
CS281B/Stat241B. Statistical Learning Theory. Lecture 6.
Peter Bartlett

1. Concentration inequalities

(a) Martingale methods.

2. Uniform laws of large numbers

(a) Motivation.

(b) Glivenko-Cantelli theorem.
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Martingale Difference Sequences: the Doob construction

Define X = (X1, . . . , Xn),

Xi
1 = (X1, . . . , Xi),

Y0 = Ef(X),

Yi = E[f(X)|Xi
1].

Then f(X)− Ef(X) = Yn − Y0 =

n∑

i=1

Di,

whereDi = Yi − Yi−1. Also,Yi is amartingale w.r.t.Xi, and henceDi

is amartingale difference sequence. [Why?]
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Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequenceDn (adapted to a

filtrationFn) that satisfies

for |λ| ≤ 1/bn a.s.,E [ exp(λDn)| Fn−1] ≤ exp(λ2σ2
n/2).

Then
∑n

i=1
Di is sub-exponential, with(σ2, b) = (

∑n
i=1

σ2
i ,maxi bi).

P

(∣
∣
∣
∣
∣

∑

i

Di

∣
∣
∣
∣
∣
≥ t

)

≤







2 exp(−t2/(2σ2)) if 0 ≤ t ≤ σ2/b

2 exp(−t/(2b)) if t > σ2/b.
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Concentration Bounds for Martingale Difference Sequences

Proof:
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Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequenceDi that a.s. falls in

an interval of lengthBi. Then

P

(∣
∣
∣
∣
∣

∑

i

Di

∣
∣
∣
∣
∣
≥ t

)

≤ 2 exp

(

−
2t2
∑

i B
2
i

)

.

Proof:
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Bounded Differences Inequality

Theorem: Supposef : Xn → R satisfies the followingbounded differ-
ences inequality:
for all x1, . . . , xn, x

′

i ∈ X ,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′

i, xi+1, . . . , xn)| ≤ Bi.

Then

P (|f(X)−Ef(X)| ≥ t) ≤ 2 exp

(

−
2t2
∑

i B
2
i

)

.
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Bounded Differences Inequality

Proof: Use the Doob construction.

Yi = E[f(X)|Xi
1],

Di = Yi − Yi−1,

f(X)−Ef(X) =
n∑

i=1

Di.

Then ...
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Examples: Rademacher Averages

For a setA ⊂ R
n, consider

Z = sup
a∈A

〈ǫ, a〉,

whereǫ = (ǫ1, . . . ǫn) is a sequence of i.i.d. uniform{±1} random

variables. Define theRademacher complexityof A asR(A) = EZ/n.

[This is a measure of the size ofA.] The bounded differences approach

implies thatZ is concentrated aroundR(A):

Theorem: Z is sub-Gaussian with parameter4
∑

i supa∈A a2i .

Proof:

?
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Examples: Empirical Processes

For a classF of functionsf : X → [0, 1], suppose thatX1, . . . , Xn, X

are i.i.d. onX , and consider

Z = sup
f∈F

∣
∣
∣
∣
∣
Ef(X)−

1

n

n∑

i=1

f(Xi)

∣
∣
∣
∣
∣
=:

∥
∥
∥
∥
∥
∥

P − Pn
︸ ︷︷ ︸

emp proc

∥
∥
∥
∥
∥
∥
F

.

If Z converges to0, this is called auniform law of large numbers. Here,

we show thatZ is concentrated aboutEZ:

Theorem: Z is sub-Gaussian with parameter1/n.

Proof:

?
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Uniform laws of large numbers: Motivation

We are interested in the performance of empirical risk minimization:

Choosefn ∈ F to minimizeR̂(f).

How doesR(fn) behave?

Definef∗ = argminf∈F R(f).

How does the excess risk,R(fn)−R(f∗) behave?

We can write

R(fn)−R(f∗) =
[

R(fn)− R̂(fn)
]

+
[

R̂(fn)− R̂(f∗)
]

+
[

R̂(f∗)−R(f∗)
]
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Uniform laws of large numbers: Motivation

One of these terms is a difference between a sample average and an

expectation for the fixed function(x, y) 7→ ℓ(f∗(x), y):

R̂(f∗)−R(f∗) =
1

n

n∑

i=1

ℓ(f∗(X), Y )− Pℓ(f∗(X), Y ).

The law of large numbers shows that this term converges to zero; and with

information about the tails ofℓ(f∗(X), Y ) (such as boundedness), we can

get bounds on its value.

11



Uniform laws of large numbers: Motivation

R̂(fn)− R̂(f∗) is non-positive, becausefn is chosen to minimizêR.

The other difference,R(fn)− R̂(fn), is more interesting. For any fixed

f , this difference goes to zero. Butfn is random, since it is chosen using

the data. An easy upper bound is

R(fn)− R̂(fn) ≤ sup
f∈F

∣
∣
∣R(f)− R̂(f)

∣
∣
∣ ,

and this motivates the study of uniform laws of large numbers.
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Glivenko-Cantelli Theorem

First example of a uniform law of large numbers.

Theorem: ‖Fn − F‖
∞

as
→ 0.

Here,F is a cumulative distribution function,Fn is the empirical

cumulative distribution function,

Fn(x) =
1

n

n∑

i=1

1[Xi ≥ x],

whereX1, . . . , Xn are i.i.d. with distributionF , and

‖F −G‖∞ = supt |F (t)−G(t)|.
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Glivenko-Cantelli Theorem

Why uniform law of large numbers?

‖Fn − F‖
∞

= sup
x

|Fn(x)− F (x)|

= sup
x

|Pn(X ≥ x)− P [X ≥ x]|

as
→ 0,

wherePn is the empirical distribution that assigns mass1/n to eachXi.

The law of large numbers says that, for allx, Pn(X ≥ x)
as
→ P (X ≥ x).

The GC Theorem says that this happens uniformly overx.
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Glivenko-Cantelli Classes

Definition: F is aGlivenko-Cantelli classfor P if

sup
f∈F

|Pnf − Pf | =: ‖Pn − P‖F
P
→ 0.

Here,P is a distribution onX , X1, . . . , Xn are drawn i.i.d. fromP , Pn is
the empirical distribution (which assigns mass1/n to each of
X1, . . . , Xn), F is a set of measurable real-valued functions onX with
finite expectation underP , Pn − P is anempirical process, that is, a
stochastic process indexed by a class of functionsF , and
‖Pn − P‖F := supf∈F |Pnf − Pf |.

The GC Theorem is a special case, withF = {1[x ≥ t] : t ∈ R} (and
with the stronger conclusion that convergence is almost sure—we say that
such anF is a ‘strong GC class’).
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Glivenko-Cantelli Classes

Not all F are Glivenko-Cantelli classes. For instance, recall

F = {1[x ∈ S] : S ⊂ R, |S| < ∞} .

Then for a continuous distributionP , Pf = 0 for anyf ∈ F , but

supf∈F Pnf = 1 for all n. So althoughPnf
as
→ Pf for all f ∈ F , this

convergence is not uniform overF . F is too large.
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