
CS281B/Stat241B. Statistical Learning Theory.
Lecture 10.

Wouter M. Koolen

• The Minimax Algorithm for the Dot-loss Game

• Follow the Perturbed Leader (part 1)
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Recall: Dot-loss game

Protocol:

• For t = 1, 2, . . .

− Learner chooses a distributionwt onK “experts”.

− Adversary reveals loss vectorℓt ∈ [0, 1]K .

− Learner’s loss is thedot lossw⊺

t ℓt

Definition: Regret afterT rounds:

RT =
T∑

t=1

w
⊺

t ℓt −min
k

T∑

t=1

ℓt,k

Goal: design an algorithm for Learner that guarantees low regret.
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Today we take this goal seriously

Minimax regret with atime horizon:

min
w1

max
ℓ1

· · ·min
wT

max
ℓT

RT

turns out to be messy.

However, minimax regret with aloss budget B of the best expert:

min
w1

max
ℓ1

min
w2

max
ℓ2

· · ·







supT≥0 RT if mink L
k
T ≤ B for all T ≥ 0

−∞ o.w.

results in an extremely elegant algorithm.
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Sneak peek

The optimal algorithm:

Let L denote the current expert loss vector.

Start fromL. Repeatedly add uniformly drawn unit loss

ℓ ∈ {e1, . . . , eK}. Play the last expert that goes over the budgetB.
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Menu

To keep things tractable we restrict to expert losses0/1.

We will perform the analysis in two stages:

1. Unitsℓ ∈ {e1, . . . , eK}

2. Binaryℓ ∈ {0, 1}
K

Extending to arbitrary [0, 1] losses could be part of your project.
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Straightforward observations

A dead expert has loss> B.

Adversary may gratuitously assign max. loss1 to dead experts.

Learner cannot benefit by putting weight on a dead expert.

Adversary cannot benefit by keeping the best expert loss< B.

So we might as well maximise Learners loss.
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Backward induction

Let VB(L) be the amount of loss Adversary can inflict on the Learner

• from a starting point where experts have lossL

• with the loss of the best expert at most the budgetB.

Base case:

VB(L) = 0 if min
k

Lk > B

Recurrence:

VB(L) = inf
w

sup
ℓ

{
w⊺ℓ+ VB(L+ ℓ)

}

wherew ranges over distributions on live experts{k | Lk ≤ B} and

ℓ ∈ {e1, . . . , eK}.
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Units: main claim

By minimax theorem (Von Neumann)

VB(L) = inf
w

sup
ℓ

w⊺ℓ+ VB(L+ ℓ)

= sup
p

inf
w

E
k∼p

[w⊺ek + VB(L+ ek)]

Both players haveequaliser strategies:

• Forp, the equaliser isuniform: pk = 1
K

.

• Forw, an equaliser satisfies:

wk + VB(L+ ek) is const ink

solving forw (with
∑

k wk = 1) results in

wk =
1 +

∑

j VB(L+ ej)

K
− VB(L+ ek) check≥ 0
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Value of the game

We get:

VB(L) =
1

K
+

1

K

K∑

k=1

VB(L+ ek),

showing thatVB(L) is 1
K

times the expected length of the game.
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Optimal weights

Let wk [L] denote the weight assigned to expertk in stateL. The value

expression allows us to rewrite

wk = VB(L)− VB(L+ ek)

=
1

K

K∑

j=1

(
VB(L+ ej)− VB(L+ ej + ek)

)

=
1

K

K∑

j=1

wk [L+ ej ]

Idea: to samplek ∼ w, we may unroll this definition until we hit the base

case of1 surviving expert, whereVB(L) = 1 andVB(L+ ek) = 0.
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Binary losses: monotonicity

Unitse1 ande2 separately:

wk [L]⊺ e1 + wk [L+ e1]
⊺
e2

Combinede1 + e2:

wk [L]
⊺
(e1 + e2)

Which is bigger? Claim: separate. I.e.:

wk [L+ e1]
⊺
e2 > wk [L]

⊺
e2

Every path in which expert2 is the survivor fromL also works from

L+ e1. But there are more such paths.

