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• Convex losses

• Exp-concave losses

• Mixable losses

• The gradient trick

• Specialists
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Menu

Today we solve new online learning problems by reducing themto

problems/algorithms/analyses we already cracked before.
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Prediction with Expert Advice

Prediction with expert advice:

Protocol:

• For t = 1, 2, . . .

− Experts announce actionsa1t , . . . , a
K
t ∈ A.

− Learner chooses an actionat ∈ A.

− Adversary reveals outcomext ∈ X .

− Learner incurs lossL(at, xt).

Goal: small regret w.r.t. best expert.
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Convex: Reduction to dot loss

SayL(a, x) is [0, 1]-bounded and convex ina for eachx:

K∑

k=1

wkL(ak, x) ≥ L
(

K∑

k=1

wkak, x

)

Then we can feed Hedgeℓkt = L(akt , xt).

Hedge outputswt. Play the mean actionat =
∑K

k=1 w
k
t a

k
t .

K∑

k=1

wk
t L(akt , xt)

︸ ︷︷ ︸

Dot lossw⊺

t ℓt

≥ L (at, xt)
︸ ︷︷ ︸

actual loss

Dot-loss bound translates to convex bounded lossL.

RT ≤
√

T/2 lnK
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Exp-concave: Reduction to mix loss

Definition: We sayL(a, x) is η-exp-concave in a for eachx if

K∑

k=1

wke−ηL(ak,x) ≤ e−ηL(
∑K

k=1
wkak,x)

Then we can feed the AAℓkt = ηL(akt , xt).

The AA outputswt. Play the mean actionat =
∑K

k=1 w
k
t a

k
t .

− ln

(
K∑

k=1

wk
t e

−ηL(ak
t ,xt)

)

︸ ︷︷ ︸

Mix loss ofwt onηℓt

≥ η L
(

K∑

k=1

wk
t a

k
t , xt

)

︸ ︷︷ ︸

actual loss
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Mix-loss bound translates to exp-concave lossL:

RT ≤ lnK

η

6



Example: square loss is exp-concave

Let’s consider

L(a, x) = (a− x)2

whereA = X = [−1,+1].

Findη such thatL is η-exp-concave by testing negative second derivative:

∂2

∂a2
e−η(a−x)2 =

∂

∂a
− 2e−η(a−x)2η(a− x)

= e−η(a−x)2η
(
4η(a− x)2 − 2

)

Highestη such that4η(a− x)2 − 2 ≤ 0 for all a, x. ⇒ η = 1/8.

ForX = A = [−Y,+Y ] we findη = 1
8Y 2 .
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Mixable loss: Reduction to mix loss

Crux: exp-concavity is convenient buttoo strong.

Definition: We sayL(a, x) is η-mixable if

∀w∀a1, . . . , aK∃a∀x L(a, x) ≤ −1

η
ln

(
K∑

k=1

wke−ηL(ak,x)

)

Mapping fromw, a1, . . . , aK to witnessa calledsubstitution function.

Mixable losses behave just enough like the mix loss to carry the AA

regret bound through.

RT ≤ lnK

η
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Square loss is mixable

Square loss is mixable withη = 1
2 . The substitution function is

w, a1, . . . , aK 7→
m 1

2

(−1)−m 1

2

(+1)

4

wheremη(x) = −1
η ln

∑K
k=1 w

ke−η(ak−x)2

See (Vovk 1990, Haussler, Kivinen, Warmuth, 1998)
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Mixable loss list

Popular mixable losses:

• mix loss, log loss, entropic loss

• square loss, Brier loss

• Hellinger lossA = X = [0, 1]:

L(a, x) :=
1

2

(
(
√
1− x−

√
1− a)2 + (

√
x−

√
a)
)

Characterisation of mixability: (Van Erven, Reid, Williamson 2012).
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Gradient trick
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Gradient trick

Abusing an algorithm that can compete with the bestexpert to in fact

compete with the bestconvex combination (cf portfolios).

