CS281B/Stat241B. Statistical Learning Theory. Lecture 11. Wouter M. Koolen

- Follow the Perturbed Leader (part 2)
- Adaptive Regret and Tracking

Follow the Perturbed Leader

Today we look at *combinatorial* prediction tasks.

Sets	committee formation, advertising	
Trees	spanning trees (networking), parse trees	
Paths (source-sink)	route planning	
Permutations	ordering	

Represent *concept* as indicator $C \in \{0, 1\}^d$ out of d components.

Combinatorial dot-loss game

Concept class: $C = \{C_1, \ldots, C_D\} \subseteq \{0, 1\}^d$.

Protocol:

- For t = 1, 2, ...
 - Learner chooses a distribution W_t on concepts C.
 - Adversary reveals component loss vector $\ell_t \in [0, 1]^d$.
 - Learner incurs the dot loss $\mathbb{E}_{C \sim W_t} [C^{\intercal} \ell_t]$.

Typically D is large, so spelling out $W_t = (w_1, \dots, w_D)$ is intractable. We allow Learner to randomise and analyse loss in expectation.

Expanded vs Collapsed

Expanded: perturb the loss of each **concept**, then pick best concept. Analysis immediate from experts case, but intractable algorithm.

Collapsed: perturb the loss of each **component**, then pick best concept.

Follow the Perturbed Leader (Concept)

Abbreviate cumulative loss after t rounds: $L_t = \ell_1 + \ldots + \ell_t$.

Definition: Let X_t^1, \ldots, X_t^d be random. FPL with learning rate η plays in round t by choosing concept

$$\arg\min_{C\in\mathcal{C}}C^{\mathsf{T}}\left(\boldsymbol{L}_{t-1}+\frac{\boldsymbol{X}_{t}}{\eta}\right)$$

We have special-purpose linear optimisation algorithms:

- Sets: linear-time median
- Minimum spanning tree
- Shortest path
- Maximal weighted matching

FPL loss decomposition

In the Hedge analysis we decomposed dot loss in terms of *mix loss* and *mixability gap*.

Here we use the loss of *Infeasible Follow the Perturbed Leader*, which plays the leader *after* the upcoming loss.

$$\mathbb{E} L_T^{\text{FPL}} = \underbrace{\mathbb{E} L_T^{\text{IFPL}}}_{\text{close to best for high } \eta} + \underbrace{\mathbb{E} L_T^{\text{FPL}} - \mathbb{E} L_T^{\text{IFPL}}}_{\text{small for low } \eta}$$

IFPL close to best concept

We use the abbreviation $M(\boldsymbol{v}) := \arg \min_{C \in \mathcal{C}} C^{\intercal} \boldsymbol{v}$. So IFPL plays $M\left(\boldsymbol{L}_t + \frac{\boldsymbol{X}}{\eta}\right)$ in round t.

Theorem: After $T \ge 0$ rounds:

$$\mathbb{E} L_T^{\text{IFPL}} \leq \min_{C \in \mathcal{C}} C^{\intercal} L_T + \frac{U(1 + \ln d)}{\eta}$$

where $\mathcal{C} \subseteq \{0,1\}^d$ and $U = \max_{C \in \mathcal{C}} |C|_1$.

We first prove (result akin to telescoping for Hedge):

$$M\left(\frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\frac{\boldsymbol{X}}{\eta} + \sum_{t=1}^{T} M\left(\boldsymbol{L}_{t} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\boldsymbol{\ell}_{t} \leq M\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)$$

By induction. Base case T = 0 holds by definition. For $T \ge 1$, we need

to show:

$$M\left(\boldsymbol{L}_{T-1} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \left(\boldsymbol{L}_{T-1} + \frac{\boldsymbol{X}}{\eta}\right) + M\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \boldsymbol{\ell}_{T}$$
$$\leq M\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)$$

that is

$$M\left(\boldsymbol{L}_{T-1} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\left(\boldsymbol{L}_{T-1} + \frac{\boldsymbol{X}}{\eta}\right) \leq M\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\left(\boldsymbol{L}_{T-1} + \frac{\boldsymbol{X}}{\eta}\right)$$

which follows from the definition of M.

Bringing the "round 0" term to the other side. The IFPL loss is at most

$$\sum_{t=1}^{T} M\left(\boldsymbol{L}_{t} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \boldsymbol{\ell}_{t} \leq M\left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \left(\boldsymbol{L}_{T} + \frac{\boldsymbol{X}}{\eta}\right) - M\left(\frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}} \frac{\boldsymbol{X}}{\eta}$$

We then use

$$M\left(\boldsymbol{L}_{T}+\frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\left(\boldsymbol{L}_{T}+\frac{\boldsymbol{X}}{\eta}\right) \leq M\left(\boldsymbol{L}_{T}\right)^{\mathsf{T}}\left(\boldsymbol{L}_{T}+\frac{\boldsymbol{X}}{\eta}\right)$$
$$= M\left(\boldsymbol{L}_{T}\right)^{\mathsf{T}}\boldsymbol{L}_{T}+\frac{1}{\eta}\underbrace{M\left(\boldsymbol{L}_{T}\right)^{\mathsf{T}}\boldsymbol{X}}_{\leq 0 \text{ since } \boldsymbol{X} \leq 0}.$$

