \in \mathcal{A}} \max_{\ell_n \in \mathcal{L}} \left(\hat{L}_n - L_n^* \right).$$

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 5. Regret bounds

Recall: A Regularization Viewpoint

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$, and $\mathcal{A} = \mathbb{R}^d$.
- Then we can view the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t)$$

as minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} ||a||^2 \right)$$

Recall: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R : \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

- R keeps the sequence of a_t s stable: it diminishes ℓ_t 's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making l_t(a_{t+1}) small, and keeping a_{t+1} close to a_t.

Recall: Regularization

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Define

$$\Phi_0 = R,$$

$$\Phi_t = \Phi_{t-1} + \eta \ell_t,$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$
$$= \arg\min_{a \in \mathcal{A}} \Phi_t(a).$$

Recall: Bregman Divergence

Definition 1. For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a,b) = \Phi(a) - \left(\Phi(b) + \nabla \Phi(b) \cdot (a-b)\right).$$

 $D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b. (PICTURE)

Example:

•
$$\Phi(a) = \frac{1}{2} ||a||^2$$
: $D_{\Phi}(a, b) = \frac{1}{2} ||a - b||^2$.

Bregman Divergence

Example: For $a \in [0, \infty)^d$, the unnormalized negative entropy, $\Phi(a) = \sum_{i=1}^d a_i (\ln a_i - 1)$, has

$$D_{\Phi}(a,b) = \sum_{i} \left(a_{i} (\ln a_{i} - 1) - b_{i} (\ln b_{i} - 1) - \ln b_{i} (a_{i} - b_{i}) \right)$$
$$= \sum_{i} \left(a_{i} \ln \frac{a_{i}}{b_{i}} + b_{i} - a_{i} \right),$$

the unnormalized KL divergence.

Thus, for $a \in \Delta^d$, $\Phi(a) = \sum_i a_i \ln a_i$ has

$$D_{\Phi}(a,b) = \sum_{i} a_{i} \ln \frac{a_{i}}{b_{i}}$$

Bregman Divergence

When the domain of Φ is $\mathcal{A} \subset \mathbb{R}^d$, in addition to differentiability and strict convexity, we make two more assumptions:

- The interior of \mathcal{A} is convex,
- For a sequence approaching the boundary of \mathcal{A} , $\|\nabla \Phi(a_n)\| \to \infty$.

We say that such a Φ is a *Legendre function*.

Bregman Divergence Properties

- 1. $D_{\Phi} \ge 0, D_{\Phi}(a, a) = 0.$
- 2. $D_{A+B} = D_A + D_B$.
- 3. For ℓ linear, $D_{\Phi+\ell} = D_{\Phi}$.
- 4. Bregman projection, $\Pi^{\Phi}_{\mathcal{A}}(b) = \arg \min_{a \in \mathcal{A}} D_{\Phi}(a, b)$ is uniquely defined for closed, convex \mathcal{A} .
- 5. Generalized Pythagorus: for closed, convex $\mathcal{A}, a^* = \Pi^{\Phi}_{\mathcal{A}}(b), a \in \mathcal{A},$ $D_{\Phi}(a, b) \ge D_{\Phi}(a, a^*) + D_{\Phi}(a^*, b).$

6.
$$\nabla_a D_{\Phi}(a, b) = \nabla \Phi(a) - \nabla \Phi(b).$$

7. For Φ^* the Legendre dual of Φ ,

$$\nabla \Phi^* = (\nabla \Phi)^{-1},$$
$$D_{\Phi}(a, b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$$

Legendre Dual

Here, for a Legendre function $\Phi : \mathcal{A} \to \mathbb{R}$, we define the Legendre dual as

$$\Phi^*(u) = \sup_{v \in \mathcal{A}} \left(u \cdot v - \Phi(v) \right).$$

Legendre Dual

Properties:

- Φ^* is Legendre.
- $\operatorname{dom}(\Phi^*) = \nabla \Phi(\operatorname{int} \operatorname{dom} \Phi).$
- $\nabla \Phi^* = (\nabla \Phi)^{-1}$.
- $D_{\Phi}(a,b) = D_{\Phi^*}(\nabla \Phi(b), \nabla \Phi(a)).$

•
$$\Phi^{**} = \Phi$$
.

In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance (Bregman divergence) to the previous decision.

