CS281B/Stat241B. Statistical Learning Theory. Lecture 14. Wouter M. Koolen

- Convex losses
- Exp-concave losses
- Mixable losses
- The gradient trick
- Specialists

Today we solve new online learning problems by reducing them to problems/algorithms/analyses we already cracked before.

Prediction with Expert Advice

Prediction with expert advice:

Protocol:

- For t = 1, 2, ...
 - Experts announce actions $a_t^1, \ldots, a_t^K \in \mathcal{A}$.
 - Learner chooses an action $a_t \in \mathcal{A}$.
 - Adversary reveals outcome $x_t \in \mathcal{X}$.
 - Learner incurs loss $\mathcal{L}(a_t, x_t)$.

Goal: small regret w.r.t. best expert.

Convex: Reduction to dot loss

Say $\mathcal{L}(a, x)$ is [0, 1]-bounded and convex in a for each x:

$$\sum_{k=1}^{K} w^{k} \mathcal{L}(a^{k}, x) \geq \mathcal{L}\left(\sum_{k=1}^{K} w^{k} a^{k}, x\right)$$

Then we can feed Hedge $\ell_t^k = \mathcal{L}(a_t^k, x_t)$.

Hedge outputs \boldsymbol{w}_t . Play the mean action $a_t = \sum_{k=1}^{K} w_t^k a_t^k$.

Dot-loss bound translates to convex bounded loss \mathcal{L} .

$$R_T \leq \sqrt{T/2 \ln K}$$

Exp-concave: Reduction to mix loss

Definition: We say $\mathcal{L}(a, x)$ is η -exp-concave in a for each x if

$$\sum_{k=1}^{K} w^{k} e^{-\eta \mathcal{L}(a^{k},x)} \leq e^{-\eta \mathcal{L}\left(\sum_{k=1}^{K} w^{k} a^{k},x\right)}$$

Then we can feed the AA $\ell_t^k = \eta \mathcal{L}(a_t^k, x_t)$.

The AA outputs \boldsymbol{w}_t . Play the mean action $a_t = \sum_{k=1}^K w_t^k a_t^k$.

$$\underbrace{-\ln\left(\sum_{k=1}^{K} w_t^k e^{-\eta \mathcal{L}(a_t^k, x_t)}\right)}_{\text{Mix loss of } \boldsymbol{w}_t \text{ on } \eta \boldsymbol{\ell}_t} \geq \eta \mathcal{L}\left(\sum_{k=1}^{K} w_t^k a_t^k, x_t\right)}_{\text{actual loss}}$$

Mix-loss bound translates to exp-concave loss \mathcal{L} :

$$R_T \leq \frac{\ln K}{\eta}$$

Example: square loss is exp-concave

Let's consider

$$\mathcal{L}(a,x) = (a-x)^2$$

where $\mathcal{A} = \mathcal{X} = [-1, +1]$.

Find η such that \mathcal{L} is η -exp-concave by testing negative second derivative:

$$\frac{\partial^2}{\partial a^2} e^{-\eta (a-x)^2} = \frac{\partial}{\partial a} - 2e^{-\eta (a-x)^2} \eta (a-x)$$
$$= e^{-\eta (a-x)^2} \eta \left(4\eta (a-x)^2 - 2\right)$$

Highest η such that $4\eta(a-x)^2 - 2 \le 0$ for all $a, x. \Rightarrow \eta = 1/8$. For $\mathcal{X} = \mathcal{A} = [-Y, +Y]$ we find $\eta = \frac{1}{8Y^2}$. **Mixable loss: Reduction to mix loss**

Crux: exp-concavity is convenient but too strong.

Definition: We say $\mathcal{L}(a, x)$ is η -mixable if

$$\forall \boldsymbol{w} \forall a^1, \dots, a^K \exists a \forall x \quad \mathcal{L}(a, x) \leq \frac{-1}{\eta} \ln \left(\sum_{k=1}^K w^k e^{-\eta \mathcal{L}(a^k, x)} \right)$$

Mapping from w, a_1, \ldots, a_K to witness a called substitution function.

Mixable losses behave just enough like the mix loss to carry the AA regret bound through.

$$R_T \leq \frac{\ln K}{\eta}$$

Square loss is mixable

Square loss is mixable with $\eta = \frac{1}{2}$. The substitution function is

$$\boldsymbol{w}, a^1, \dots, a^K \mapsto \frac{m_{\frac{1}{2}}(-1) - m_{\frac{1}{2}}(+1)}{4}$$

where $m_{\eta}(x) = \frac{-1}{\eta} \ln \sum_{k=1}^{K} w^{k} e^{-\eta (a^{k} - x)^{2}}$

See (Vovk 1990, Haussler, Kivinen, Warmuth, 1998)

Mixable loss list

Popular mixable losses:

- mix loss, log loss, entropic loss
- square loss, Brier loss
- Hellinger loss $\mathcal{A} = \mathcal{X} = [0, 1]$:

$$\mathcal{L}(a,x) \coloneqq \frac{1}{2} \left((\sqrt{1-x} - \sqrt{1-a})^2 + (\sqrt{x} - \sqrt{a}) \right)$$

Characterisation of mixability: (Van Erven, Reid, Williamson 2012).

Gradient trick

Gradient trick

Abusing an algorithm that can compete with the best *expert* to in fact compete with the best *convex combination* (cf portfolios).