11



Equalisation

The minimax algorithm formix loss equalises the regret over all loss

sequences in which all but one expert suffer infinite loss.

The minimax algorithm fordot loss equalises the regret over all

sequences of unit losses.
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Follow the Perturbed Leader

Follow-the-Leader is an intuitive algorithm. But its regret is horrible

(Homework).

The reason is that FTL is overly sensitive to small loss differences.

In this lecture we see how FTL can be fixed by adding a pinch of

randomness.

And we see that the solution extends to combinatorial prediction tasks

(next lecture).
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Follow the Perturbed Leader

The cumulative loss aftert rounds:Lt = ℓ1 + . . .+ ℓt.

Definition: Let Xk
t be random. FPL with learning rateη plays in round

t by choosing expert

argmin
k

Lk
t−1 +

Xk
t

η

Question: how to choose the distribution of the perturbationsXk
t so that

FPL guarantees low regret (in expectation/with high probability)?

We use i.i.d. negative-of-exponential distribution:

p(Xk
t = x) = ex for x ≤ 0.
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FPL loss decomposition

In the Hedge analysis we decomposed dot loss in terms ofmix loss and

mixability gap.

Here we use the loss ofInfeasible Follow the Perturbed Leader, which

plays the leaderafter the upcoming loss.

ELFPL
T = ELIFPL

T
︸ ︷︷ ︸

close to best
for highη

+ELFPL
T − ELIFPL

T
︸ ︷︷ ︸

small
for low η
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IFPL close to best expert

Theorem: After T ≥ 0 rounds:

ELIFPL
T ≤ min

k
Lk
T +

lnK

η

We use the abbreviationM(v) := eargmink vk
. So IFPL plays

M
(

Lt +
X
η

)

in roundt.

We first prove (result akin to telescoping for Hedge):

M

(
X

η

)⊺
X

η
+

T∑

t=1

M

(

Lt +
X

η

)⊺

ℓt ≤ M

(

LT +
X

η

)⊺ (

LT +
X

η

)

By induction. Base caseT = 0 holds by definition. ForT ≥ 1, we need
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to show:

M

(

LT−1 +
X

η

)⊺ (

LT−1 +
X

η

)

+M

(

LT +
X

η

)⊺

ℓT

≤ M

(

LT +
X

η

)⊺ (

LT +
X

η

)

that is

M

(

LT−1 +
X

η

)⊺ (

LT−1 +
X

η

)

≤ M

(

LT +
X

η

)⊺ (

LT−1 +
X

η

)

which follows from the definition ofM .

Bringing the “round 0” term to the other side. The IFPL loss isat most

T∑

t=1

M

(

Lt +
X

η

)⊺

ℓt ≤ M

(

LT +
X

η

)⊺ (

LT +
X

η

)

−M

(
X

η

)⊺
X

η
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We then use thatX ≤ 0 to drop the middle perturbations, and observe

that

−M

(
X

η

)⊺
X

η
=

maxk −Xk

η

The expected maximum ofK standard exponentials is≤ 1 + lnK.
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FPL close to IFPL

Theorem: In each roundt:

E ℓFPL
t − E ℓIFPL

t ≤ η

(Per-round bound, like mixability gap bound in Hedge analysis)

Crucial idea: Bound the maximal change in probability of choosing

experti under addition of one trial of losses:

P
(
IFPL
t = i

)
≤ eη P

(
I IFPL
t = i

)

(tedious but straightforward manipulation of exponentialdistributions)

So

E ℓFPL
t ≤ eη E ℓIFPL

t
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And hence, usinge−η ≥ 1− η andℓ ∈ [0, 1],

(1− η)E ℓFPL
t ≤ E ℓIFPL

t so that E ℓFPL
t − E ℓIFPL

t ≤ η.

20



Tuning FPL

Theorem: FPL withη =
√

1+lnK
T

guarantees

ERFPL
T ≤ 2

√

T (1 + lnK)

Constants not as good as tuned Hedge. This can be fixed by changing the

perturbation distribution (homework).

FPL extends to combinatorial prediction spaces (next lecture).
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