Online Prediction

- Repeated game:

 Decision method plays $a_t \in \mathcal{A}$

 World reveals $\ell_t \in \mathcal{L}$

- Cumulative loss: $\hat{L}_n = \sum_{t=1}^{n} \ell_t(a_t)$.

- Aim to minimize regret, that is, perform well compared to the best (in retrospect) from some class:

 $\text{regret} = \sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} \ell_t(a)$.

- Data can be adversarially chosen.
Online Prediction

Minimax regret is the value of the game:

$$\min_{a_1 \in A} \max_{\ell_1 \in \mathcal{L}} \cdots \min_{a_n \in A} \max_{\ell_n \in \mathcal{L}} \left(\hat{L}_n - L_n^* \right).$$

$$\hat{L}_n = \sum_{t=1}^{n} \ell_t(a_t), \quad L_n^* = \min_{a \in A} \sum_{t=1}^{n} \ell_t(a).$$
Online Convex Optimization

1. Problem formulation
2. Empirical minimization fails.
3. Gradient algorithm.
4. Regularized minimization
5. Regret bounds
Online Convex Optimization: Problem Formulation

• $A = \text{convex subset of } \mathbb{R}^d$.
• $\mathcal{L} = \text{set of convex real functions on } A$.

Example:

• $\ell_t(a) = (x_t \cdot a - y_t)^2$.
• $\ell_t(a) = |x_t \cdot a - y_t|$.
• $\ell_t(a) = -\log (\exp(a'T(y_t) - A(a)))$, for $A(a)$ the log normalization of this exponential family, with sufficient statistic $T(y)$.
Online Convex Optimization: Examples

Example: Experts.

\[\mathcal{A} = \Delta^{K-1} = \left\{ w \in \mathbb{R}^K : w_i \geq 0, \sum_i w_i = 1 \right\}, \]

\[\mathcal{L} = \left\{ a \mapsto x^T a : x \in [0, 1]^K \right\} \]

NB: Regret is

\[\sum_{t=1}^{n} a_t^T x_t - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} a^T x_t = \sum_{t=1}^{n} a_t^T x_t - \min_k \sum_{t=1}^{n} x_{t,k}. \]
Example: Online shortest path.
Fix a directed graph $G = (V, E)$, a source $s \in V$ and a sink $t \in V$.
$\mathcal{A} = \Delta^{K-1}$, where K is number of paths from s to t.
Adversary chooses cost function $f_t : E \rightarrow [0, 1]$,
$\ell_t(a) = \mathbb{E}_{p \sim a} \sum_{e \in p} f_t(e)$.

- Navigation; cost is time.
- Scheduling: identify critical path; cost is negative time.
Example: Online shortest path.
Can represent A as a convex subset of \mathbb{R}^E: $a \in [0, 1]^E$ s.t.

$$
\sum_{(i,j) \in E} a_{i,j} - \sum_{(k,i) \in E} a_{k,i} = \begin{cases}
1 & \text{if } i = s, \\
-1 & \text{if } i = t, \\
0 & \text{otherwise}.
\end{cases}
$$

Then $a^T f_t = \mathbb{E}_{p \sim a} \sum_{e \in p} f_t(e) = \ell_t(a)$.
Again, best distribution on paths is best path.
Choosing a_t to minimize past losses, $a_t = \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. ('fictitious play,' ‘follow the leader’)

- Suppose $\mathcal{A} = [-1, 1]$, $\mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$. Consider:

 $a_1 = 0, \quad \ell_1(a) = \frac{1}{2}a,$
 $a_2 = -1, \quad \ell_2(a) = -a,$
 $a_3 = 1, \quad \ell_3(a) = a,$
 $a_4 = -1, \quad \ell_4(a) = -a,$
 $a_5 = 1, \quad \ell_5(a) = a,$
 $\vdots \quad \vdots$

- $a^* = 0$ shows $L_n^* \leq 0$, but $\hat{L}_n = n - 1$.
Online Convex Optimization: Example