We then continue to observe that

$$-M\left(\frac{\boldsymbol{X}}{\eta}\right)^{\mathsf{T}}\frac{\boldsymbol{X}}{\eta} \leq \frac{1}{\eta}\left|M\left(\frac{\boldsymbol{X}}{\eta}\right)\right|_{1}|\boldsymbol{X}|_{\infty}$$
$$= \frac{U|\boldsymbol{X}|_{\infty}}{\eta}$$

The expected maximum of d standard exponentials is $\leq 1 + \ln d$.

FPL close to IFPL

Theorem: In each round *t*:

$$\mathbb{E}\,\ell_t^{\mathrm{FPL}} - \mathbb{E}\,\ell_t^{\mathrm{IFPL}} \leq \eta d$$

(Per-round bound, like mixability gap bound in Hedge analysis)

Crucial idea: Bound the maximal change in probability of choosing expert i under addition of one trial of losses:

$$\mathbb{P}\left(I_t^{\mathrm{FPL}} = i\right) \leq e^{\eta} \mathbb{P}\left(I_t^{\mathrm{IFPL}} = i\right)$$

(tedious but straightforward manipulation of exponential distributions) In the combinatorial concepts case we use $|\ell|_1 \leq d$ to obtain

$$\mathbb{E}\,\ell_t^{\mathrm{FPL}} \leq e^{\eta d}\,\mathbb{E}\,\ell_t^{\mathrm{IFPL}}$$

And hence, using $e^{-\eta d} \ge 1 - \eta d$ and $\ell \in [0, U]$, $(1 - \eta d) \mathbb{E} \ell_t^{\text{FPL}} \le \mathbb{E} \ell_t^{\text{IFPL}}$ so that $\mathbb{E} \ell_t^{\text{FPL}} - \mathbb{E} \ell_t^{\text{IFPL}} \le \eta dU$.

Tuning FPL

 We proved

$$\mathbb{E} R_T^{\text{FPL}} \leq T dU \eta + \frac{U(1 + \ln d)}{\eta}$$

 Theorem: FPL with $\eta = \sqrt{\frac{(1 + \ln d)}{dT}}$ guarantees

 $\mathbb{E} R_T^{\text{FPL}} \leq 2U \sqrt{T d(1 + \ln d)}$

Part 2: Adaptive Regret

Motivation: non-stationary data

Suppose the data are like this

	T/2 rounds	T/2 rounds
expert 1	loss 0	loss 1
expert 2	loss 1	loss 0

We want to be as good as expert 2 on the second half of the data.

The Aggregating Algorithm and Hedge do *not* accomplish this. They incur loss $\approx T/2$, not ≈ 0 , on second half.

Diagnosis: Expert must be ahead in *cumulative* loss to receive substantial weight.

Recap: Mix-loss game

Protocol:

• For t = 1, 2, ...

- Learner chooses a distribution w_t on K experts.

- Adversary reveals loss vector $\boldsymbol{\ell}_t \in (-\infty, \infty]^K$.
- Learner incurs the mix loss $-\ln\left(\sum_{k=1}^{K} w_{t,k} e^{-\ell_{t,k}}\right)$

New objective

Definition: The *adaptive regret* on time interval $[t_1, t_2]$ is given by

$$R_{[t_1,t_2]} = \sum_{t=t_1}^{t_2} -\ln\left(\sum_{k=1}^K w_t^k e^{-\ell_t^k}\right) - \min_{k} \sum_{t=t_1}^{t_2} \ell_t^k$$

Learner's mix loss in round t best loss for interval

Goal: guarantee low adaptive regret on any interval.

The Fixed Share Algorithm

Definition: Fixed Share with switching rate sequence $\alpha_2, \alpha_3, \ldots$ plays uniform $w_1^k = 1/K$ in round 1, and updates its weights as

$$w_{t+1}^k \coloneqq \frac{\alpha_{t+1}}{K-1} + \left(1 - \frac{K}{K-1}\alpha_{t+1}\right) \frac{w_t^k e^{-\ell_t^k}}{\sum_{k=1}^K w_t^k e^{-\ell_t^k}}$$

Fixed Share: weight going out

Fraction $1 - \alpha$ of weight stays put. The remainder fraction α is redistributed uniformly to the other experts.

