CS281B/Stat241B. Statistical Learning Theory. Lecture 6. Peter Bartlett

- 1. Concentration inequalities
 - (a) Martingale methods.
- 2. Uniform laws of large numbers
 - (a) Motivation.
 - (b) Glivenko-Cantelli theorem.

Martingale Difference Sequences: the Doob construction

Define $X = (X_1, \dots, X_n),$ $X_1^i = (X_1, \dots, X_i),$ $Y_0 = \mathbf{E}f(X),$ $Y_i = \mathbf{E}[f(X)|X_1^i].$ Then $f(X) - \mathbf{E}f(X) = Y_n - Y_0 = \sum_{i=1}^n D_i,$

where $D_i = Y_i - Y_{i-1}$. Also, Y_i is a **martingale** w.r.t. X_i , and hence D_i is a **martingale difference sequence**. [Why?]

Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequence D_n (adapted to a filtration \mathcal{F}_n) that satisfies

for
$$|\lambda| \leq 1/b_n$$
 a.s., $\mathbf{E} \left[\exp(\lambda D_n) | \mathcal{F}_{n-1} \right] \leq \exp(\lambda^2 \sigma_n^2/2)$.

Then $\sum_{i=1}^{n} D_i$ is sub-exponential, with $(\sigma^2, b) = (\sum_{i=1}^{n} \sigma_i^2, \max_i b_i).$

$$P\left(\left|\sum_{i} D_{i}\right| \ge t\right) \le \begin{cases} 2\exp(-t^{2}/(2\sigma^{2})) & \text{if } 0 \le t \le \sigma^{2}/b\\ 2\exp(-t/(2b)) & \text{if } t > \sigma^{2}/b. \end{cases}$$

Concentration Bounds for Martingale Difference Sequences

Proof:

Concentration Bounds for Martingale Difference Sequences

Theorem: Consider a martingale difference sequence D_i that a.s. falls in an interval of length B_i . Then

$$P\left(\left|\sum_{i} D_{i}\right| \ge t\right) \le 2\exp\left(-\frac{2t^{2}}{\sum_{i} B_{i}^{2}}\right)$$

Proof:

Bounded Differences Inequality

Theorem: Suppose $f : \mathcal{X}^n \to \mathbb{R}$ satisfies the following **bounded differ**ences inequality:

for all $x_1, \ldots, x_n, x'_i \in \mathcal{X}$,

$$|f(x_1,\ldots,x_n) - f(x_1,\ldots,x_{i-1},x'_i,x_{i+1},\ldots,x_n)| \le B_i.$$

Then

$$P\left(|f(X) - \mathbf{E}f(X)| \ge t\right) \le 2\exp\left(-\frac{2t^2}{\sum_i B_i^2}\right)$$

Bounded Differences Inequality

Proof: Use the Doob construction.

$$Y_i = \mathbf{E}[f(X)|X_1^i],$$
$$D_i = Y_i - Y_{i-1},$$
$$f(X) - \mathbf{E}f(X) = \sum_{i=1}^n D_i.$$

Then ...

Examples: Rademacher Averages

For a set $A \subset \mathbb{R}^n$, consider

$$Z = \sup_{a \in A} \langle \epsilon, a \rangle,$$

where $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ is a sequence of i.i.d. uniform $\{\pm 1\}$ random variables. Define the **Rademacher complexity** of A as $R(A) = \mathbf{E}Z/n$. [This is a measure of the size of A.] The bounded differences approach implies that Z is concentrated around R(A):

Theorem: Z is sub-Gaussian with parameter $4 \sum_{i} \sup_{a \in A} a_i^2$.

Proof:

?

Examples: Empirical Processes

For a class F of functions $f : \mathcal{X} \to [0, 1]$, suppose that X_1, \ldots, X_n, X are i.i.d. on \mathcal{X} , and consider

$$Z = \sup_{f \in F} \left| \mathbf{E}f(X) - \frac{1}{n} \sum_{i=1}^{n} f(X_i) \right| =: \left\| \underbrace{P - P_n}_{\text{emp proc}} \right\|_F$$

If Z converges to 0, this is called a *uniform law of large numbers*. Here, we show that Z is concentrated about $\mathbf{E}Z$:

Theorem: Z is sub-Gaussian with parameter 1/n.