Assume convex lossL(w, x):

L(w, x) ≥ L(wt, x) + (w −wt)∇wL(wt, x)
︸ ︷︷ ︸

First-order expansion around algorithm’s actionwt

Idea: feed Hedgeℓt = ∇wL(wt, x) (may need restriction + translation +

scaling to make this[0, 1] bounded). Getwt. Playwt.
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Imaginary regret upper bounds the actual regret:

T∑

t=1

w
⊺

t ℓt −min
k

T∑

t=1

ℓkt = max
k

T∑

t=1

(
w

⊺

t ℓt − ℓkt
)

= max
w

T∑

t=1

(wt −w)⊺∇wℓ(wt, x)

≥ max
w

T∑

t=1

(L(wt, x)− L(w, x))

=
T∑

t=1

L(wt, x)−max
w

T∑

t=1

L(w, x)

Caveat: even if original loss was nice (mixable/curved/. . .), the imagined

lossw 7→ w
⊺∇wL(wt, x) is linear. Regret of order

√
T .
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Specialists
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Motivation

Not all expert predictions/actions available every round.

• Missing data

• Noise

• Too expensive ($/time/memory)

How to model missingness? Adversarial.

How to redefine the objective? New variant of regret.

How to still do something optimal? Upgrade of AA.
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Mix loss game with specialists

Protocol:

• For t = 1, 2, . . .

− Adversary picks the subsetAt ⊆ [K] of awake specialists.

− Learner chooses a distributionwt on awake specialistsAt.

− Adversary reveals loss vectorℓt ∈ (−∞,∞]At .

− Learner’s loss is themix loss− ln
(∑

k∈At
wt,ke

−ℓt,k
)
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Objective

There is no loss when a specialist is asleep.

Regret w.r.t. specialistj: only measured during rounds wherej is awake

Rj
T =

∑

t∈[T ]
j∈At

− ln

(
∑

k∈At

wk
t e

−ℓkt

)

−
∑

t∈[T ]
j∈At

ℓjt
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Specialist AA

Definition: The Specialist Aggregating Algorithm (SAA) maintains a

distributionut. It starts uniformuk
1 = 1/K.

In roundt with awake expertsAt, SAA predict with

wk
t = ut(k|At) =

uk
t 1{k∈At}
∑

j∈At
uj
t

Update:

uk
t+1 =







uk
t e

−ℓkt

∑
j∈At

uk
t e

−ℓk
t

∑

j∈At
uk
t k ∈ At

uk
t k /∈ At

AA update relative to awake setAt
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What makes this tick

Consider the sequenceℓ′1, ℓ
′
2 obtained by completingℓ1, ℓ2 by assigning

in each round the SAA mix loss to all the asleep specialists.

Theorem: SAA onℓ and AA onℓ′ produce identical weightsut = w
′
t

and suffer identical mix loss.

Proof: (homework)
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Specialist regret bound for SAA

The AA has small regret w.r.t. expertj:

lnK ≥
T∑

t=1

− ln

(
K∑

k=1

w′
t
k
e−ℓ′t

k

)

−
T∑

t=1

ℓ′t
j

=
T∑

t=1

− ln

(
∑

k∈At

wk
t e

−ℓkt

)

−
∑

t=[T ]
t∈Aj

ℓjt −
∑

t=[T ]
t/∈Aj

− ln

(
∑

k∈At

wk
t e

−ℓkt

)

=
∑

t=[T ]
t∈Aj

− ln

(
∑

k∈At

wk
t e

−ℓkt

)

−
∑

t=[T ]
t∈Aj

ℓjt

= Rj
T

Adversary more power (sleeping) but regret stilllnK: SAA minimax for
specialist mix-loss regret game.
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Discussion

• Convex bounded losses are easier than dot loss.

• Mixable losses are easier than mix loss.

• Gradient trick allows us to compete with mixtures (at a cost)

• Specialists extension deals with missing data (at no cost).
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