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting, just as in probabilistic settings.
- Similar approaches (regularization; Bayesian inference) are applicable in the online setting.
- First approach: gradient steps. Stay close to previous decisions, but move in a direction of improvement.
Online Convex Optimization: Gradient Method

\[a_1 \in A, \]
\[a_{t+1} = \Pi_A (a_t - \eta \nabla \ell_t(a_t)), \]

where \(\Pi_A \) is the Euclidean projection on \(A \),

\[\Pi_A(x) = \arg \min_{a \in A} \|x - a\|. \]

Theorem: For \(G = \max_t \|\nabla \ell_t(a_t)\| \) and \(D = \text{diam}(A) \), the gradient strategy with \(\eta = D/(G\sqrt{n}) \) has regret satisfying

\[\hat{L}_n - L^*_n \leq GD\sqrt{n}. \]
Example: (2-ball, 2-ball)
\[\mathcal{A} = \{a \in \mathbb{R}^d : \|a\| \leq 1\}, \mathcal{L} = \{a \mapsto v \cdot a : \|v\| \leq 1\}. \]
\[D = 2, G \leq 1. \]
Regret is no more than \(2\sqrt{n}\).

(And \(O(\sqrt{n})\) is optimal.)

Example: (1-ball, \(\infty\)-ball)
\[\mathcal{A} = \Delta^{K-1}, \mathcal{L} = \{a \mapsto v \cdot a : \|v\|_{\infty} \leq 1\}. \]
\[D = 2, G \leq \sqrt{K}. \]
Regret is no more than \(2\sqrt{Kn}\).

Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights (\(\sqrt{K}\) versus \(\log K\)).
Gradient Method: Proof

Define
\[\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t), \]
\[a_{t+1} = \Pi_A(\tilde{a}_{t+1}). \]

Fix \(a \in A \) and consider the measure of progress \(\|a_t - a\| \).
\[
\|a_{t+1} - a\|^2 \leq \|\tilde{a}_{t+1} - a\|^2 \\
= \|a_t - a\|^2 + \eta^2 \|\nabla \ell_t(a_t)\|^2 - 2\eta \nabla \ell_t(a_t) \cdot (a_t - a).
\]

By convexity,
\[
\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \leq \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a) \\
\leq \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2
\]
Online Convex Optimization

1. Problem formulation

2. Empirical minimization fails.

3. Gradient algorithm.

4. Regularized minimization
 - Bregman divergence
 - Regularized minimization ⇔ minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection

5. Regret bounds
• Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.

• Suppose $\mathcal{A} = \mathbb{R}^d$.

• Then minimizing the regularized criterion

$$a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} \|a\|^2 \right)$$

corresponds to the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t).$$
Regularized minimization

Consider the family of strategies of the form:

\[a_{t+1} = \arg \min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right). \]

The regularizer \(R : \mathbb{R}^d \to \mathbb{R} \) is strictly convex and differentiable.

- \(R \) keeps the sequence of \(a_t \)'s stable: it diminishes \(\ell_t \)'s influence.
- We can view the choice of \(a_{t+1} \) as trading off two competing forces: making \(\ell_t(a_{t+1}) \) small, and keeping \(a_{t+1} \) close to \(a_t \).
- This is a perspective that motivated many algorithms in the literature. We’ll investigate why regularized minimization can be viewed this way.
In the unconstrained case ($\mathcal{A} = \mathbb{R}^d$), regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$.

Define

$$\Phi_0 = R,$$
$$\Phi_t = \Phi_{t-1} + \eta \ell_t,$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right) = \arg\min_{a \in \mathcal{A}} \Phi_t(a).$$
Bregman Divergence

Definition 1. For a strictly convex, differentiable $\Phi : \mathbb{R}^d \rightarrow \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a, b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a - b)).$$

$D_{\Phi}(a, b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b. (PICTURE)
Example: For \(a \in \mathbb{R}^d \), the squared euclidean norm, \(\Phi(a) = \frac{1}{2} \|a\|^2 \), has

\[
D_\Phi(a, b) = \frac{1}{2} \|a\|^2 - \left(\frac{1}{2} \|b\|^2 + b \cdot (a - b) \right) \\
= \frac{1}{2} \|a - b\|^2,
\]

the squared euclidean norm.