Theorem: Define \tilde{a}_1 via $\nabla R(\tilde{a}_1) = 0$, and set

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) \right).$$

Then

$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \left(\eta \sum_{s=1}^t \ell_s(a) + R(a) \right)$$

Proof. By the definition of Φ_t ,

$$\eta \ell_t(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t) = \Phi_t(a) - \Phi_{t-1}(a) + D_{\Phi_{t-1}}(a, \tilde{a}_t).$$

The derivative wrt a is

$$\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla_a D_{\Phi_{t-1}}(a, \tilde{a}_t)$$

= $\nabla \Phi_t(a) - \nabla \Phi_{t-1}(a) + \nabla \Phi_{t-1}(a) - \nabla \Phi_{t-1}(\tilde{a}_t)$

Setting to zero shows that

$$\nabla \Phi_t(\tilde{a}_{t+1}) = \nabla \Phi_{t-1}(\tilde{a}_t) = \dots = \nabla \Phi_0(\tilde{a}_1) = \nabla R(\tilde{a}_1) = 0,$$

So \tilde{a}_{t+1} minimizes Φ_t .

Constrained minimization is equivalent to unconstrained minimization, followed by Bregman projection:

Theorem: For

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \Phi_t(a),$$
$$\tilde{a}_{t+1} = \arg\min_{a \in \mathbb{R}^d} \Phi_t(a),$$

we have

$$a_{t+1} = \Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1}).$$

Proof. Let a'_{t+1} denote $\Pi_{\mathcal{A}}^{\Phi_t}(\tilde{a}_{t+1})$. First, by definition of a_{t+1} , $\Phi_t(a_{t+1}) \leq \Phi_t(a'_{t+1})$.

Conversely,

$$D_{\Phi_t}(a'_{t+1}, \tilde{a}_{t+1}) \le D_{\Phi_t}(a_{t+1}, \tilde{a}_{t+1}).$$

But $\nabla \Phi_t(\tilde{a}_{t+1}) = 0$, so

$$D_{\Phi_t}(a, \tilde{a}_{t+1}) = \Phi_t(a) - \Phi_t(\tilde{a}_{t+1}).$$

Thus, $\Phi_t(a'_{t+1}) \le \Phi_t(a_{t+1})$.

Example: For linear ℓ_t , regularized minimization is equivalent to minimizing the last loss plus the Bregman divergence wrt R to the previous decision:

$$\arg\min_{a\in\mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a)\right)$$
$$= \Pi_{\mathcal{A}}^R \left(\arg\min_{a\in\mathbb{R}^d} \left(\eta \ell_t(a) + D_R(a, \tilde{a}_t)\right)\right),$$

because adding a linear function to Φ does not change D_{Φ} .

Properties of Regularization Methods: Linear Loss

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Theorem: Any strategy for online linear optimization, with regret satisfying

$$\sum_{t=1}^{n} g_t \cdot a_t - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} g_t \cdot a \le C_n(g_1, \dots, g_n)$$

can be used to construct a strategy for online convex optimization, with regret

$$\sum_{t=1}^n \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^n \ell_t(a) \le C_n(\nabla \ell_1(a_1), \dots, \nabla \ell_n(a_n)).$$

Proof. Convexity implies $\ell_t(a_t) - \ell_t(a) \leq \nabla \ell_t(a_t) \cdot (a_t - a)$.

Properties of Regularization Methods: Linear Loss

Key Point:

We can replace ℓ_t by $\nabla \ell_t(a_t)$, and this leads to an upper bound on regret.

Thus, we can work with linear ℓ_t .

Regularization Methods: Mirror Descent

Regularized minimization for linear losses can be viewed as mirror descent—taking a gradient step in a dual space:

Theorem: The decisions

$$\tilde{a}_{t+1} = \arg\min_{a\in\mathbb{R}^d} \left(\eta \sum_{s=1}^t g_s \cdot a + R(a)\right)$$

can be written

$$\tilde{a}_{t+1} = (\nabla R)^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$

This corresponds to first mapping from \tilde{a}_t through ∇R , then taking a step in the direction $-g_t$, then mapping back through $(\nabla R)^{-1} = \nabla R^*$ to \tilde{a}_{t+1} .

Regularization Methods: Mirror Descent

Proof. For the unconstrained minimization, we have

$$\nabla R(\tilde{a}_{t+1}) = -\eta \sum_{s=1}^{t} g_s,$$
$$\nabla R(\tilde{a}_t) = -\eta \sum_{s=1}^{t-1} g_s,$$

so $\nabla R(\tilde{a}_{t+1}) = \nabla R(\tilde{a}_t) - \eta g_t$, which can be written

$$\tilde{a}_{t+1} = \nabla R^{-1} \left(\nabla R(\tilde{a}_t) - \eta g_t \right).$$