Assume convex loss $\mathcal{L}(\boldsymbol{w}, x)$:

$$\mathcal{L}(\boldsymbol{w}, x) \geq \mathcal{L}(\boldsymbol{w}_t, x) + (\boldsymbol{w} - \boldsymbol{w}_t) \nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}_t, x)$$

First-order expansion around algorithm's action \boldsymbol{w}_t

Idea: feed Hedge $\ell_t = \nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}_t, x)$ (may need restriction + translation + scaling to make this [0, 1] bounded). Get \boldsymbol{w}_t . Play \boldsymbol{w}_t .

Imaginary regret upper bounds the actual regret:

$$\sum_{t=1}^{T} \boldsymbol{w}_{t}^{\mathsf{T}} \boldsymbol{\ell}_{t} - \min_{k} \sum_{t=1}^{T} \boldsymbol{\ell}_{t}^{k} = \max_{k} \sum_{t=1}^{T} \left(\boldsymbol{w}_{t}^{\mathsf{T}} \boldsymbol{\ell}_{t} - \boldsymbol{\ell}_{t}^{k} \right)$$
$$= \max_{\boldsymbol{w}} \sum_{t=1}^{T} (\boldsymbol{w}_{t} - \boldsymbol{w})^{\mathsf{T}} \nabla_{\boldsymbol{w}} \boldsymbol{\ell}(\boldsymbol{w}_{t}, x)$$
$$\geq \max_{\boldsymbol{w}} \sum_{t=1}^{T} \left(\mathcal{L}(\boldsymbol{w}_{t}, x) - \mathcal{L}(\boldsymbol{w}, x) \right)$$
$$= \sum_{t=1}^{T} \mathcal{L}(\boldsymbol{w}_{t}, x) - \max_{\boldsymbol{w}} \sum_{t=1}^{T} \mathcal{L}(\boldsymbol{w}, x)$$

Caveat: even if original loss was nice (mixable/curved/...), the imagined loss $\boldsymbol{w} \mapsto \boldsymbol{w}^{\mathsf{T}} \nabla_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{w}_t, x)$ is *linear*. Regret of order \sqrt{T} .

Specialists

Motivation

Not all expert predictions/actions available every round.

- Missing data
- Noise
- Too expensive (\$/time/memory)

How to model missingness? Adversarial.

How to redefine the objective? New variant of regret.

How to still do something optimal? Upgrade of AA.

Mix loss game with specialists

Protocol:

- For t = 1, 2, ...
 - Adversary picks the subset $A_t \subseteq [K]$ of *awake* specialists.
 - Learner chooses a distribution w_t on awake specialists A_t .
 - Adversary reveals loss vector $\ell_t \in (-\infty, \infty]^{A_t}$.
 - Learner's loss is the **mix loss** ln $\left(\sum_{k \in A_t} w_{t,k} e^{-\ell_{t,k}}\right)$

Objective

There is no loss when a specialist is asleep.

Regret w.r.t. specialist j: only measured during rounds where j is awake

$$R_T^j = \sum_{\substack{t \in [T]\\j \in A_t}} -\ln\left(\sum_{k \in A_t} w_t^k e^{-\ell_t^k}\right) - \sum_{\substack{t \in [T]\\j \in A_t}} \ell_t^j$$

Specialist AA

Definition: The Specialist Aggregating Algorithm (SAA) maintains a distribution u_t . It starts uniform $u_1^k = 1/K$. In round t with awake experts A_t , SAA predict with

$$w_t^k = u_t(k|A_t) = \frac{u_t^k \mathbf{1}_{\{k \in A_t\}}}{\sum_{j \in A_t} u_t^j}$$

Update:

$$u_{t+1}^{k} = \begin{cases} \frac{u_{t}^{k} e^{-\ell_{t}^{k}}}{\sum_{j \in A_{t}} u_{t}^{k} e^{-\ell_{t}^{k}}} \sum_{j \in A_{t}} u_{t}^{k} & k \in A_{t} \\ u_{t}^{k} & k \notin A_{t} \end{cases}$$

AA update relative to awake set A_t

What makes this tick

Consider the sequence ℓ'_1, ℓ'_2 obtained by completing ℓ_1, ℓ_2 by assigning in each round the SAA mix loss to all the asleep specialists.

Theorem: SAA on ℓ and AA on ℓ' produce identical weights $u_t = w'_t$ and suffer identical mix loss.

Proof: (homework)

Specialist regret bound for SAA

The AA has small regret w.r.t. expert j:

$$\ln K \geq \sum_{t=1}^{T} -\ln\left(\sum_{k=1}^{K} w_{t}^{\prime \, k} e^{-\ell_{t}^{\prime \, k}}\right) - \sum_{t=1}^{T} \ell_{t}^{\prime \, j}$$

$$= \sum_{t=1}^{T} -\ln\left(\sum_{k \in A_{t}} w_{t}^{k} e^{-\ell_{t}^{k}}\right) - \sum_{\substack{t=[T] \ t \in A_{j}}} \ell_{t}^{j} - \sum_{\substack{t=[T] \ t \notin A_{j}}} -\ln\left(\sum_{k \in A_{t}} w_{t}^{k} e^{-\ell_{t}^{k}}\right)$$

$$= \sum_{\substack{t=[T] \ t \in A_{j}}} -\ln\left(\sum_{k \in A_{t}} w_{t}^{k} e^{-\ell_{t}^{k}}\right) - \sum_{\substack{t=[T] \ t \in A_{j}}} \ell_{t}^{j}$$

$$= R_{T}^{j}$$

Adversary more power (sleeping) but regret still $\ln K$: SAA minimax for specialist mix-loss regret game.

Discussion

- Convex bounded losses are easier than dot loss.
- Mixable losses are easier than mix loss.
- Gradient trick allows us to compete with mixtures (at a cost)
- Specialists extension deals with missing data (at no cost).