Fixed Share: weight coming in

Adaptive regret of Fixed Share

Theorem: Fixed Share with switching rates $\alpha_2, \alpha_3, \ldots$ guarantees

$$R_{[t_1,t_2]} \leq -\ln\left(\frac{\alpha_{t_1}}{K-1}\prod_{t=t_1+1}^{t_2}(1-\alpha_t)\right)$$

Proof: The Fixed Share update can be written equivalently as

$$w_{t+1}^{k} = (1 - \alpha_{t+1}) \frac{w_{t}^{k} e^{-\ell_{t}^{k}}}{\sum_{k=1}^{K} w_{t}^{k} e^{-\ell_{t}^{k}}} + \frac{\alpha_{t+1}}{K - 1} \left(1 - \frac{w_{t}^{k} e^{-\ell_{t}^{k}}}{\sum_{k=1}^{K} w_{t}^{k} e^{-\ell_{t}^{k}}}\right)$$

We next prove by induction that the mix loss telescopes (with overhead)

$$\sum_{t=t_1}^{t_2} -\ln\left(\sum_{k=1}^K w_t^k e^{-\ell_t^k}\right) \leq -\ln\left(\sum_{k=1}^K w_{t_1}^k e^{-\sum_{t=t_1}^{t_2} \ell_t^k}\right) -\ln\prod_{t=t_1+1}^{t_2} (1-\alpha_t)$$

Base case: $t_1 = t_2$ trivial. Induction step:

$$\sum_{t=t_{1}-1}^{t_{2}} -\ln\left(\sum_{k=1}^{K} w_{t}^{k} e^{-\ell_{t}^{k}}\right)$$

$$\leq -\ln\left(\sum_{k=1}^{K} w_{t_{1}-1}^{k} e^{-\ell_{t_{1}-1}^{k}}\right) -\ln\left(\sum_{k=1}^{K} w_{t_{1}}^{k} e^{-\sum_{t=t_{1}}^{t_{2}} \ell_{t}^{k}} \prod_{t=t_{1}+1}^{t_{2}} (1-\alpha_{t})\right)$$

$$\leq -\ln\left(\sum_{k=1}^{K} \left((1-\alpha_{t_{1}}) \left(w_{t_{1}-1}^{k} e^{-\ell_{t_{1}-1}^{k}}\right)\right) e^{-\sum_{t=t_{1}}^{t_{2}} \ell_{t}^{k}} \prod_{t=t_{1}+1}^{t_{2}} (1-\alpha_{t})\right)$$

$$= -\ln\left(\sum_{k=1}^{K} w_{t_{1}-1}^{k} e^{-\sum_{t=t_{1}-1}^{t_{2}} \ell_{t}^{k}} \prod_{t=t_{1}}^{t_{2}} (1-\alpha_{t})\right)$$

The proof of the theorem is concluded by observing that for any expert k

$$\begin{split} \sum_{t=t_1}^{t_2} &- \ln\left(\sum_{k=1}^K w_t^k e^{-\ell_t^k}\right) \\ &\leq &- \ln\left(\sum_{k=1}^K w_{t_1}^k e^{-\sum_{t=t_1}^{t_2} \ell_t^k} \prod_{t=t_1+1}^{t_2} (1-\alpha_t)\right) \\ &\leq &\sum_{t=t_1}^{t_2} \ell_t^k - \ln\left(w_{t_1}^k \prod_{t=t_1+1}^{t_2} (1-\alpha_t)\right) \\ &\leq &\sum_{t=t_1}^{t_2} \ell_t^k - \ln\left(\frac{\alpha_t}{K-1} \prod_{t=t_1+1}^{t_2} (1-\alpha_t)\right) \end{split}$$

where the last inequality results from

$$w_{t_1}^k \geq \frac{\alpha_t}{K-1}.$$

Tuning Fixed Share

A constant $\alpha_t = \alpha$ results in

$$R_{[t_1,t_2]} \leq \ln(K-1) - \ln \alpha - (t_2 - t_1) \ln(1 - \alpha)$$

A slowly decreasing $\alpha_t = 1/t$ results in

 $R_{[t_1,t_2]} \leq \ln(K-1) + \ln t_2$

A quickly decreasing $\alpha_t = 1/(t \ln t)$ results in

 $R_{[t_1,t_2]} \leq \ln(K-1) + \ln t_1 + \ln \ln t_2$

A sum-convergent $\alpha_t = 1/t^2$ results in

$$R_{[t_1,t_2]} \leq \ln(K-1) + 2\ln t_1 + \ln 2$$

Note: for $t_1 = 1$ replace $\ln(K - 1)$ by $\ln K$.

Fixed Share Wrap-up

Fixed Share (upgrade of Aggregating Algorithm) "tracks" the best expert, in the sense that it performs almost as well as the best expert *locally*.

We found a palette of adaptive regret guarantees, parametrised by the switching rate sequence $\alpha_2, \alpha_3, \ldots$

It can be shown that Fixed Share is the definitive algorithm for adaptive regret (in the mix loss game): any adaptive regret guarantee $R_{[t_1,t_2]} \leq \phi(t_1,t_2)$ — no matter how smart the strategy — is reproduced by Fixed Share (with particular switching rates depending on ϕ)

Minimax replaced by Pareto optimality.