Proof:

?

Uniform laws of large numbers: Motivation

We are interested in the performance of empirical risk minimization: Choose $f_n \in F$ to minimize $\hat{R}(f)$.

How does $R(f_n)$ behave?

Define $f^* = \arg \min_{f \in F} R(f)$.

How does the excess risk, $R(f_n) - R(f^*)$ behave?

We can write

$$R(f_n) - R(f^*) = \left[R(f_n) - \hat{R}(f_n) \right] + \left[\hat{R}(f_n) - \hat{R}(f^*) \right] + \left[\hat{R}(f^*) - R(f^*) \right]$$

Uniform laws of large numbers: Motivation

One of these terms is a difference between a sample average and an expectation for the fixed function $(x, y) \mapsto \ell(f^*(x), y)$:

$$\hat{R}(f^*) - R(f^*) = \frac{1}{n} \sum_{i=1}^n \ell(f^*(X), Y) - P\ell(f^*(X), Y).$$

The law of large numbers shows that this term converges to zero; and with information about the tails of $\ell(f^*(X), Y)$ (such as boundedness), we can get bounds on its value.

Uniform laws of large numbers: Motivation

 $\hat{R}(f_n) - \hat{R}(f^*)$ is non-positive, because f_n is chosen to minimize \hat{R} . The other difference, $R(f_n) - \hat{R}(f_n)$, is more interesting. For any fixed f, this difference goes to zero. But f_n is random, since it is chosen using the data. An easy upper bound is

$$R(f_n) - \hat{R}(f_n) \le \sup_{f \in F} \left| R(f) - \hat{R}(f) \right|,$$

and this motivates the study of uniform laws of large numbers.

Glivenko-Cantelli Theorem

First example of a uniform law of large numbers.

Theorem: $||F_n - F||_{\infty} \xrightarrow{as} 0.$

Here, F is a cumulative distribution function, F_n is the empirical cumulative distribution function,

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[X_i \ge x],$$

where X_1, \ldots, X_n are i.i.d. with distribution F, and $||F - G||_{\infty} = \sup_t |F(t) - G(t)|.$

Glivenko-Cantelli Theorem

Why *uniform* law of large numbers?

$$||F_n - F||_{\infty} = \sup_x |F_n(x) - F(x)|$$

= $\sup_x |P_n(X \ge x) - P[X \ge x]|$
 $\stackrel{as}{\to} 0,$

where P_n is the empirical distribution that assigns mass 1/n to each X_i . The law of large numbers says that, for all x, $P_n(X \ge x) \xrightarrow{as} P(X \ge x)$. The GC Theorem says that this happens uniformly over x.

Glivenko-Cantelli Classes

Definition: F is a **Glivenko-Cantelli class** for P if

$$\sup_{f \in F} |P_n f - P f| =: ||P_n - P||_F \xrightarrow{P} 0.$$

Here, P is a distribution on $\mathcal{X}, X_1, \ldots, X_n$ are drawn i.i.d. from P, P_n is the empirical distribution (which assigns mass 1/n to each of X_1, \ldots, X_n), F is a set of measurable real-valued functions on \mathcal{X} with finite expectation under $P, P_n - P$ is an **empirical process**, that is, a stochastic process indexed by a class of functions F, and $||P_n - P||_F := \sup_{f \in F} |P_n f - Pf|.$

The GC Theorem is a special case, with $F = \{1[x \ge t] : t \in \mathbb{R}\}$ (and with the stronger conclusion that convergence is almost sure—we say that such an F is a 'strong GC class').

Glivenko-Cantelli Classes

Not all F are Glivenko-Cantelli classes. For instance, recall

$$F = \{1[x \in S] : S \subset \mathbb{R}, |S| < \infty\}.$$

Then for a continuous distribution P, Pf = 0 for any $f \in F$, but $\sup_{f \in F} P_n f = 1$ for all n. So although $P_n f \xrightarrow{as} Pf$ for all $f \in F$, this convergence is not uniform over F. F is too large.